第一篇:《整式的乘法》教学反思
《整式的乘法》教学反思(精选5篇)
随着社会一步步向前发展,我们的任务之一就是教学,反思指回头、反过来思考的意思。反思应该怎么写呢?下面是小编为大家整理的《整式的乘法》教学反思(精选5篇),希望能够帮助到大家。
《整式的乘法》教学反思1这部分内容是在学习了有理数的四则混合运算、幂的运算性质、合并同类项、去括号、整式的加减等内容的基础上进行的,它是前面知识的延伸。这一部分具有承前启后的作用,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习的基础。整式的乘法这一部分内容主要分成三部分内容。
第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,积的乘方应注意复习巩固。
第二部分是单项式乘多项式,这一部分内容的依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定。
第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。在混合运算中注意括号运算,不要漏括号。
在整个这一部分的内容教学中,难点与易错点主要是:
1、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。
2、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。
3、注意实际问题主要是图形的面积问题的正确解决。
注重难点与学习方法。
1、关注对教学难点的教学。
新课程标准下,数学教育的根本任务是发展学生的思维,教材中的难点往往是数学思维迅速丰富、过程大步跳跃的地方,所以在本节课难点教学中既注意了化难为易的效果,又注意了化难为易的过程,在探究法则的过程中设置循序渐进的问题,不断启迪学生思考,发展学生的思维能力,在应用法则的过程中,又引导学生进行解题后的反思,这些将促使学生知识水平和能力水平同时提高。
2、关注对学生学习方法的指导。
建构主义学习理论认为,学生的学习是对知识主动建构的过程,同时学生要主动构建对外部信息的解释交流,所以在教学中注重营造学生自主参与、师生互动合作、探究创新为主线的教学模式,从学生已有的知识结构入手,逐渐发现和提出新问题,在解决问题的过程中学会思考,在探究中掌握知识。
3、教育的根本目的在于促进每一个学生的发展,这也是数学教育的根本目的,因此教师在教学设计时,结合学生实际,有效整合教材,精选例习题,分层施教。本单元教学是以习题训练为主的,教学时注意选择了有层次的例题和练习,采用“兵教兵”的方法,组织学生开展合作学习。在探究问题的设计上也是由浅入深,目的就在于通过引导学生对问题的解决,能熟练掌握基础知识,灵活运用基本方法,提高分析问题和解决问题的能力。
4、让学生在“做”中学。
依据教学内容及教学要求,本节课通过拼图游戏,让学生动手操作,在活动中既复习了单项式与多项式相乘,又引出多项式相乘的运算。由于所拼图形的面积会有不同的表示方式,通过对比这些表示方式可以使学生用几何方法对多项式乘法法则有一个直观认识,再由几何解释的基础上从代数运算的角度将多项式与多项式相乘转化为单项式与多项式相乘,整个过程中学生在教师指导下经历操作、探究、解决问题的过程,引导学生在问题探究中不断质疑和释疑,体现了以探究为出发,以活动为中心,注重让学生从做中学的教学思路。
5、加强反思,注重对学生数学思想方法的渗透。
美国认知心理学家加涅指出,学习者学会了如何学习、如何记忆、如何获得更多的学习思维和分析思维,将会使它们变得越来越自主学习。所以,在教学中非常注重引导学生进行反思,在探究问题的过程中引导学生思考运用了哪些数学思想,例如本课中将多项式乘法转化为单项式乘以多项式的“转化”的思想,运用乘法分配律时的“整体”思想,拼图列式中运用的“数形结合”思想等,可以帮助学生从本质上理解所学知识,并提高解决问题的能力,真正使教学过程起到“授之以渔”的作用。
《整式的乘法》教学反思2本节是学习了同底数幂的乘法、幂的乘方、积的乘方后的综合运用,是因式分解的逆运算,也是进行因式分解的基础,其中,单项式乘以单项式是本节的重点,单项式乘以多项式中项的符号的确定是本节的难点,而单项式乘以多项式有转化到单项式与单项式的相乘,因此,掌握好单项式乘以单项式是关键,本人从以下几方面作反思:
(1)成功之处
也从课本开头的问题引入,具体的数据,问题较简单,学生很快进入了状态,激发了学生求知的兴趣引出本节内容。然后将上式作适当的变形,用字母表示叙述几个例子,引出单项式乘以单项式法则的内容,通过类比的思想方法,由数的运算引出式的运算规律,体现了数学知识间具体与抽象、从特殊到一般的内在联系,符合学生的认知规律,并在得出结论的过程中,与学生一起探讨,注重学生的参与,从课堂学生做习题的情况来看,掌握的比较好。在讲解第二个知识点时,用形象的图形来揭示多项式乘以多项式公式,学生也较易掌握,而在突破符号这一难点时,设计让学生先找多项式中由哪些项所组成,然后用单项式去乘以这些项,添回原先和式中省略了的加号,结果在练习中学生也突破了最容易犯的符号错误。并提出通过多项式乘以多项式的法则,把这个问题转化到单项式乘以单项式中,而单项式乘以单项式又转化到数的乘法与同底数幂的乘法,体现新知识与已学知识间的联系,注意转化的思想方法。整堂课中学生参与性较强,气氛活跃,知识落实到位。
(2)不足之处
在公式的推导过程中,还应更加让学生自己去得出结论,体现认识知识循序渐进的过程。例题的讲解不妨让学生尝试去做,让学生去犯错,然后去加以纠正,以加深印象,防止同样错误的发生。在小结时,还可以让学生再次去总结本节课中常犯的错误。
一节平常的数学课,经过反思,会发现许多值得推敲的地方,在许多细节的地方需要精心设计,这样才能做到以学生为主体,使学生学活学透,真正完成教学目标。
《整式的乘法》教学反思3《整式的乘法》是八年级上学期的最后一部分内容,也是比较有难度的内容。主要包括,同底数幂相乘、幂的乘方、积的乘方、单项式乘单项式、单项式乘多项式、和乘法的两个公式。整式乘法是整式乘除与因式分解的基础,是学好最后一章的关键,因此是我教学的重点内容。而其中的同底数幂相乘、幂的乘方、积的乘方又是整式乘法的基础内容,所以它更是教学的重点,需要把更多的时间放到这一部分中,让学生有学有练,打好坚实基础。在这一部分教学时,我主要采用归纳式教学法。首先,举一些简单的例子,然后让学生总结归纳其中的规律,最后形成有关的乘法运算法则。例如:a×a=a,a×a×a=a,a×a=
5a×a×a×a×a=a···利用这些简单的例子,从学生的原有知识出发,总结归纳出新的运算方法。这样让学生主动的去思考总结,老师在一旁辅助,这样学生更容易记住获得的知识。得出运算的法则后,要让学生适当的练习,让学生写到黑板上,以发现其中存在的问题。
教学时发现学生很容易把一些运算的法则搞混淆。例如:进行以下计算(a)=a,a412×a=a,这就是混淆了运算的法则。出现这种问题,一个是因为运算的法则没有记忆牢固,但更重要的原因是粗心大意,做题时只凭自己的第一反应,不根据运算法则进行计算。数学是个严谨的学科,很多同学不能取得好的成绩不是因为学不会,而是不认真、过于草率久而久之养成坏的习惯,形成错误的运算方法,以致影响后面内容的学习。所以,我认为数学课不能只是简单的传授知识,它跟重要的作用应该是使学生养成良好的习惯,培养他们分析问题解决问题的能力。在以后的教学中,应该严格、严谨的要求学生,不能小而不顾。对于发现的问题,应及时解决,趁热打铁。
数学是个连贯的体系,前面学习的好坏会直接影响以后的学习。很多同学学会了有关幂的运算,但是在作单项式成单项式和单项式乘多项式时,还是出现了很多问题。主要问题在正负号的变换,乘完后没有合并同类项,或者说是不会合并同类项。这两块内容都属于七年级学习的,可以想象当时的学习情况。基础没有打好,就会给现在的学习带来不便,也增加了老师的工作量。很多老师会根据自己的主观判断来判断学生,对一些自己认为简单的问题,想着学生会很容易的学会并掌握,然而事实并非这样。很多接受慢的同学并没有学会,而老师却不知道,这样这些学生的问题会越积越多,最后导致跟不上所学的课程。
所以我认为老师不仅要讲的好,更要能利用有效的方法去检测学生的掌握情况,这样才能步步为营。
问题要时时提醒。学生出现的问题,我们常常当时提醒后就不管了,认为学生应该记住了。但我们忽视了他们还只是十几岁的孩子,怎么可能今天一说明天就改了呢。所以,老师要不厌其烦的'说,时刻提醒,让学生一点一点的记住。
精讲多练促进学习。精讲要求教师有选择的选取例题,例题要有适中的难度,针对某些易错的问题,要多举例子进行辨析解答。老师讲完后一定要让学生进行适当的练习,通过练习看学生的掌握情况和问题所在。出现的问题要当堂解决。
整式乘法公式许多人会背但不会用,或者是漏掉其中的某些项。例如:有的同学会这样运算(x+y)=x+y。不会使用具体表现在,不能把一些式子进行简单的变形,转化成满足公式的形式。没有整体的思想,不能把一个多项式作为一个整体去运算。
《整式的乘法》教学反思4这节课最为欣赏的是通过类比的方法学生自主的掌握单项式乘法法则,不足的是步子较慢,没有完成预设的内容。这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,有乘方的要先算乘方,后算乘法,积的乘方应注意复习巩固。从学生课堂表现与作业完成情况看,效果还不错,学生整体对法则的掌握较好,但在处理一些涉及符号以及乘除与加减同时出现的一些问题时,出现的错误较多,另外合并同类项与幂的运算法则在运用中也出现混淆的现象。
在整个这一部分的内容教学中,难点与易错点主要是:一、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。二、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。三、混合运算中符号及各种运算法则混淆不清,运用还不够熟练。
对这些问题的解决除了加强基本法则运用之外,还应对于综合题目多加练习,以达到巩固提高的目的。
《整式的乘法》教学反思5本单元教学分数乘法,是在理解了分数的意义,掌握了分数加减法的基础上编排的。它能进一步促使学生理解分数的意义为后面教学分数除法打下基础。本单元教学内容包括分数乘整数,一个数乘分数、分数混合运算、整数乘法运算定律推广到分数乘法、连续求一个数的几分之几是多少的解决问题和求比一个数的多(或少)几分之几的数是多少的解决问题。在实际教学中我做到一下几点:
一、充分利用教材资源,注重数形结合本单元概念较多,且比较抽象,而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,我运用适当的图形、图示来说明数学概念的含义,化抽象为具体、直观,帮助学生理解。例如,在教学分数乘分数时,例3是李伯伯家有一块1/2公顷的地,种土豆的面积占这块地的1/5,种土豆的面积是多少公顷?若只是空洞地讲学生很难理解,于是我画了一个长方形来表示1公顷的地,先让学生找出1/2公顷有多大,用阴影部分表示,有的竖着分,有的横着分,再找出1/2公顷的1/5,就是把1/2公顷平均分成5份,取其中的1份,用反方向的阴影部分表示。再观察两个阴影重叠部分占了整个1公顷地几分之几,用虚线分好,这样占了1公顷地几分之几也就是几分之几公顷。结合图示法学生很自然地推导出了分数乘分数的方法。
二、解决问题注重解法多样化,拓展学生思维
学生的思维应该是开放的、发散的,教师在教学中应当鼓励学生从多角度、多方位思考问题,注重算法、解决多样化,让学生更爱动脑,数学水平提高一个层次。例如在教学例9这类求地一个数多(或少)几分之几的数是多少的解决问题时,我先让学生找出单位“1”,画出线段图,看图思考有哪些解法。有的学生想到了可以用单位“1”乘对应分率得到对应的具体的量,有的学生想到可以用单位“1”加上或减去多或少的部分得到对应的具体的量,也有的学生想到先求出1份是多少,再求出多份是多少的办法。这样集中各个学生的思维,大部分同学都掌握了三种方法,解题时可选择自己最理解的方法做,让不同层次的学生得到了不同的发展。
在这样的教学下,大部分学生对本单元知识掌握的较好,只是每次解决问题我基本都让学生画出线段,借助线段图学生较为容易就能解决了,但有的学生比较懒不肯画线段图而往往出错,因为这样的线段图并没有在他脑海中形成,这是我教学中的困惑,我将继续研究。
第二篇:《整式的乘法》教学反思
《整式的乘法》的教学反思
《整式的乘法》是八年级上学期的最后一部分内容,也是比较有难度的内容。主要包括,同底数幂相乘、幂的乘方、积的乘方、单项式乘单项式、单项式乘多项式、和乘法的两个公式。
教学时发现学生很容易把一些运算的法则搞混淆。例如:进行以下计算(a2)3=a5,a3×a4=a12,这就是混淆了运算的法则。出现这种问题,一个是因为运算的法则没有记忆牢固,但更重要的原因是粗心大意,做题时只凭自己的第一反应,不根据运算法则进行计算。很多同学学会了有关幂的运算,但是在作单项式成单项式和单项式乘多项式时,还是出现了很多问题。主要问题在正负号的变换,乘完后没有合并同类项,或者说是不会合并同类项。
整式乘法公式许多人会背但不会用,或者是漏掉其中的某些项。例如:有的同学会这样运算(x+y)2=x2+y2。不会使用具体表现在,不能把一些式子进行简单的变形,转化成满足公式的形式。没有整体的思想,不能把一个多项式作为一个整体去运算。
学生出现的问题,常常当时提醒后就不管了,认为学生应该记住了。但忽视了他们还只是十几岁的孩子,怎么可能今天一说明天就改了呢。
精讲多练促进学习。精讲要求教师有选择的选取例题,例题要有适中的难度,针对某些易错的问题,要多举例子进行辨析解答。讲完后一定要让学生进行适当的练习,通过练习看学生的掌握情况和问题所在。
第三篇:整式的乘法教学反思
整式的乘法(多项式乘多项式)的教学反思
葛艳青
本人认为教学反思应包括两个方面:优点和缺点。
本节课的优点:
1、教师精神饱满,教态自然。
2、教学流程顺畅。
3、精心制作课件。
4、语言简洁,精炼。
5、承认自己的错误,让学生意识到数学的严密性。
作为年轻教师,我认为自身需要学习的东西很多,更需要像同事学习、虚心学习。我希望自己以后在以下几个方面完善:
1、在备课上在花多点的时间,把细节处理更完美,比如多思考情境的处理方法,怎么简平快。
2、加强自身用数学语言的严谨性,注重培养学生数学语言表达,训练思维的完整性与条理性,提高学生质疑能力。
3、把课堂还给学生,让学生成为学习的主体,给学生充足的表达时间与空间,特别是同学之间的相互交流、合作。
4、关注全体,深入学生中,顾及全体学生,提问不同层次的学生,不遗忘角落,让全体学生有不同的收获,体会成就感,肯定学生的价值观。
5、提高自身的教学机智,抓住课堂生成的资讯,尝试着放手,最重要的是相信学生。
6、落实教学行为。在课堂上,发出的每一个教学行为,都要抓落实,比如看书,要检测学生看书的情况。
7、提高教师的基本功,规范板书,做好榜样。
第四篇:整式的乘法.教学反思doc
《整式的乘法》的教学反思
崔玉虎
《整式的乘法》是华师大版八年级上学期第十三章的一部分内容,主要包括同底数幂相乘、幂的乘方、积的乘方、单项式乘单项式、单项式乘多项式、和乘法公式。整式乘法是整式乘除与因式分解的基础,是学好本章的关键,是教学的重点内容。而其中的同底数幂相乘、幂的乘方、积的乘方又是整式乘法的基础内容,所以它更是教学的重点,需要把更多的时间放到这一部分中,让学生有学有练,打好坚实基础。
在这一部分教学时,我主要采用归纳式教学法。首先举一些简单的例子,然后让学生总结归纳其中的规律,最后形成有关的乘法运算法则。例如a×a=a2,a×a×a=a3,a2×a3=a×a×a×a×a=a5··· 利用这些简单的例子,从学生的原有知识出发,总结归纳出新的运算方法。这样让学生主动的去思考总结,老师在一旁辅助,这样学生更容易记住获得的知识。得出运算的法则后,要让学生适当的练习,让学生写到黑板上,以发现其中存在的问题,在相互纠正的过程中让学生逐步掌握运算法则,并能熟练的应用法则进行运算。
教学时发现学生很容易把一些运算的法则搞混淆。例如:进行以下计算(a2)3=a5,a3×a4=a12,这就是混淆了运算的法则。出现这种问题,一个是因为运算的法则没有记忆牢固,但更重要的原因是粗心大意,做题时只凭自己的第一反应,不根据运算法则进行计算。数学是个严谨的学科,很多同学不能取得好的成绩不是因为学不会,而是
不认真、过于草率久而久之养成坏的习惯,形成错误的运算方法,以致影响后面内容的学习。所以,通过本章的教学,使我更进一步的认识到数学课不能只是简单的传授知识,它跟重要的作用应该是使学生养成良好的习惯,培养他们分析问题解决问题的能力。在以后的教学中,应该严格、严谨的要求学生,不能小而不顾。对于发现的问题,应及时解决,趁热打铁。
数学知识是逻辑严密的知识体系,前面知识掌握的好坏会直接影响学生后面知识的学习效果。很多同学学会了有关幂的运算,但是在计算单项式乘单项式和单项式乘多项式时,还是出现了很多问题。主要问题出在正负号的变换,以及乘完后没有合并同类项,或者不会合并同类项。这两块内容都属于七年级时学生已经掌握的内容,在教学过程中就忽略了,没有再次进行强调,经过一段时间,学生容易将以前学过的知识遗忘,更难以将已有知识和新知识进行有机结合,从而找到它们之间的联系。在教学过程中,我不经意的就通过主观判断来判断学生,对一些自己认为简单的问题,想着学生会很容易的学会并掌握,然而事实并非这样,相当一部分的同学并没有将知识融会贯通,而我却没有高度重视,这样这些学生的问题会越积越多,最后导致部分同学对这部分内容掌握的不好。最后不得不再花时间进行有针对性的训练,以解决这个问题。通过对本章的教学我还发现,对学生容易出错问题要时时提醒。学生出现的问题,我以前常常当时提醒后就没有及时进行再反馈,认为学生应该掌握了,但实际情况是学生在下一次还会重复一样的错误。所以在以后的教学活动中更要利用有效的方
法和针对性的措施去掌握学生的反馈情况,这样才能有针对性的做好教学设计,提高教学效率。精讲多练才能促进学生主动学习。精讲要有选择的选取例题,例题要有适中的难度,针对某些易错的问题,要多举例子进行辨析解答。讲完后一定要让学生进行由浅入深的练习,通过练习看学生的掌握情况和问题所在。出现的问题要当堂解决。
整式乘法公式许多人会背但不会用,或者是漏掉其中的某些项。例如:有的同学会这样运算(x+y)2=x2+y2。不会使用具体表现在,不能把一些式子进行简单的变形,转化成满足公式的形式。没有整体的思想,不能把一个多项式作为一个整体去运算。学生对老师依赖性强,缺乏主动钻研的习惯和精神。许多学生的自学能力很差,对于已经学过的知识点,说不清掌握了哪些,还有哪些问题没有解决,并且也提不出问题。学生对于练习中不会做的题或作业中不会做题,好多学生很少问,觉得老师都会讲,所以不用问。甚至,对于老师不布置的题目不主动去做的原因就是老师没有布置。课堂教学中老师布置的自学或思考讨论时,很多学生消极参与,被动地等待老师讲解。合作讨论探究效率极低,如果留足够的时间让学生合作交流,则很难完成教学任务,若直接给学生讲解,学生被动学习,不主动思考,又很难取得好的教学效果。
针对上述遇到的问题,在右后的教学过程中,应根据具体的教学内容,注意使学生在获得间接经验的同时也能够有机会获得直接经验,即从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流等,获得数学的基础知识、基本技
能、基本思想、基本活动经验,促使学生主动地、富有个性地学习,不断提高发现问题和提出问题的能力、分析问题和解决问题的能力。
在教学活动中,要把基本理念转化为自己的教学行为, 处理好讲授与学生自主学习的关系,注重启发学生积极思考;发扬教学民主,当好学生数学活动的组织者、引导者、合作者;激发学生的学习潜能,鼓励学生大胆创新与实践;创造性地使用教材,积极开发、利用各种教学资源,为学生提供丰富多彩的学习素材;关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展;要把知识技能、数学思考、问题解决、情感态度四个方面目标有机结合,整体实现课程目标。
第五篇:《整式的乘法》教学建议
《整式的乘法》教学建议
新课指南
1.知识与技能:(1)掌握同底数幂的乘法;(2)幂的乘方;(3)积的乘方;(4)整式的乘法法则及运算规律.2.过程与方法:经历探索同底数幂的乘法公式的过程,在乘法运算的基础上理解同底数幂的乘法、幂的乘方与积的乘方的运算公式,从而熟练地掌握和应用整式的乘法.3.情感态度与价值观:通过本节的学习,全面体现转化思想的应用,也使学生认识到数学知识来源于实际生活的需求,反过来又服务于实际生产、生活的需求.4.重点与难点:重点是同底数幂的乘法及幂的乘方、积的乘方运算.难点是整式的乘法.教材解读精华要义 数学与生活
著名诺贝尔奖获得者法国科学家居里夫人发明了“镭”,据测算:1千克镭完全蜕变后,放出的热量相当于3.75×105千克煤放出的热量.估计地壳里含有1×1010千克镭,试问这些镭蜕变后放出的热量相当于多少千克煤放出的热量?
思考讨论由题意可知,地壳里1×1010千克镭完全蜕变后放出的热量相当于(3.75×105)×(1×1010)千克煤放出的热量,所以,如何计算这个算式呢?由乘法的交换律和结合律可进行如下计算:(3.75×105)×(1×1010)=3.75×105×1010=(3.75×1)×(105×1010)=3.75×(105×1010),那么如何计算105×1010呢?
知识详解
知识点1同底数幂的乘法法则
am·an=am+n(m,n都是正整数).同底数幂相乘,底数不变,指数相加.例如:计算.(1)23×24;(2)105×102;
解:(1)23×24=(2×2×2)×(2×2×2×2)=2×2×2×2×2×2×2=27.(2)105×102=(10×10×10×10×10)×(10×10)=10×10×10×10×10×10×10 =107.由23×24=27,105×102=107可以发现:23×24=23+4,105×102=105+2.猜测一下:am·an=m+n(m,n为正整数),推导如下:
am·an=(a·a·a·a· ·a)(a·a·a·a·a· ·a)m个a相乘n个a相乘=am+n
知识点2幂的乘方
(am)n=amn(m,n都是正整数).幂的乘方,底数不变,指数相乘.【说明】(1)幂的乘方法则是由同底数幂的乘法法则和乘方的意义推导的.(2)(a)与的amnmn
mn区别.m其中,(a)表示n个a相乘,而a5=5.因此,(a)≠a238mn
mn表示mn个a相乘,例如:(52)3=52×3=56,mn,要仔细区别.知识点3积的乘方(ab)n=anbn(n为正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.探究交流
填空,看看运算过程用到哪些运算律?运算结果有什么规律?(1)(ab)2=(ab)·(ab)=(a·a)(b·b)=a()b()(2)(ab)3===a()b()
点拨由积的乘方法则得知:(1)2 2(2)(ab)·(ab)·(ab)(a·a·a)(b·b·b)3 3 【说明】在运用积的乘方计算时,要注意灵活,如果底数互为倒数时,可11适当变形.如:(2)10·210=(2·2)10=110=1;11111142·(-2)5=24·(-2)5=[24·(-2)4]·(-2)=[(-2)·2]4·(-2)11=1·(-2)=-2.知识点4单项式的乘法法则 单项式乘法是指单项式乘以单项式.单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.为了防止出现系数与指数的混淆,同底数幂的乘法性质与幂的乘方性质的混淆等错误,同学们在初学本节解题时,应该按法则把计算步骤写全,逐步进行计算.如
112x2y·4xy2=(2×4)·x2+1y1+2=2x3y3.在许多单项式乘法的题目中,都包含有幂的乘方、积的乘方等,解题时要注意综合运用所学的知识.【注意】(1)运算顺序是先乘方,后乘法,最后加减.(2)做每一步运算时都要自觉地注意有理有据,也就是避免知识上的混淆及符号等错误.知识点5单项式与多项式相乘的乘法法则
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.例如:a(m+n+p)=am+an+ap.【说明】(1)单项式与多项式相乘,其实质就是乘法分配律的应用.(2)在应用乘法分配律时,要注意单项式分别与多项式的每一项相乘.探究交流
下列三个计算中,哪个正确?哪个不正确?错在什么地方?(1)3a(b-c+a)=3ab-c+a(2)-2x(x2-3x+2)=-2x3-6x2+4x(3)2m(m2-mn+1)=2m3-2m2n+2m 点拨(1)(2)不正确,(3)正确.(1)题错在没有将单项式分别与多项式的每一项相乘.(2)题错在没有将-2x中的负号乘进去.知识点6多项式相乘的乘法法则
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.【说明】多项式相乘的问题是通过把它转化为单项式与多项式相乘的问题来解决的,渗透了转化的数学思想.(a+b)(m+n)=(a+b)m+(a+b)n=am+bm+an+bn.计算时是首先把(a+b)看作一个整体,作为单项式,利用单项式与多项式相乘的乘法法则计算.