第一篇:初中数学说课稿课件(共2篇)(范文)
篇一:初中数学说课稿模版 各位评委:早上好
今天我说课的题目是 《有理数》复习课,这节课所选用的教材为人教版义务教育课程标准七年级上册教科书。
一、教材分析
1、教材的地位和作用
本节教材是初中数学七年级上册第一章《有理数》的复习内容,是初中数学的重要内容之一。有理数作为中学阶段的入门章节,非常重视与前面学段的衔接。一方面,数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。另一方面,有理数的学习为学习实数等知识奠定了基础,是进一步研究代数式四则运算工具性内容。准确数和近似数、计算器的使用也是本章的教学内容,它是应用有理数解决实际问题所必需的。因此有理数在教材中具有承上启下的作用。
2、学情分析
学生在此之前已经学习了第一章有理数,对_有理数已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于有理数的知识的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:有理数概念和有理数运算
难点确定为:负数和有理数法则的理解和运用
二、教学目标分析
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:
1.知识与技能目标:复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识
2.过程与方法目标:培养学生综合运用知识解决问题的能力,提高学生对知识的整合能力和分析能力
3.情感态度与价值目标:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。激发学生兴趣,感受数学之美。
三、教学方法分析 方法:分层次教学,讲授、练习相结合。
本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。
2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。
3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。
学法指导
“授人以鱼,不如授人以渔”。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。
四、教学过程分析
为有序、有效地进行教学,本节课我主要安排以下教学环节:(1)复习就知,温故知新
设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。(2)创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
1、教学环节设计
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点。本节课的教学设计环节:
创设情境,引入新知:复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”,学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地掌握二次函数的基本知识,我设计了五个由浅入深的练习题,让每一个学生都能为下一步的探究做好准备。
运用知识,体验成功:分层教学,让每一个学生获得成功,感受成功的喜悦
知识深化,应用提高:引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。
归纳小结,形成结构:把“反馈——调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。(3)发现问题,探求新知
设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳。
(4)分析思考,加深理解
设计意图:数学教学论指出,数学概念(定理等)要明确其 内涵和外延(条件、结论、应用范围等),通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。(5)强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1??例2??,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6)小结归纳,拓展深化
小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.(7)当堂检测 对比反馈(8)布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上是我对本节课的见解,不足之处敬请各位评委谅解!谢谢.2、作业设计
课外作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。
3、板书设计(课件展示)
六、教学评价本节课通过设置问题情境、多媒体展示、学生画图、探究,使学生在“做中学”.学生在实际操作中,经历了自主探究、合作交流的学习方式,既发展了学生的个性潜能,又培养了他们的合作精神,教师始终是活动的组织者、引导者、合作者,学生是以研究者、探索者的角色出现在教学过程中,主体地位得到了充分体现,使教学过程成为一个再发现、再创造的认识过程,培养学生用转化的思想来探索新问题.教学后记:
全章复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力。因此,在选择教学内容时我们注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点。
本节课是有理数全章的复习课,所以教学中抓住了有理数的概念和 理数的运算这两个主要内容,这是有理数的基础知识,也是复习的重点。此外,还通过典型例题的分析,让学生熟练地利用数轴来解题,以提高他们对数形结合思想的认识,以及分析问题、解决问题的能力。
教学过程:
一、复习引入:
阅读教材中的“全章小结”,给关键性词语打上横线。
二、讲授新课:
1.利用数轴患讲有理数有关概念
本章从引入负数开始,与小学学习的数一起纳入有理数范畴,我们学习的数的范围在不断扩大。从数轴上看,小学学习的数都在原点右边(含原点),引入负数以后,数轴的左边就有了实际意义,原点所表示的0也不再是最小的数了,数轴上的点所表示的数从左向右越来越大,a点所表示的数小于b点所表示的数,而d点所表示的数在四个数中最大。我们用两个大写字母表示这两点间的距离,则ao>bo>co,这个距离就是我们说的绝对值。由ao>bo>co可知,负数的绝对值越大其数值反而越小。由上图中还可以知道co=do,即c、d两点到原点距离相等,即c、d所表示的数的绝对值相等,又它们在原点两侧,那么这两数互为相反数。从数轴上看,互为相反数就是在原点两侧且到原点等距的两点所表示的数。利用数轴,我们可以很方便地解决许多题目。 2.例题: 例1:(1)求出大于―5而小于5的所有整数;(2)求出适合3<(3)试求方程x<6的所有整数; x=5,2x=5的解;(4)试求x<3的解
解:(1)大于―5而小于5的所有整数,在数轴上表示±5之间的整数点,如图,显然有±4,±3,±2,±1,0。
(2)3<x<6在数轴上表示到原点的距离大于3个单位而小于6个单位的整数点。在原点左侧,到原点距离大于3个单位而小于6个单位的整数点有―5,―4;在原点右侧距离原点大于3个单位而小于6个单位的整数点有4,5。所以,适合3<x<6的整数有±4,±5。(3)x=5表示到原点距离有5个单位的数,显然原点左、右侧各有一个,分别是―5和5。所以x=5的解是x=5或x=―5。同样2x=5表示2x到原点的距离是5个单位,这样的点有两个,分别是5和―5。所以2x=5或2x=―5,解这两个 55 简易方程得x=2或x=―2。
(4)x<3在数轴上表示到原点距离小于3个单位的所有点的集合。很显然―3与3之间的任何一点到原点距离都小于3个单位。所以 ―3<x<3。
例2:计算:
(1)+17+20;(2)―13+(―21);(3)―15―19;(4)―31―(―16);(5)―11×12;(6)(―27)(―13);(7)―
1364÷16;(8)(―54)÷(―24);(9)(―2);(10)―(2); 32(11)―(―1);(12)―2×3;(13)―(2×3);(14)(―2)+3 1002232 11111(15)[4(2)÷2(―2)]÷[(―2)+(―2)+(―2)+1] 223 图片已关闭显示,点此查看 3.课堂练习:(1)填空:
①两个互为相反数的数的和是_____; ②两个互为相反数的数的商是_____;(0除外)③____的绝对值与它本身互为相反数; ④____的平方与它的立方互为相反数; ⑤____与它绝对值的差为0; ⑥____的倒数与它的平方相等;
⑦____的倒数等于它本身;⑧____的平方是4,_____的绝对值是4;
⑨如果―a>a,则a是_____;如果
那么a是_____;(2)用“>”、“<”或“=”填空:
当a<0,b<0,c<0,d<0时: a3=―a,则a是______;如果3a2??a2,那么a是_____;如果?a=―a,cd ①a?a?aa?babb____0; ③c_____0;④c?d____0; ②(?b)2 ____0; ⑦ba3b43____0;⑤c____0; a3?b3c3⑥a2?____0; ⑧cd____0; 1111__________b;a<0,b<0,则ab。a>b时,⑨a>0,b>0,则a 2.课堂练习: 课本:p81―83: 2,15,17。
三、课堂小结:
注意负数的出现而带来的问题。①符号问题;②漏“―”问题;③计算正确性。
四、课堂作业:
课本:p80―83: 适当选做。
篇二:初中数学说课稿:《全等三角形》说课稿范文 初中数学说课稿:《全等三角形》说课稿范文
尊敬的各位专家领导,大家好!
今天我说课的题目是人教版数学八年级上册第十章第1节《全等三角形》。下面,我将从教材分析,教学方法与教材处理及教学过程等几个方面对本课的设计进行说明。
一、教学地位和作用
全等三角形是《三角形》这一章的主线,在知识结构上,等腰三角形,直角三角形,线段的垂直平分线,角的平分线等内容都要通过证明两个三角形全等来加以解决;在能力培养上,无论是逻辑思维能力,推理论证能力,还是分析问题解决问题的能力,都可在全等三角形的教学中得以培养和提高。因此,全等三角形的教学对全章乃至以后的学习都是至关重要的。为此,我在设计这节课的时候,以学生为主体,让他们全面地参与到学习过程中来,有意识地培养学生的创新意识和实践能力,增强他们学习的能力,让他们充分的掌握该知识点,同时尽量扩充他们的知识范畴。在教学中,采用的是“设疑——实验——发现——总结”的教学方法,并采用“变式练习”方法来提高学习效率。
二、教学的目标和要求: 1.知识目标:
(1)知道什么是全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角,对应边。2.能力目标:
(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。3.情感目标:
(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
三、教学重点:
1.能准确地在图形中识别出对应边,对应角;
2.全等三角形的性质和利用其基本性质进行一些简单的推理和计算。
(解决方法:利用动画的形式让学生直观的识别抽象的图形和知识点从而突出和掌握重点。)
好学教育:
四、教学难点:
能在全等变换中准确找到对应边,对应角。(在对应边,对应角的识别,查找中运用动画的展示,使学生能直观认识该知识点,化难为易,从而突破该难点)
五、教法与学法:
采用直观,类比的方法,以多媒体为手段辅助教学,引导学生预习教材内容,养成良好的自学习惯,启发学生发现问题,思考问题,培养学生的逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。
六、教学用具:
多媒体,剪刀,直尺,硬纸,三角板
七、教学过程:
(一)复习导入方面
从复习全等图形方面入手,展示一些直观的图形,接着创设一个问题情境:如何翻新一个旧的三角形的纸样 让学生动手画图,实验尝试,从而发现其实解决问题的关键是画一个全等的三角形,从而引出课题。通过以上的环节主要是提高学生数学概念的辨析能力和培养学生的动手实践能力。(此环节约用时5分钟)
(二)新课讲解方面 1.全等三角形的定义
通过动画的展示,引导学生观察,分析得出全等三角形的定义(先展示动画)。目的主要在于培养学生的观察分析能力。(此环节学生约用2分钟进行讨论分析)2.全等三角形的性质
以动画的形式,介绍全等三角形的对应顶点,对应边,对应角,并引导学生通过观察分析全等三角形的对应边,对应角之间分别有怎样的关系,从而得出全等三角形的性质。在无形中培养了学生的图形识别能力和直观判断能力。(此环节约用时7分钟)3.全等三角形的表示法
介绍全等符号,说明表示两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。(此环节用时约2分钟)4.议一议
方法:(1)小组活动,展示部分小组的解决方案
(2)动画展示解决方案 好学教育:
(3)知识点的扩充:动画展示全等三角形的变换识别中对应边,对应角的查找。
以上环节主要趋于培养学生的团结合作精神,认识团队的力量和开拓学生的思维,扩充学生的知识范畴。(此环节约用时8分钟)
(三)课堂练习(此环节约用时18分钟)
用多媒体课件逐一展示练习题目,让学生一一解答。主要是通过练习让学生巩固所学的知识并学会用所学的知识进行推理和解决实际问题。
(四)课堂小结(此环节约用时2分钟)
经过以上的教学环节,为了帮助学生系统的掌握所学的知识,达到预期的效果,在这一步骤中,我准备利用提问的形式,师生共同进行小结和归纳。
第二篇:初中数学说课稿课件(精选9篇)
篇1:初中数学说课稿
一、教材分析
平行四边形判定是初二教材的第二十章内容。这部分内容既是对前面所学的全等三角形和平行四边形性质的一个回顾和延伸,又是本章后续学习特殊平行四边形的基础,同时它还进一步培养学生简单的推理能力和图形迁移能力,今天我说课的内容是平行四边形判定的第一课时,主要探究与边有关的三种判定方法。
二、学情分析
初二下半学期,学生已经学习了初中阶段包括全等三角形的性质判定在内的绝大多数几何概念及定理。抽象思维能力、逻辑推理能力已经逐步形成,学生对新鲜的知识也充满了好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。因此由教师组织教学,让学生全开放自主探索平行四边行的判定定理,让学生的综合能力得到一次检验和再提升。
三、教学目标
掌握平行四边形的判定定理的证明、应用,培养学生的逻辑思维能力和推理论证能力。
四、教学重点难点
探究平行四边形的判定定理的过程需要经过对逆命题的猜想、图形验证、逻辑证明三个过程,需要让学生体验并逐步掌握这种发现数学结论的方法,因此判定定理的探究过程是本节课的重点。
学习完平行四边形的判定后,根据题目给出的条件,如何灵活准确的选择性质定理和判定定理,是本节的难点。
五、教学过程
(一)复习旧知,引入新课:
1、写出平行四边形的定义和性质。
2、写出以上性质的逆命题。、
以上逆命题是否正确呢?你会用什么方法来说明它的正确性呢?这就是今天我们要探究的问题:引入新课,教师板书课题。
(二)提出议题,引发思考:
发挥学生的主观能动性,让学生在动手、动脑中积极参与知识发生、发展的过程。
1、判定方法一:平行四边形的定义
2、判定方法二的探究过程:教师起主导作用,给出提示小组完成并交流。
图形验证:作一个两组对边分别相等的四边形,看是否都是平行四边形。
逻辑证明:利用全等和平行线的判定证明。对学生来说不是难题。
归纳结论:让学生语言归纳,作为判定方法二。
3、类比以上探究的过程,让学生完成“一组对边平行且相等的四边形是平行四边形”的探究过程。
教师巡视,对发现问题及时纠正。
总结:图形验证过程会出现多种方法作图:先画两条平行线再分别截取相等线段;或者利用格点图作。
(三)例题引路,尝试议练:
让学生尝试完成教材例题1,
在平行四边形ABCD中,E、F分别是对边BC、AD上的两点,且AF=CE,求证:四边形AECF是平行四边形。
思路分析:已知一组对边相等,要想证明是平行四边形,只需证明另一组对边相等或者是该组对边平行,由已知条件可知能证明平行。
(四)巩固练习:难点突破
1、点A、B、C、D在同一平面内,AB//CD,AD//BC,AB=CD,AD=BC,从这四个条件中选择两个,能使四边形ABCD是平行四边形的选法有几种。
目的:考察学生对所学三方法的熟练程度。
2、例题变式:如果把条件AF=CE改为AF、CE分别是AD、BC的五分之一呢?
目的:如何根据条件正确的选择方法。
3、求证两线段分别平分的题目。
目的:性质定理和判定定理的综合运用。
六、课堂总结及作业布置
1、由学生总结本节所学知识及方法:平行四边形的判定方法及探究一般数学定理的探究过程。
2、习题1、2
3、探究“对角线互相平分的四边形是平行四边形”
七、教法:
本节课教法上突出三个特点:
1、动:判定方法的探究主要由学生参与,让其感悟知识的发展、发生的过程。
2、变:尽量抓住时机对例题进行变式训练,培养学生思维的广阔性和深刻性。
3、引:探究和训练中学生思维受阻时,教师适当给予引导,做到引而不灌。
八、教后反思
把判定定理的探究过程交给学生,这样能把学生们的积极性,探索欲调动出来,加以老师的点拨,把本节的重点、难点个个突破,学生们的知识能力、情感各个方面都得到了进一步的提升,应该能达到预期的效果。
初中数学说课稿范文(二)
一。说教材
《反比例函数的应用》是苏科版八年级下册第九章第三节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。这一节的内容符合新课程理念,课程要面向生活世界和社会实践。反比例函数的知识在生产和实际生活中经常用到,掌握这些知识对学生参加实践活动,解决日常生活中的实际问题具有实用意义。通过反比例函数的应用使学生明确函数、方程、不等式是解决实际问题的三种重要的数学模型,它们之间有着密切联系,并在一定的条件下可以互相转化。在教学过程中,还渗透着建模思想、函数思想、数形结合思想,这些思想也为后面学习二次函数的应用奠定了基础。
二。说目标
“反比例函数的应用”是反比例函数及其图象中的一个重要的内容,它是前面几节课的综合应用。由于函数知识在日常生活中有重要的实用意义,根据教学大纲的明确规定并结合素质教育要求,通过本节课的教学达到以下目标:
1、知识目标
使学生了解反比例函数是日常生活和生产实际中应用十分广泛的数学模型,使学生掌握生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。
2、能力目标
①使学生能模仿“利用函数解决实际问题的基本步骤”来解决简单的实际问题;初步养成自己提出或构建数学模型的能力;提高综合运用函数、方程、不等式知识解决实际问题的能力。
②引例通过开放性的问题,作业中通过编题培养学生的发散思维能力。
3、情感目标
①通过本节知识的学习,使学生明确,应用反比例函数的知识可以解决生活中的许多问题,从而进一步培养学生热爱数学,进而努力学好数学的情感。
②使学生树立事物是普遍联系的辩证唯物观。
③引例中让学生具有一方有难八方支援的献爱心精神。
三。说教学重难点
我认为本节课的教学重点是把一类实际问题归结为反比例函数问题来解决,这是因为:
1.反比例函数是日常生活和生产实践中应用十分广泛的数学模型,它真正体现了数学知识来源于生活又应用于生活的重要意义。
2.“利用反比例函数解决实际问题的基本步骤”是通过对例题的解题过程进行归纳总结而得到的结论。它遵循了从“具体到抽象再到具体”的认知规律,蕴含了从“特殊到一般再到特殊”的推理方法。对今后学习数学有着重要的指导意义。
我认为本节课的教学难点是从实际问题中抽象出数学问题,建立数学模型,注意在实际问题中函数自变量的取值范围,用数学知识去解决实际问题。
在突破难点时,我注意:
1.使学生熟练掌握反比例函数的图象和性质,教学生学会“数形结合”的研究方法,它直观、形象、好理解。
2.密切联系实际问题,注意观察生活。
四。说教学方法
(一) 教法分析
根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。对于例1,由于学生初次接触反比例函数的应用,我采用的是教师引导法,降低难度。其余,我都采用的教学方法是问题教学法,让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:
1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。
2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。
(二) 学法分析
这种教学方法实际上也教给学生一种学习方法,使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。
(三) 教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“数形结合”的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
五。说教学过程的设计
(一)创设情景,提出问题
“问题是数学的心脏”(P.R.Halmos语),是数学知识、能力发展的生长点和思维的动力。在课堂教学的.开始,我创设了这样一个情景:
去年下半年,励才中学初一(2)班黄晶晶同学的爸爸诊断为肝癌,家中又突发一场大火,真是祸不单行,一下急需的10万元款从何而来,关键时刻,群众积极响应镇政府的号召,一方有难八方支援,结果,捐款总额比预期的还要理想。如果你是镇政府领导,你除了积极做好思想动员工作之外,能不能运用反比例函数的知识对即将发动群众献爱心进行策划呢?
为了很好的解决这一问题,我们共同来学习以下两道题目:
设计意图:由学生身边的事出发,激起学生的爱心,为积极筹划这个活动,带着对数学的求知欲,进入例题的学习。
(二)范例设计
学习例1:
小明家离学校1500m,某天小明上学时,发现时间不多了,就加快了行车速度,①小明行车平均速度(υ)与所用时间(t)有怎样的函数关系?②如果所剩时间为15分钟,那么小明的平均速度至少达到多少才能按时到校?③为了安全起见,小明的平均速度最快达到90m/min,他至少要留多长时间,才能安全到校?④画出函数的图象。
例1中,出现了一个常量,两个变量;我们看,
平均速度(υ)随所用时间(t)的变化而怎样变化?是否为反比例函数关系?若是可用反比例函数的有关知识去解决问题。
②、③两问实际上就是函数的特殊情形,一是已知自变量,求函数值;一是已知函数值,求自变量。从这两问,再引导学生探求自变量的取值范围。 ④
问中,指导学生画图,分析问题(多媒体展示函数图象)。
设计意图:这道题是课本例1的改编,更换背景的目的是为了更贴近学生的生活,以更好地激发学生的求知欲。后面的例2也是在课本例2的基础上添加了一个背景,目的也是如此。
由于学生初次接触反比例函数的应用问题,我选择教师引导法。引导学生联系反比例函数图象及性质建立反比例函数模型,渗透函数思想,数形结合思想。在画图象前,已引导学生探究自变量的取值范围,这样就化解了教学难点。
学习例2:
小华同学的爸爸在某自来水公司上班,现该公司计划新建一个容积为4×104m3的长方体蓄水池,小华爸爸把这一问题带回来与小华一起探讨:
①蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?
②如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?
③由于绿化以及辅助用地的需要,经过实地测量, 蓄水池的长和宽最多只能分别设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?
这是个几何体积问题的应用题,我通过设置以下问题,引导学生观察思考,逐步分析,最后通过建立函数这种数学模型解决问题。
问题(1):这是一个几何体积问题,问题中包含有哪些量? 哪些是常量?哪些是变量?
问题(2):在容积不变的情形下, 蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?为什么?写出关系式。
问题(3): 函数关系式中自变量的取值范围如何确定?从而决定函数值的取值范围又是怎样?
问题(4):能否画出函数的图象? (指导学生画图,分析问题,多媒体展示函数图象。)
问题(5):题中②、③两问能否利用图象来解?如何解?
问题(6):题中②、③两问除了利用图象来解之外,是不是也可以利用方程解或不等式解?
设计意图:对例2采用了设计问题系列,启发学生思考,联系旧知识建立函数模型,解决了自变量的取值范围从而确定了函数值的取值范围,渗透了函数的思想,让学生初步了解函数模型的建立方法。最后渗透一题多解方法,培养学生思维的灵活性,渗透“函数――方程――不等式”思想和“数形结合”的研究方法,引导学生学会解题后的再思考,将知识系统化。
(三)反馈练习
“学数学而不练,犹如入宝山而空返”(华罗庚语),为了让学生更好地学会反比例函数知识的应用,我设计了例2的后续问题,让学生练习。使课堂教学能前后连贯。
例2中的新建蓄水池工程需要运送的土石方总量为4×104m3,某运输公司承担了该项工程运送土石方的任务。
①运输公司平均每天的工程量υ(m3/天)与完成运送任务所需要的时间t(天)之间有怎样的函数关系?
②运输公司共派出20辆卡车,每辆卡车每天运土石方100 m3,则需要多少天才能完成该任务?
可以通过此类题反馈本节所学,检查学生是否掌握了“数形结合”的研究方法,及时加强对数据和信息的处理能力。
(四)回到引例,前后呼应
①现在大家能否利用我们刚掌握的知识来策划发动群众献爱心呢?
②如果每人平均捐款100元,那么需要发动多少人捐献。根据实际生活水平,每人平均捐款只能达到50元,那么至少要发动多少人捐献?发动人数与每人平均捐款数成怎样的函数关系?当每人平均捐款数一定时,捐款总额与发动的人数成怎样的函数关系?
设计意图:让学生回到课堂之初的问题中,解决问题,使整个课堂教学浑然一体,体验学习数学的乐趣。
(五)收获
教师启发学生思考回答下列问题,再由教师补充归纳本节所学知识内容。
(1) 通过本节反比例函数的应用的学习,我们掌握了生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。
(2) 初步学会了数学建模的方法。
(3) 树立了事物是普遍联系的辩证唯物观。
(六)作业布置
根据新课程理念,人人学有价值的数学,不同的人在数学上有不同的发展。我的作业布置分必做题和选做题两部分,其中选做题是一道自编题,我的目的是既巩固所学知识,又复习了旧知,同时还能让学生体验一下做老师的愉悦。
(4)必做题: ①看课本例1、例2.
②做课本习题9.3
(5)选做题:
4月6日,姜堰溱湖湿地公园游人如织,来自世界各地的游人蜂拥而至,“小数学”利用早上上学前的时间,来到公园门口,他发现……请你利用我们学过的知识,编两题,要求分别能利用正比例函数和反比例函数解决问题。
(七)板书设计
反比例函数的应用
数学思想 引例 ×× 例1 ×× 例2 ××
及本节新知 ×× ×× ××
×× ×× ××
收获
结束语:
教学过程是一个不断生成的过程,在教学过程中,我将根据学生实际情况,不断调整我的教学内容,以使学生在课堂上的思维永远处于一种亢奋状态。
说课对我来说是新事物,今后我将进一步说好课,并希望各位专家领导对本节课提出宝贵意见。
谢谢各位!
初中数学说课稿范文(三)
一。说教材
《反比例函数的应用》是苏科版八年级下册第九章第三节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。这一节的内容符合新课程理念,课程要面向生活世界和社会实践。反比例函数的知识在生产和实际生活中经常用到,掌握这些知识对学生参加实践活动,解决日常生活中的实际问题具有实用意义。通过反比例函数的应用使学生明确函数、方程、不等式是解决实际问题的三种重要的数学模型,它们之间有着密切联系,并在一定的条件下可以互相转化。在教学过程中,还渗透着建模思想、函数思想、数形结合思想,这些思想也为后面学习二次函数的应用奠定了基础。
二。说目标
“反比例函数的应用”是反比例函数及其图象中的一个重要的内容,它是前面几节课的综合应用。由于函数知识在日常生活中有重要的实用意义,根据教学大纲的明确规定并结合素质教育要求,通过本节课的教学达到以下目标:
1、知识目标
使学生了解反比例函数是日常生活和生产实际中应用十分广泛的数学模型,使学生掌握生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。
2、能力目标
①使学生能模仿“利用函数解决实际问题的基本步骤”来解决简单的实际问题;初步养成自己提出或构建数学模型的能力;提高综合运用函数、方程、不等式知识解决实际问题的能力。
②引例通过开放性的问题,作业中通过编题培养学生的发散思维能力。
3、情感目标
①通过本节知识的学习,使学生明确,应用反比例函数的知识可以解决生活中的许多问题,从而进一步培养学生热爱数学,进而努力学好数学的情感。
②使学生树立事物是普遍联系的辩证唯物观。
③引例中让学生具有一方有难八方支援的献爱心精神。
三。说教学重难点
我认为本节课的教学重点是把一类实际问题归结为反比例函数问题来解决,这是因为:
1.反比例函数是日常生活和生产实践中应用十分广泛的数学模型,它真正体现了数学知识来源于生活又应用于生活的重要意义。
2.“利用反比例函数解决实际问题的基本步骤”是通过对例题的解题过程进行归纳总结而得到的结论。它遵循了从“具体到抽象再到具体”的认知规律,蕴含了从“特殊到一般再到特殊”的推理方法。对今后学习数学有着重要的指导意义。
我认为本节课的教学难点是从实际问题中抽象出数学问题,建立数学模型,注意在实际问题中函数自变量的取值范围,用数学知识去解决实际问题。
在突破难点时,我注意:
1.使学生熟练掌握反比例函数的图象和性质,教学生学会“数形结合”的研究方法,它直观、形象、好理解。
2.密切联系实际问题,注意观察生活。
四。说教学方法
(一) 教法分析
根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。对于例1,由于学生初次接触反比例函数的应用, ()我采用的是教师引导法,降低难度。其余,我都采用的教学方法是问题教学法,让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:
1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。
2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。
(二) 学法分析
这种教学方法实际上也教给学生一种学习方法,使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。
(三) 教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“数形结合”的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
五。说教学过程的设计
(一)创设情景,提出问题
“问题是数学的心脏”(P.R.Halmos语),是数学知识、能力发展的生长点和思维的动力。在课堂教学的开始,我创设了这样一个情景:
去年下半年,励才中学初一(2)班黄晶晶同学的爸爸诊断为肝癌,家中又突发一场大火,真是祸不单行,一下急需的10万元款从何而来,关键时刻,群众积极响应镇政府的号召,一方有难八方支援,结果,捐款总额比预期的还要理想。如果你是镇政府领导,你除了积极做好思想动员工作之外,能不能运用反比例函数的知识对即将发动群众献爱心进行策划呢?
为了很好的解决这一问题,我们共同来学习以下两道题目:
设计意图:由学生身边的事出发,激起学生的爱心,为积极筹划这个活动,带着对数学的求知欲,进入例题的学习。
(二)范例设计
学习例1:
小明家离学校1500m,某天小明上学时,发现时间不多了,就加快了行车速度,①小明行车平均速度(υ)与所用时间(t)有怎样的函数关系?②如果所剩时间为15分钟,那么小明的平均速度至少达到多少才能按时到校?③为了安全起见,小明的平均速度最快达到90m/min,他至少要留多长时间,才能安全到校?④画出函数的图象。
例1中,出现了一个常量,两个变量;我们看,
平均速度(υ)随所用时间(t)的变化而怎样变化?是否为反比例函数关系?若是可用反比例函数的有关知识去解决问题。
②、③两问实际上就是函数的特殊情形,一是已知自变量,求函数值;一是已知函数值,求自变量。从这两问,再引导学生探求自变量的取值范围。 ④
问中,指导学生画图,分析问题(多媒体展示函数图象)。
设计意图:这道题是课本例1的改编,更换背景的目的是为了更贴近学生的生活,以更好地激发学生的求知欲。后面的例2也是在课本例2的基础上添加了一个背景,目的也是如此。
篇2:初中数学说课稿
一、教材分析
本节课主要是在学生学习了整式乘法、多项式乘以多项式的基础上,由图形的面积引出本节�n的内容。在前面一节学生已学过“平方差公式”,而这一节�n继续探索完全平方公式。
完全平方公式不仅在整式乘法运算中有很重要的作用,也是今后分解因式、一元二次方程解法、二次函数等有关内容的基础知识。
二、教学目标
1、使学生经历探索完全平方公式的过程,进一步发展符号感和推理能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
3、了解(a+b)2=a2+2ab+b2的几何背景,向学生渗透数形结合的思想,让学生知道数学来源于实践,培养学生对数学的兴趣。
4、培养学生能在独立思考的基础上,积极参与对数学问题的讨论,并敢于表达自己的观点,体验到解决问题的成功感。
三、教学重难点确定
推导公式(a±b)2=a2±2ab+b2和对公式的正确理解是本节�n的教学重点,对完全平方公式的运用是本节�n教学的难点。
四、学情分析
1、在知识掌握上,前面,学生已学过多项式乘以多项式的运算,特别是已有推导平方差公式的基础,再推导完全平方公式不是很困难。但是对于几何图形如何用代数来表示,从而表示图形的面积,学生会有一定困难,另外,在运用公式时,对公式中a、b的理解,对“和”“差”符号的区别也会有些障碍。
2、我所教的班级的学生,对数学课有一定的兴趣,爱发表见解,但是学生好动,注意力有时不集中,所以在教学中运用图形的直观形象提出问题,引发学生的兴趣,并引导学生发表见解,培养他们有条理的思考和语言的表达能力。
五、教学策略
1、学生已经有多项式乘法的基础,前面又有了推导平方差公式的经验,所以,本节课主要以观察、思考、讨论贯穿于整个教学环节中,采用启发式教学法和师生互动式教学模式。教给学生“多观察、多思考多动手”的学习方法,教学中利用板书和例题向学生提供较多的活动机会和空间,使学生在“动脑、动口、动手”的过程中,掌握本节课的知识内容,从而培养学生独立解决问题的能力。
六、教学程序设计
㈠复习提问,引入新课。
教师首先复习提问:
1、前面我们学过了多项式乘以多项式的运算,请计算:
①(2x+3)(x-2)=
②(2x+3)(2x-3)=
找学生口述,老师板演。
2、刚才的第②小题,同学直接得出正确结果。运用了什么公式?正确表达公式的内容(让学生回答)。前面我们已经学过了平方差公式,符合这种类型的多项式乘法运算很简便,今天,我们再来学习新的公式。
引出今天的课题。
㈡教师引导,推导公式。
1、教师用幻灯片演示教科书第33页第引例,让学生观察图片,并提出问题:图片中的图形面积可分为几部分?它们都是什么图形?每部分面积是多少?整个图形面积如何表示?有几种表示方法?它们的关系是什么?让学生四人一小组进行讨论、研究,最后在班级交流,由各组推举代表,回答上面的问题,教师统一同学们的意见,确定正确的答案。
2、教师再用幻灯片演示教课书中的“想一想”,分别让三个学生到黑板板书,用乘法法则计算。
①(a+b)2=(a+b)(a+b)=
②(a-b)2=(a-b)(a-b)=
③2==
其余同学在下面练习本上计算。
同学们计算出正确结果后教师总结,今天所学的公式叫做“完全平方公式”,教师板书公式后,再让学生练习用语言叙述公式。
㈢熟记公式,简单运用。
1、教师根据黑板书写的公式,请同学们观察两个式子有什么特点?引导学生观察项数、次数、符号、两个公式的异同点,学生先互相讨论,然后再回答。
2、师生共同完成例1。
教师先板演第⑴小题,教师板演时先讲清哪一项是公式中的a、b,正确按公式书写,最后再化简,教师演示过后,找二个同学板书第⑵、第⑶小题,其他同学在练习本上做,教师巡回检查,纠正错误。
㈣归纳总结,练习反馈。
1、师生共同完成例1后。师生共同总结今天所学的内容,教师提出问题,可以让学生回答,回答不准确、不完整,教师给予补充。
⑴今天学习了什么公式?如何表述?
如何用图形表示(a+b)2,如何用乘法法则计算(a+b)2、(a-b)2
⑵完全平方公式有什么特点?
⑶运用公式要注意什么?
要注意公式中的a、b可代表单个数字、单个字母或代数式,要分清“两数和”“两数差”的公式中中间一项符号的区别。
2、学生独立完成教材第34页随堂练习,(补充两小题),完成后,同桌两人交换检查,教师抽查,把主要错误写在黑板上,表扬做得好的同学。
㈤布置作业,课后思考。
篇3:初中数学说课稿
一、教材分析
1、教材的地位和作用
一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。
2、教学目标
根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体现在:
知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。
过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念 。
情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。
3、教学重点与难点
要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发。所以,本节课的重点是:由实际问题列出一元二次方程和一元二次方程的概念。鉴于学生比较缺乏社会生活经历,处理信息的能力也较弱,因此把由实际问题转化成数学方程确定为本节课的难点。
二、教法、学法
因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。
三、教学过程设计
因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过微机演示课本中的实例,并应用微机对其进行分析,充分显示微机演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。
篇4:初中数学说课稿
尊敬的各位评委、老师
我是说课者,今天我说课的内容是平行四边形的判定 。所选用的教材是经全国中小学教材审定委员会,2004年初审通过的,人教版义务教育课程,标准实验教科书。对于本节课。我将根据去年国家教育部颁布的,新数学课堂标准的理念,以教什么,怎样教,为什么这样教为思路,从说教材、说教法,说学法,说教学过程及教学反思等五个方面向大家介绍一下,我对本节课的理解与设计。
一、说教材
1.地位和作用
本节教材是人教版,初中数学八年级下册第 19 章第 1 节的内容,是初中数学的重要内容之一。平行四边形 是一种重要的数学思想,在实际生活中有着广泛的应用,是初中教学的重点和难点,在教材中有举足轻重的地位。本节课所学内容,是在学习了平行四边形的性质 的基础上,对平行四边形的判定 进一步拓展;另一方面又为 其他四边形 的教学打下基础,做好铺垫,在教学中起着承前启后的作用。
2.教学重点和难点
本节课的重点是:平行四边形的判定定理及应用
难点是:平行四边形的判定的推导过程(这点要求比较难)
我将通过问题情境的设计,课堂实验研讨,来引导学生发现、分析和解决问题。
<根据去年国家教育部颁布的,新数学课堂标准的理念,学生学习的目标应将知识与技能、方法与过程、情感态度价值观这三方面融为一体,为了落实这几点,我们本节课的教学目标如下>
3.教学目标
1)掌握
2)探索,由此发现充满着探索性和挑战性。(方法与过程)
3)经过自主探索和合作交流,敢于发表自己的观点,能从交流中获益。(情感态度价值观) 这样制定教学目标,让学生亲身经历将实际问题抽象成数学问题,并进行理解与应用的过程,增加他们对问题的感性认识。通过推理论证,提高学生的理性认识,培养学生良好的个性品质(这包括大胆猜想、勇于探索、创新精神、顽强的学习毅力等)。
总之,我这节课更注重学生学习方式的转变,变接受式学习为自主式学习、合作式学习、探究式学习。针对这节课我采用以下教学方法>
二、说教法
情境教学法、课堂研讨法
让学生处于具体的教学情境之中,把抽象的数学知识,适当的形象化,这就相当于为学生提供一个场所,从多种感观获取信息,体验我们的数学活动。 可以从以下三方面得到体验:
1)培养学生的自学能力
2)落实学生的主体地位,促进学生的主动发展
3)为培养学生的创新意识与创新能力奠定基础
从整体课堂来看,我们这节课很关注学生的发展,古人说:“学贵有方”
三、说学法
老师传授给学生的不应只是知识内容,更重要的是,指导学生一些数学的学习方法。我遵循“教师为主导、学生为主体、质疑为主线”的教学思路,进行学法的指导。指导学生如何将实际问题转化为数学问题,明白数学与人类的密切关系,指导学生通过类比、猜想、推理等思维进行教学。
<在我的课堂教学中,我会以学生的发展为本,以学生的活动为主线,让学生充分参与到课堂活动中来,为了落实这几点,我按以下5个阶段来,完成本课教学过程>
四、说教学过程
1阶段:创设情境、引入新课
我将灵活运用温故而知新,承接前后章,展示情境,结合实际生活,引入新课。
2阶段:新课教学(通过合作性学习进行教学。心理学研究表明,在合作性学习中,学生不再是学习上的竞争对手,而是共同提高的合作者,这不仅对他们的学业会有帮助,在人格的培养上也很有可取之处。)
3阶段:课堂实践
我将通过:首先和学生们一起议一议(平行四边形性质的简单利用)
最后再和学生们共同完成练一练(随堂练习,基础训练、创新训练)
4阶段:课堂小结(让学生谈谈本节学到什么、收获什么,教师点评,以达到加深知识的理解)
5阶段:布置作业(达到复习巩固新知识的目的)
五、教学反思
本节课我遵循“教师为主导、学生为主体、质疑为主线”的教学思路,培养学生的主动学习能力、动手操作能力、逻辑推理能力等。通过课堂学习,及时发现学生,在学习探究过程中遇到的问题,给予指导帮助,从而维持学生学习的积极性。以上是我对本节课的理解,不足之处,请各位评委老师指正。我的说课完毕,谢谢大家!
篇5:初中数学说课稿
一、教材分析
1、从教材的地位与作用看:
⑴本节课的主要内容是平方差公式的推导和平方差公式在整式乘法中的应用。
⑵它是在学生已经掌握单项式乘法、多项式乘法基础上的拓展和创造性应用;
⑶是对多项式乘法中出现的较为特殊的算式的第一种归纳、总结;是从一般到特殊的认识过程的范例。
⑷它应用十分广泛,通过乘法公式的学习,可以丰富教学内容,开拓学生视野。更是今后学习因式公解、分式运算及其它代数式变形的重要基础。
2、从学生学习过程的角度看:
⑴ 学生刚学过多项式的乘法,已经具备学习和运用平方差公式的知识结构;
⑵ 由于学生初次学习乘法公式,认清公式结构并不容易,因此,教学时不可拔高要求,追求一步到位;
⑶ 学生在本节课学习过程中出现的错误,迸发出的思维火花、情感都是本节课较好的教学资源。
3、教学目标分析
(1)知识与技能
1、经历探索平方差公式的过程、
2、会推导平方差公式,并能运用公式进行简单的运算、
(2)过程与方法
1、在探索平方差公式的过程中,培养符号感和推理能力、
2、培养学生观察、归纳、概括的能力、
3、情感与价值观要求
在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美、
让学生在合作探究的学习过程中体验成功的喜悦;培养学生敢于挑战、勇于探索的精神和善于观察、大胆创新的思维品质。
教学重点
平方差公式的推导和应用、
教学难点
理解平方差公式的结构特征,灵活应用平方差公式、
教学关键:“认清结构,找准a、b”。
二、教学程序分析
教学流程安排:
活动1:创设情境 激趣引入
活动2:自主探究 归纳发现
活动3:解释运用 解决问题
活动4:反馈练习拓展应用
活动5:反思小结 布置作业
三、教法学法分析
1、学情透视:
(1)有利因素:
学生已经具备了导出平方差公式的知识与技能;同时,有了对整式运算“快”,“准”的积极心理;
学生独立探索,合作交流的习惯正逐渐养成。
(2)不利因素:
两个多项式相乘的形式复杂多变,学生较易被假象所迷惑;
部分学生对多项式相乘还不够熟练和细心,学生学习能力也参差不齐。
2、学法指导:对于数与代数的学习来说,重要的是让学生学会探究模式、发现规律、而不是死记结论,死套公式和法则。[]只有经过自己的探索,才能不仅“知其然”,而且知其“所以然“,才能真正获得知识,懂得公式的意义,掌握公式的应用。而且通过探究公式的活动,可以提高探索能力,也有利于掌握数与代数的运算和规律。因此通过创设“速算”的情境来激发学生的探究兴趣。
(1)自主探究:指导学生认真思考,细心观察,大胆发现得出平方差公式,学会探索,学会学习。 遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中
(2)合作交流: 有学生之间的交流,也有师生之间的交流,在课堂中构建和谐,民主的气氛。
3、教学构思:
(1)教学方法:我采用的是探究性学习教学模式,利用多项式的乘法,探索归纳出平方差公式,领会a,b 的含义,从操作活动中探索公式的几何背景,让学生带着原有的知识背景、生活体验和理解走进学习活动,并通过自己的主动探索,与同学合作交流、反思等,构建对知识的形成和运用。这样不仅能够理解、归纳平方差公式的特点,而且充分感受到数学演绎的过程和数学知识的整体性,学会进行有条理的表达。使教法、学法和谐统一,形成由感性到理性认知过程,促进学生全面发展。
(2)教学手段:利用多媒体等教学手段,激发学生的学习兴趣,帮助学生突破难点,提高课堂教学效率
四、设计说明与思考
《新课程标准》中明确指出:“数学教学是数学活动的`教学,学生数学学习的主人。教师的职责在于向学生提供从事数学活动家机会,在活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。”在教学设计时,以课标理念为指导思想,以多媒体教学课件为辅助手段,突出对平方差公式的推导和应用。自主探究、举一反三、语言叙述、推导验证、几何解释、应用巩固等活动都是根据学生的认知特点和所学知识的特征,让学生经历数学知识的形成与应用过程,以促进学生的有效学习。
在教学活动的组织中始终注意:
(1)以问题为活动的核心。在组织活动前,结合学习内容和学生实际,更好地使用教科书,创设问题情境。
(2)探究是一个活动过程也是学生的思维过程,对学生的发展来说是最重要的。在对比中学,在对比中用,在对比中再进行比较,从基本类型的题目到变化多端的题目,从单一题型到复杂题型,从式中的位置、符号、系数、指数、项数等逐一对比,引导学生多角度思考问题,抓住公式、法则的实质,达到运用自如的效果。让学生认知内化,形成能力。
(3)促进学生发展是活动的目的。数学教育要以获取知识为首要目标转变为首先关注人的发展,这是义务教育阶段数学课程的基本理念和基本出发点。因此,本节课组织上活动的目的,不是为了单纯地传授知识,而是注意让学生在参与平方差公式的探究推导、归纳证明、解释应用的过程中促进学生代数推理能力、表达能力、与人合作意识、数学思想方法等各方面的进一步发展。
我紧紧抓住这节课的教学重点:平方差公式的推导和应用;突破一个难点:理解平方差公式的结构特征,灵活应用平方差公式,注意符号问题;在例题教学中,让学生深刻理解这节课的关键:识别完全相同的项a和互为相反数b;精心选择练习题,培养学生熟练运用公式能力,尽量满足不同层次学生的要求。
通过这节课我认为今后的教学还需要备好学生、备好教材(要深挖),设计好自己的教案,注重学生的主体地位,渗透数学想方法,把握好知识的发生过程,不是机械的记忆,简单的叠加,而要做到理解的基础上记忆,符合认知规律的重新构建,设计时注意要有阶梯,且要适度,提高自己的点拨技巧,为上好每一节课而不懈努力。
篇6:初中数学说课稿
初中数学说课稿范例
一、教学目标
【知识与技能】能利用方程解决实际问题。
【过程与方法】通过分类讨论将电话计费问题转化为方程问题、解决方程问题、利用方程问题的结论解释各个分类区间的花费变化情况。
【情感态度与价值观】体验方程模型解决问题的一般过程,体会分类思想和方程思想,增强应用意识和应用能力。
二、教学重难点
重点:建立电话计费问题的方程模型。
难点:建立电话计费问题的方程模型。
三、教学过程
1.导入新课
前面我们已经对一元一次方程解决实际问题进行了初步的探究,接下来我们继续研究一元一次方程在实际生活中的应用。
2.对问题的初步认识
问题1:下面表格给出的是两种移动电话的计费方式:
你了解表格中这些数字的含义吗?
师生活动:教师提问,学生思考,回答。
教师对回答的方式适当给予提示,如“月使用费的.比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过计算回答相应的费用。
问题2:你觉得哪种计费方式更省钱呢?
师生活动:教师提出问题,学生思考回答。根据学生的回答情况,教师适当加以引导:
若学生回答计费方式以一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;
若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的关键点、分类后各区间的变化趋势作进一步的探究。
讨论后安排学生再次思考,可适当讨论。
3.对问题的深入探究
问题3:通过大家的讨论,你对电话计费问题有什么新的认识?
师生活动:教师提出问题,学生思考回答。根据学生的回答教师适当加以归纳引导:
若学生还没有明确的分类,则引导学生思考“你可以确定哪一个时间区间内两种计费的比较结果?”,从而引导学生进行分类;
若学生已经对问题进行了分类,则追问“你为什么这样分类?”以及“在每一个时间区间内你是怎么分析的?”从而引导学生更合理地解决问题。
问题4:设一个月内用移动电话主叫为t min(t是正整数)。当t在不同时间范围内取值时,列表说明按方式一和方式二如何计费。
师生活动:教师提出问题,学生思考并制作表格,教师巡视。
教师请学生填写下面的表格,其他同学适当补充。
观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?
师生活动:教师提出问题,学生思考并小组讨论,教师选小组汇报讨论结果。
一般学生能够对“t小于150”“t=150”“t=350”三种情况作出准确的判断,而对于“t大于150且小于350”的情况,教师应辅助学生加以分析。
教师追问:
(1)当“t大于150且小于350”时,是否存在某一主叫时间使两种方式的计费相等?为什么?
(2)利用方程求出使两种的方式的计费相等的主叫时间,得出270min这个时间点。
(3)当主叫时间“大于150min且小于270min”或“大于270min且小于350min”时,分别选择哪种计费方式比较省钱?
对于“t大于350”时两种计费方式的比较,教师可以更多地让学生去探究方法并表述,在此基础上加以适当地总结。
问题5:综合以上的分析,可以发现:
当?时,选择方式一省钱;当?时,选择方式二省钱。
师生活动:教师提出问题,学生思考并回答。
4.小结
请学生回顾电话计费问题的探究过程,回答以下问题:
(1)探究解题的过程大致可以包含哪几个步骤?
(2)电话计费问题的核心问题是什么?
(3)在探究过程中用到了哪些方法?你又哪些收获?
5.巩固应用
利用我们在“电话计费问题”中学会的方法,探究下面的问题。
如何根据复印的页数选择复印的地点使总价比较便宜?
师生活动:教师提出问题,学生思考、解答,小组讨论,学生回答,教师点评。
6.布置作业
课本习题1,3。
四、板书设计
实际问题与一元一次方程
例题:
分类讨论:
总结:
五、教学反思
略
篇7:初中数学说课稿
各位评委:
大家好!今天我说课的题目是《 》,所选用的教材为人教版义务教育课程标准实验教科书。根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以说明。
一、教材分析
1、教材的地位和作用
本节教材是初中数学 年级 册,第 章第 节的内容,是初中数学的重要内容之一。一方面,这是在学习了 的基础上,对 的进一步深入和拓展;另一方面,又为学习 等知识奠定了基础,是进一步研究 的工具性内容。因此,我认为,本节课起着承前启后的作用。
2、教学目标分析
根据新课标的要求和本节课内容特点,考虑到年级学生的知识水平,我制定了如下课的三维教学目标:
1.认知目标:(了解、理解、熟记、初步掌握、会运用 对 进行 等);
2.技能目标: 通过 的学习,培养学生 观察分析、类比归纳的探究 能力,加深对 函数与防城、数形结合、从特殊到一般、类比与转化、分类讨论 等数学思想的认识。
3.情感目标: 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
3、教学重难点
本着课程标准,在充分理解教材的基础上,我确立了如下的教学重点、难点:
教学重点:
教学难点:
下面,为了讲清重点难点,使学生能达到本节课的教学目标,我再从教法和学法上谈谈:
二、教法分析
教学方式的改变时新课标改革的目标,新课标把过去 单纯的老师讲,学生接受的教学方式,变为师生互动式教学。师生互动式教学以教学大纲为依据,渗透新的教育理念,遵循教师主导、学生为主体的原则,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学法分析
从心理特征来说,初中阶段的学生思维能力,观察能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用生动的现象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了 ,对 已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于 的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
因此本节课我采用突出学生自主探索、合作交流的数学学习方式,让学生在自主探索、合作交流中加深理解 .不但让学生“学会”还要让学生“会学”.
四、教学过程分析
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,接下来,我再具体谈谈本节课的教学过程安排:
1、(1)复习旧知,导入新课
俗话说:“好的开端是成功的一半”同样,好的引入能帮助学生复习旧知识,并起到激发兴趣的作用。因此我用学生已学的知识提出问题:
设计意图:这样设计既回顾旧知,又为后面运用知识作好了准备,也有利于引导学生顺利地进入学习情境。
(2) 创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的.认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。
2、小组合作,探究新知
设计意图:通过抢答,培养了学生的竞争意识、合作意识,增强了集体荣誉感。同时也培养了学生的语言表达能力和抽象思维能力。
3、(1)类比联想,形成概念
(2)引导观察,讨论归纳
从而顺利突破难点。
4、随堂训练,巩固提高
P 第4题与第7题
师生活动:教师出示问题,学生独立思考解答,并指两名学生板演
设计意图:这两道练习的题型与例题完全相同,主要是为了通过课堂跟踪反馈,达到巩固提
高的目的,进一步渗透建模思想。也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。
5、课堂小结,回扣目标
引导学生自主进行课堂小结:
1、本节课我们学习了哪些知识?
2、在学习过程中掌握了哪些方法?
3、在……时,要注意哪些问题?
师生活动:学生个体小结,小组归纳,集体补充。
设计意图:注重学生间的相互合作,培养学生的合作意识、竞争意识。用集体的智慧对个人的总结查漏补缺,从而加深对知识的理解记忆。
6、布置作业
课本P 8(必做) 练习册P 10(选做)提高升华以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
7、板书设计
设计意图:提纲式的板书设计有利于学生对本节内容的总结和反思,使学生对本节课的学习形成清晰的思路。同时还有利于学生系统性地记忆新知。
以上就是我所有的说课内容,希望各位评委对本节课提出宝贵的意见!
篇8:初中数学说课稿
各位评委:
大家好!今天我说课的题目是 ,所选用的教材为华东师大版义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以说明。
一、教材分析
1、教材的地位和作用本节教材是初中数学 年级 第 章第 节的内容,是初中数学的重要内容之一。一方面,这是在学习了 的基础上,对 的进一步深入和拓展;另一方面,又为学习等知识奠定了基础,是进一步研究 的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析
从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了 ,对 已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
3、教学重难点
根据以上对教材的'地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:
难点确定为:
二、教学目标分析
新课标指出,教学目标应包括只是与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个右击整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:
1. (了解、理解、熟记、初步掌握、会运用 对 进行 等);
2. 通过 的学习,培养学生 观察分析、类比归纳的探究 能力,加深对 函数与防城、数形结合、从特殊到一般、类比与转化、分类讨论 等数学思想的认识。
3. 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
三、教学方法分析
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率,
四、教学过程分析新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1) 复习就知,温故知新
设计意图:建构注意主张教学应从学生已有的知识体系出发, 是本节课深入研究 的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2) 创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
(3) 发现问题,探求新知
设计意图:现代数学教学论指出, 的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳 。(4) 分析思考,加深理解
设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 环节。
(5) 强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6) 小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的只是、方法、体验是那个方面进行归纳,我设计了这么三个问题:
① 通过本节课的学习,你学会了哪些知识;
② 通过本节课的学习,你最大的体验是什么;
③ 通过本节课的学习,你掌握了哪些学习数学的方法?
(7) 布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
相关文章推荐:
1.最新初中开学第一课班会教案
2.2016开学第一课主题班会教案【精选】
3.初中开学第一课主题班会教案
4.开学第一课主题班会教案【精选】
5.2016高中开学第一课主题班会教案
6.新学期开学第一课主题班会教案
7.初一开学班会课教案
8.初中生开学第一课教案
9.2016小学开学第一课教案
10.开学第一课八年级班会教案
篇9:初中数学说课稿
有关初中数学说课稿
一、教材分析
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、解方程在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。解方程是代数中的主要内容之一。一元一次方程有许多直接的应用,最主要的,解一元一次方程是学习其它方程和方程组的“基石”。解各种方程和方程组,通过降次、消元等方法,最后都归纳为解一元一次方程。
2、一元一次方程这一章可以归纳为两个方面:第一方面的内容是等式的有关概念,等式的性质以及方程的有关概念;第二方面的内容是一元一次方程的概念,解一元一次方程的步骤,以及列出一元一次方程解应用题。解方程是列一元一次方程解应用题的基础,本章的学习重点在于使学生能根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的`基本方法,能运用一元一次方程解决实际问题。学生能否正确的解方程和列一元一次方程解应用题关键是这一节的学习。
从以上两点不难看出它的地位和作用都是很重要的。
3、接下来,介绍本节课的教学目标、重点和难点。
教学大纲是我们确定教学目标,重点和难点的依据。根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:(1)熟悉利用等式性质解一元一次方程的基本过程;(2)通过具体的例子,归纳移项法则;(3)掌握解一元一次方程的基本方法,能熟练求解一元一次方程(数字系数)能判别解的合理性。2、能力目标是:(1)通过学生观察、独立思考等过程、培养学生归纳、概括的能力;(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。;3、情感目标是:激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯。(2)培养学生严谨的思维品质。由于合并同类项学生已非常熟悉,系数化成一实际是利用等式的性质,而移项是新事物又是解方程的关键,因此本节课的重点是:移项法则及其应用。由于本阶段的学生往往注意不到项的符号及移向后的符号,很容易出现符号错误。因此我确定本节课的难点是;移项的同时要变号。
二、教材处理
本节课是在前面学习了《你今年几岁了》的基础上进行的,学生已经很牢固地掌握了方程、一元一次方程的概念及等式性质并且能利用等式性质熟练的解方程,因此我没有把时间过多地放在复习这些旧知识上,而是通过游戏激发学生的兴趣,这样既巩固了前面所学的知识又培养了学生的创造能力,真是一举三得。进而设疑激发学生的好奇心,为后面的学习做好准备。采用生动形象的事例,在移项法则的得出过程中,我让学生自主观察发现规律并用自己的语言描述规律的内容。然后交流各自所发现的规律及用语言表书的过程,这样通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。由于在移项时,学生常犯一些错误,如移项忘记变号,因此在例题的处理上我采取用两种方法解例1、例2,并将两者加以对照,进而使学生加深对移项法则的理解且自觉改正错误。然后我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
三、教学方法和数学手段
在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
四、教学过程的设计。
1、引入:①通过游戏引入:同学们,你们是不是经常完游戏?今天我们来玩一个数学游戏,我手中有6、X、30三张卡片,请同学们用他们编一元一次方程,比一比看谁编的又快又对。学生思考,根据自己对一元一次方程的理解程度自由编题。②设疑:现在老师遇到一道难题,请同学们帮助解决一下,请看大屏幕:解方程5X-2=8解:5X=8+2 X=2 看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。
2、探索规律,总结移项法则:出示引例并鼓励学生通过观察归纳,独立发现移项法则。对有困难的同学,教师通过适当的语言提示,引导学生发现规律。这样学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出移项法则。
3、例题:对于例1,首先鼓励学生试着解方程,教师注意发现学生可能出现的错误,把错误集中起来,组织学生进行组织交流。最后规范书写格式。例2,教师首先放手让学生去做。只要学生的解法合理就鼓励。
4、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。
5、归纳总结:教师引导学生做出本节课小结,归纳解方程的方法及易出错的地方。以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。
第三篇:初中数学说课稿()
篇一:经典初中数学说课稿 尊敬的各位评委、老师
上午 好:我是(19)说课者,今天我说课的内容是平行四边形的判定。所选用的教材是经全国中小学教材审定委员会,2004年初审通过的,人教版义务教育课程,标准实验教科书。对于本节课。我将根据去年国家教育部颁布的,新数学课堂标准的理念,以教什么,怎样教,为什么这样教为思路,从说教材、说教法,说学法,说教学过程及教学反思等五个方面向大家介绍一下,我对本节课的理解与设计。
一、说教材 1.地位和作用
本节教材是人教版,初中数学八年级下册第 19 章第 1 节的内容,是初中数学的重要内容之一。平行四边形 是一种重要的数学思想,在实际生活中有着广泛的应用,是初中教学的重点和难点,在教材中有举足轻重的地位。本节课所学内容,是在学习了平行四边形的性质 的基础上,对平行四边形的判定 进一步拓展;另一方面又为 其他四边形 的教学打下基础,做好铺垫,在教学中起着承前启后的作用。
<新的数学教学大纲明确要求,判断,对此本节课的> 2.教学重点和难点
本节课的重点是:平行四边形的判定定理及应用
难点是:平行四边形的判定的推导过程(这点要求比较难)
我将通过问题情境的设计,课堂实验研讨,来引导学生发现、分析和解决问题。
<根据去年国家教育部颁布的,新数学课堂标准的理念,学生学习的目标应将知识与技能、方法与过程、情感态度价值观这三方面融为一体,为了落实这几点,我们本节课的教学目标如下> 3.教学目标 1)掌握
2)探索,由此发现充满着探索性和挑战性。(方法与过程)3)经过自主探索和合作交流,敢于发表自己的观点,能从交流中获益。(情感态度价值观)这样制定教学目标,让学生亲身经历将实际问题抽象成数学问题,并进行理解与应用的过程,增加他们对问题的感性认识。通过推理论证,提高学生的理性认识,培养学生良好的个性品质(这包括大胆猜想、勇于探索、创新精神、顽强的学习毅力等)。
<总之,我这节课更注重学生学习方式的转变,变接受式学习为自主式学习、合作式学习、探究式学习。针对这节课我采用以下教学方法>
二、说教法
情境教学法、课堂研讨法
让学生处于具体的教学情境之中,把抽象的数学知识,适当的形象化,这就相当于为学生提供一个场所,从多种感观获取信息,体验我们的数学活动。可以从以下三方面得到体验: 1)培养学生的自学能力
2)落实学生的主体地位,促进学生的主动发展 3)为培养学生的创新意识与创新能力奠定基础
从整体课堂来看,我们这节课很关注学生的发展,古人说:“学贵有方”
三、说学法
老师传授给学生的不应只是知识内容,更重要的是,指导学生一些数学的学习方法。我遵循“教师为主导、学生为主体、质疑为主线”的教学思路,进行学法的指导。指导学生如何将实际问题转化为数学问题,明白数学与人类的密切关系,指导学生通过类比、猜想、推理等思维进行教学。<在我的课堂教学中,我会以学生的发展为本,以学生的活动为主线,让学生充分参与到课堂活动中来,为了落实这几点,我按以下5个阶段来,完成本课教学过程>
四、说教学过程
1阶段:创设情境、引入新课
我将灵活运用温故而知新,承接前后章,展示情境,结合实际生活,引入新课。
2阶段:新课教学(通过合作性学习进行教学。心理学研究表明,在合作性学习中,学生不再是学习上的竞争对手,而是共同提高的合作者,这不仅对他们的学业会有帮助,在人格的培养上也很有可取之处。)3阶段:课堂实践
我将通过:首先和学生们一起议一议(平行四边形性质的简单利用)
最后再和学生们共同完成练一练(随堂练习,基础训练、创新训练)
4阶段:课堂小结(让学生谈谈本节学到什么、收获什么,教师点评,以达到加深知识的理解)
5阶段:布置作业(达到复习巩固新知识的目的)
五、教学反思
本节课我遵循“教师为主导、学生为主体、质疑为主线”的教学思路,培养学生的主动学习能力、动手操作能力、逻辑推理能力等。通过课堂学习,及时发现学生,在学习探究过程中遇到的问题,给予指导帮助,从而维持学生学习的积极性。以上是我对本节课的理解,不足之处,请各位评委老师指正。我的说课完毕,谢谢大家!
篇二:初中数学说课稿(2)《二次根式的加减法》说课稿
各位评委:
大家好!今天我说课的题目是青岛版八年级下册第七章第二节《二次根式的加减法》。根据新课标的理念,从教材分析,学情分析,教学模式,教学设计,板书设计,课堂评价,资源开发,本课得失八个方面加以说明。
一、教材分析
(一)教材的地位和作用
本节课是初中数学的重要内容之一。一方面,这是在学习了有理式的运算和二次根式的性质的基础上,对代数式的进一步深入和拓展;另一方面,又为学习二次根式的乘除、实数的混合运算以及解直角三角形、一元二次方程、二次函数等知识奠定了基础,是进一步研究代数式的工具性内容。
(二)教学目标
新课标指出,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在数学思考和解决问题中。
知识与技能:
1、了解同类二次根式的概念,会识别同类二次根式,会合并同类二次根式。
2、理解二次根式的加减法法则,并能熟练地进行二次根式的加减法运算。
数学思考:
1.经历二次根式的加减运算法则的形成过程,感悟类比思想;
2.经历由实际问题引入数学问题的过程,发展学生的抽象概括能力; 3.掌握运算法则,培养学生由特殊到一般的思维能力。
解决问题:
能根据情境提出问题并能有效地解决问题。
情感与态度: 通过主动探究,合作交流,让学生充分参与到数学学习的过程中来,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,同时进一步培养同学间的合作交流能力和团队合作精神。
(三)教学重难点
我将本节课的重点确定为:
1、同类二次根式的概念及其识别;
2、二次根式的加减法法则.
难点确定为:二次根式加减法的实际应用。
二、学情分析
初二阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。所以在教学中应抓住这些特点,一方面设置适当的情景,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
学生已学过同类项、合并同类项、二次根式、最简二次根式的概念,对实数运算与性质有初步感受,为本节知识打下了基础。如果学生前面只是能够牢固掌握,本节相对简单。但是往往对于前一节的二次根式化简掌握不牢,要注意复习深化。
三、教学模式
根据课标要求,结合本节课的内容特点和学生的年龄特征,本节课我采用讲练测结合的教学方法,以问题的提出、问题的解决为主线,始终在学生认知范围内设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
四、教学设计
本节课我主要安排以下教学环节:
(一)复习旧知,温故知新(5分钟): 1.(1)什么是同类项?
(2)合并同类项的法则?
(3)计算: 2x-3x+5x2a2b – 3a2b + 式做铺垫。
2.二次根式的化简:
(1)积的算数平方根法则:
(2)商的算数平方根法则:
(3)最简二次根式的定义: 【设计意图】 引导学生回顾同类项的相关知识,为接下来学习同类二次根式和合并同类二次根22ab3 = ;(2)27a= ;(3)227= ;
(4)= ;(5)48a= ;(6)348= ; 3.化简:(1)
【设计意图】二次根式化简是本节课的基础,通过引导学生回顾复习,使学生熟练掌握化简方法和技巧,以提高本节课效率。
【注】此教师讲解化简方法。
4、尝试计算下列各式:
(1)2?22? ;(2)a?2a? ?a?0?;
【设计意图】提高学生的感性认识,引入新课。通过问题创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
(二)自主学习(5分钟)
自学课本第10—11页内容,完成下面的题目:
1、试观察下列各组式子,哪些是同类二次根式:(1)22与32(2)2(3)20(4)与
从中你得到:。
2、几个二次根式化成_______________后,如果它们的________相同,那么这几个二次根式称为同类二次根式。
3、同类二次根式可以像________那样进行合并。
4、二次根式相加减,应先把各个二次根式化成___________,然后把____________分别合并。
5、自学课本例1,例2后,仿例计算:
图片已关闭显示,点此查看
(1 图片已关闭显示,点此查看
图片已关闭显示,点此查看
(2 图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
(3)
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看
【设计意图】1.提高学生的自主学习能力;
图片已关闭显示,点此查看
(三)合作交流、展示反馈(5分钟)小组交流结果,比照例题,看谁的做法又快又准.【设计意图】通过学生自主合作交流,锻炼学生和合作交流能力,并通过此过程体会二次根式加减法的步骤。
(四)合作探究,深化知识(5分钟)
被开方式不同的几个二次根式,一定不是同类二次根式?
【设计意图】进一步体会同类二次根式的定义。
(五)精讲点拨(5分钟)
【师】
1、判断是否同类二次根式时,一定要先化成最简二次根式后再判断。
注意:同类二次根式只要求被开方数相同,与根号前的系数无关。
2、二次根式的加减法三个步骤:
①化成最简二次根式;
②找出同类二次根式;
③合并同类二次根式,不是同类二次根式的不能合并。
(六)强化训练,巩固双基(5分钟)
1、试观察下列各组式子,哪些是同类二次根式:
(1)22与32(2)2(3)20(4)
2、合并同类二次根式(类比合并同类项的法则)(1)1 1(3)x ?6?(?)2.通过填空题,强调同类二次根式定义的关键,让学生体会合并同类二次根式的步骤。32723x1?2x4x 【步骤讲解中引导学生体会】
合并同类项的法则:系数相加减,字母与字母的指数不变。
合并同类二次根式的法则:将同类二次根式的系数相加减,根指数与被开方式不变。
(七)达标测试:(10分钟)
1、选择题
(1)
a.①和② b.②和③ c.①和④ d.③和④
(2).
a bc d?;③?(3)④?,其中错误的个数为()a.1 b.2c.3 d.4
2、计算:
(1)(2)x
3、如图,在rt△abc中,∠c=90°,1x1?4y??yx2ya bc ac=3cm,bc=6cm,求ab的长.
【设计意图】通过检测,考察学生对本节课的掌握情况。
(八)小结归纳,拓展深化(2分钟)
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验是哪个方面进行归纳,我设计了这么三个问题:
① 通过本节课的学习,你学会了哪些知识,还有什么疑惑;
② 通过本节课的学习,你最大的体验是什么;
③ 通过本节课的学习,你掌握了哪些学习数学的方法?
【设计意图】
1.让学生通过说,进一步增进认识,加深理解和记忆; 2.通过互相讲解疑惑,激发学生思考,鼓励提出疑难问题。
(九)拓展提升(3分钟)
1、选择
图片已关闭显示,点此查看
图片已关闭显示,点此查看)
a.a=2,b=2 b.a=2,b=1c 图片已关闭显示,点此查看
图片已关闭显示,点此查看
图片已关闭显示,点此查看 d 图片已关闭显示,点此查看
22、已知4x2+y2-4x-6y+10=0))的值 3【设计意图】
给有余力的学生充分的空间展现。特别是第一道题与n次根式相联系,使学生进一步深化对同类二次根式概念的理解。
(十)布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题。必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
七、板书设计
黑板从左往右共分为四个板块:第二个板块用于复习回顾,第三个板块本节课的重点知识框架和新知识讲解的分析,第一个和第二个板块是学生板演区。
八、本课反思
本节课比较成功,值得借鉴地方:
1.复习同类项、最简二次根式的化简相关知识,是学生做好本节课的基础,提高了本节课的效率。
2.有效采用了小组合作。
不足:
个别上一节还没掌握好的学生,没及时督促跟上,导致本节课知识掌握很差。
篇三:初中数学说课稿 数学与信息科学学院
说 课 稿
课 题
专 业
指导教师
班 级
姓 名
学 号
2013年5月28日
图片已关闭显示,点此查看
图片已关闭显示,点此查看
一、课题介绍
尊敬的老师们,亲爱的同学们,大家好,我是来自数学与信息科学学院2011级5班的学生,我叫??,今天我说课的题目是同类项.同类项这节课选自华东师范大学出版社2001年版初中数学第一册(上)第三章第四节第一课时.下面,我将从,教材分析,教法分析,学法分析,教学过程,板书设计,这五个阶段呈现我的教学设计.二、教材分析
1、本节在教材中的地位和作用
本节课是在学习了整式的基础上,对单项式、多项式作进一步的复习.从知识的系统性看,同类项是整式知识的拓展,它们是从一种特殊到一般的关系,有着密切的内在联系;同时也为合并同类项的学习作了很好的铺垫.可见本节课起到了承前启后的作用.因此,它在教材中处于非常重要的地位.2、目标分析
根据课程标准的要求及本节的地位和作用,我从以下几方面来确定教学目标:
(1)知识目标:能掌握同类项的概念,能逆向运用同类项的概念.(2)能力目标:培养学生的分类归纳能力,体会分类思想在数学中的应用.(3)情感目标:培养学生学习同类项的情趣以及合作学习的精神,体会数学带来的结合之美.3、教学重点与难点
本节注重培养学生“观察发现”思想及解决问题分析问题的能力,因而确定重、难点为:
重点:同类项的概念的本质理解.难点:逆向运用同类项的概念.三、教法分析
本节课在遵循启发式教学原则的基础上,采用探索式教学方法为主,利用讲授法、练习法相结合,同时间接利用了谈话法,由浅入深进行教学,达到以教师为主导,学生为主体的教学宗旨.为了增大教学容量提高教学效率,本节课采用多媒体和彩色粉笔辅助教学,使教学过程显得直观、形象.四、学法分析
著名的教育学和心理学家布鲁纳说:“发现包括着用自己头脑来获得知识的
一切形式.”本节课学生通过观察、思考、归纳、小组讨论自己发现的问题,并解决问题.培养学生的抽象归纳能力和自主探究能力,以及让学生学会表达自己的观点,同时到达教学目的.五、教学过程
1、创设情境
为使学生轻松的进入学习,并为后面的学习作准备,首先我将以互动的方式,由两个情境,层层引入.首先,我会以一首的歌曲“爱我中华”引出学生的爱国情怀,并由对中国人口广义的分类为诱发点启发学生.其次,在课堂上,进一步在班级里学生对不同球类的喜爱进行分组的统计中强化这一思想,最后,是“找朋友”阶段,给出六个单项式: 1,x2,y,2,?x2,5y 3 让学生以找朋友的方式应用生活中分类的思想.给学生一分钟时间分小组讨论,通过学生不同的回答,引导学生逐步归纳出这些“好朋友”特征,为同类项的引出埋下伏笔.同时启发学生明白,我们可以根据事物本身具备的特点对事物进行归类.设计意图:创设情境的设计是受新课程标准要求中的“教学过程需要培养学生的爱国情怀,进一步增加对祖国的热爱.”的启发.活动的层层递进是让学生明白分类的思想无处不在.整个过程让学生拥有归类总结、探索新知思想,激发和提高学生学习的主观能动性,并且回顾前面章节所学的单项式的内容,起到温故知新的效果.让学生分组讨论有助于形成合作、开放的品格.在合作交流中,能发挥各自特长,利用集体智慧解决问题;学生自我探索求知,总结归纳这些项的共同特征,然后引出同类项的概念.培养学生的抽象归纳能力、自主探究能力和语言表达能力.同时体现了合作教学.2、展示新知
学生自己的对同类项特点进行归纳,根据教材对同类项的定义进行比较.最后板书规范的同类项的定义.定义:含有字母相同并且相同字母的指数也相同的项统称为同类项.设计意图:让学生根据自己头脑中的对分类思想对同类项的定义进行描摹雏形,但还不能很准确的对同类项的概念进行阐述,这时我就积极引导,让学生类比教材的定义.这样不仅仅让学生对同类项定义更加深刻,同时也培养了学生类比归纳的能力.3、例题讲解
这是五道判断题,需要学生判断各组单项式是否为同类项,在创设情境中把班级分为五组,对应完成五道例题,每组由一个代表回答,然后简述判断依据,由老师逐 步引导一起总结出单项式右边的文字.1)?与3.14 常数项是同类项 2)xyz与xy 所含字母相同 3)y2x与x2y 相同字母的指数相同 4)abc与cab 与字母顺序无关 5)3xy2与?8xy2 与系数大小无关
设计意图:根据著名教育心理学家皮亚杰的认知发现论,我将五个例题设计为由简单到复杂,这样更加有利于学生在接受知识时同化与顺化的相互补充.通过谈话法启发学生从多角度归纳同类项的概念,加深学生对同类项的理解.总结出学生在判断同类项时容易出现的错误,以及学生在探讨同类项的定义时对其他因素(系数大小,字母顺序等等)的考虑.整个环节把主动权都交给学生,教师主要起到的引导,修正,弥补的作用.4、练习巩固
1)3yx2?xy2?5a2b?5y2x?7x2y+3ba2这个多项式中哪些为同类项?
设计意图:练习巩固实在基本练习之上的程序,这道题可以起到温故知新的效果.首先可以对前面所学的多项式和单项式的内容进行复习,在学生进一步掌握同类项概念的基础上,我会要求学生在草稿本上自主探究,然后请一名同学来黑板板书他解题过程,并说明原因.这样加强对概念的使用,增加学生的学习兴趣和自信心,同时促进师生互动.并且相对例题讲解中对单项式之间同类项的判断,这道例题难度有所增加,这样,对学生智力的开发有一定的积极作用.同时这道练习题也为课堂小结买下了一个伏笔.2)?x2y与45ynxm是同类项,则m=(),n=().(2010山东中考题)
设计意图:这是同类项定义的逆向运用.根据波利亚的解题表,先引导学生分析题意,给学生一定思考时间,然后请学生说出解题过程,得出正确的答案,再对解题进行回顾,分析我们所学到的知识.设置这道题,是根据经验系统的过程性变式理论,完善学生的认知结构,培养学生的逆向思维以及培养了学生严密的数学思维.同时,这是山东省2010年的中考题,在学生完全掌握这道题之前这都是一个伏笔,在学生完全掌握这道题的做法时才揭开它背后的面纱,这样潜移默化中给了学生自信,同时在学生心中提高对中考题的兴趣以及降低学生对中考普遍的恐惧性.5、小结与布置作业
小结:同类项的“两相同,两无关”
设计意图:进一步让学生巩固基本知识,通过自己的归纳,结合数学知识和方法,渗透数学分类思想,使学生对本节课的知识结构有一个清晰而系统的认识.1)每个人在草稿本上写一个单项式,然后让同桌写出一个它的同类项.设计意图:通过简单的互动游戏,加深学生对同类项的理解.学生自己动手创造出一个单项式并且得出它的同类项的过程,会让学生体会到数学带来的乐趣,在这个过程中,培养了学生与人合作的意识.在这个过程中,需要教师有耐心的观察学生的行为,并且在观察中发现学生的创新以及不足.2)思考:超市里把同类的物品放在一起是为了我们购物的方便,那我们找出一个多 项式中里的单项式的同类项又为什么呢?练习一中多项式较为复杂,那么我们可否把他变得更加简单呢?
设计意图:使学生在复习练习巩固的基础上,运用本节课所学知识,联想实际生活中的例子,这样不显得数学的单一,数学本身就源于生活,最终归于生活.目的是让学生学以致用,注重知识与实际的联系与运用,促使学生在“最近发展区”的发展,同时激发学生对下一堂课的兴趣,学生在思考过程中,答案的多样性,体现了学生的创新思维的发展,同时培养学生的自觉性.布置作业:
① 教科书105页练习1写在书上、2,3写在作业本上.② 预习“合并同类项去括号再合并同类项”的内容.设计意图:华罗庚说:“学数学而不练,犹如入宝山而空返”.适当的练习能让学生在数学学习中得到特别的收获.作业1中有部分的作业要求学生写在书上,从心理学角度讲,学生在作业完成效率上会有所提高.作业2是有承上启下的作用,不仅仅要复习本节课的内容,也是对下节课的内容的预习.六、板书设计
为使整个版面重点突出、层次分明,我把黑板分为四版:第一版板书同类项的定义;第二板块为课堂小结的总结归纳,第三版板书创设情境以及布置作业;第四版为课件展示.这样,整节课的知识点清晰呈现出来.图片已关闭显示,点此查看
篇四:初中数学万能说课稿 初中数学万能说课稿
尊敬的各位评委老师:
上午好!我是-----号考生。今天我说课的课题是------下面我将从教材、教法和学法、教学过程、板书设计等几个方面对本课的教学进行说明。
一 说教材
这部分我从教材地位、教学目标、教学重难点三方面来说明。1 教材地位
xxx选自人教版数学七年级下册第—章第----节-----课时。主要内容是了解/理解-------------。xxx是在学生已经学习了-------的基础上进行的,同时也为后面学习--------作准备。2 教学目标
根据新课程标准的要求,结合七年级学生的认知水平,我将本课的教学目标预设为如下三项:
知识与技能目标:了解-----,熟练应用-----过程与方法目标:通过观察、思考、归纳等探究过程,感悟xx数学思想的含义
情感态度价值观目标:体会数学在实际中的应用,培养学生学习数学的兴趣,树立学好数学的信心
教学重难点
教学重点:
教学难点: 二 说教法学法 课堂教学要牢固学生的主体地位,充分调动学生参与课堂活动的积极性,让学生成为学习的主人。
本节课计划采用发现教学、分组探究、点拨引导等教学方法。充分发挥学生的主观能动性,加强学生自主学习,合作探究的意识和能力
在学法指导上,本着“学生主动性”原则,倡导“自主、合作、探究”的学习方式
主要有设疑导学、自主合作、检测反馈等学法。
三 教学过程
教学过程我设计了五个环节 1 设疑导学,自主学习
教师联系实际,结合本节内容,用多媒体展示问题,让学生带着问题,自主学习 2 小组讨论探究环节
教师设置探究问题,根据学生的实际情况进行分组。组长负责抽题,组织本组学员进行合作、探究的教学活动
学生交流、讨论、提问、补充、质疑,全员参与,解决学习过程中的疑惑。教师要参与到学生中去,倾听学生的想法,观察学生的学习状体,对学生的疑惑进行点拨
对于争议多的问题,小组之间可以交流、取长补短
通过生生交流、组组交流、师生交流,学生对-------有了进一步 的认识,发散性思维得到扩展,合作意识得到养成。拉近了师生间的距离,增进了师生间的情感。
分组展示,交流提升
经过小组讨论、探究、辨析、梳理后,各小组形成了各有特色的学习成果。在教师的安排下,小组进行成果展示,交流探索过程和学习经验,互相评价,提升自己。学生评价后,教师对各小组成果也给予及时的评价,保证探究过程的完整性。
教师在学生对知识点的理解和把握上,对知识重点进行概况、补充、强化,加深学生的理论学习,完善学生的知识体系。4 检测反馈
教师用对媒体出示练习题,通过对学生当堂检测确保教学目标落实。当堂检测要满足不同水平学生的需求,要围绕教学重点,注意疑难点和易错点。5 课时小结,作业布置
设置“我要说”栏目,鼓励学生参与课时小姐,谈谈自己的收获,体会。
根据七年级学生个体能力的差异和因材施教的原则,设置分层训练,不断提高每个学生的认知水平、综合能力。
四 板书设计
本节课板书设计分为三个部分
左边的教学重难点,中间是师生合作探究过程,右边是学生小结 板书是学生从视觉角度上巩固知识的一种途径,有助于发展学生 的能力和非智力因素。
我的说课完毕,谢谢大家!
篇五:初中数学说课稿 初中数学说课稿:《反比例函数》
一.说教材
1.内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。
2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。
二.说教学目标
根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:
1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
三.说教法
本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我
设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。
四.说学法
我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。
五.说教学过程
(一)创设情境,发现新知
首先提出问题
问题1:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么? 【设计意图及教法说明】
在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。
问题2:我们知道,电流i、电阻r、电压u之间满足关系式u=ir,当u=220v,(1)你能用含有r的代数式表示i吗?(2)利用写出的关系式完成下表。r/ω 20 40 60 80 100 i/a 当r越来越大时,i怎样变化?当r越来越小呢?(3)变量i是r的函数吗?为什么? 【设计意图及教法说明】
因为数学来源于生活,并服务于生活,问题2是一个与物理有关的数学问题,这样设计便于使学生把数学知识和物理知识相联系,增加学科的相通性,另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的(1)(2)问题比较简单,学生可以独立完成,但对于问题(3),老师要给适当的指导。
问题2的深化:舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果是通过什么来实现的? 【设计意图及教法说明】
学生可以根据问题2以及学过的物理知识来解释这个问题,这样既增强学生学习新知的积极性,又达到了解决问题的目的。
【设计意图及教法说明】
问题3是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。(二)合作探究,获得新知 1.出示问题
想一想,你还能举出类似的例子吗? 【设计意图及教法说明】
这个环节目的在于让学生亲身经历观察、思考、抽象、概括、补充、完善的过程,让学生尝试用自己的语言说明他们的新发现,培养他们的归纳能力和自主探索与合作交流的良好学习习惯,在这期间教师就是他们的合作者、引路人,边听、边问、边指导,初步形成反比例函数的概念。
2.启发学生建构新知
反比例函数的定义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。
反比例函数自变量不能为0!反比例函数的一般形式:y= k/x(k为常数,k≠0)反比例函数的变式形式:k=yx,x=k/y(k为常数,k≠0)【设计意图及教法说明】
这种从不同的问题情境中抽象出相同的数学模型,再进行抽象得出概念的过程,并非教师所强加,而是学生通过自己分析走向概念,突破本节课的难点,使学生的自豪感和成功感在活动中得以提升,体现类比、转化、建模等数学思想,把本节课推向高潮。(三)反馈练习,应用新知
根据学生认知的差异性,我设计了基础过关和拓展训练两类练习题。1.基础过关
(1)下列函数的表达式中,x表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k的值是多少? ①y=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2 【设计意图及教法说明】
此题较简单,以口答的形式进行,设计的目的是重视基础知识的教学和面向全体学生的教学,并告诫学生判断一个函数是否是反比例函数不能单从形式上判断,一定要严谨认真,同时也完成了随堂练习。(2)做一做
①一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么? ②某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么? ③y是x的反比例函数,下表给出了x和y的一些值: a.写出这个反比例函数的表达式;b.根据函数表达式完成下表。
表略。
【设计意图及教法说明】
通过三个实际问题的解决,培养了学生“发现问题”、“解决问题”的能力,也达到了学以致用的目的。2.能力拓展
(1)你能举个反比例函数的实例吗?与同学进行交流。(2)y=5xm是反比例函数,求m的值。
【设计意图及教法说明】
问题(1)是一个开放性的题,既解决了随堂练习2,也培养了学生的发散性思维。问题(2)能助于学生抓住关键点,澄清易错点(反比例函数中k≠0),并且加强了新旧知识的联系。(四)归纳总结,反思提高
通过这节课的学习你有哪些收获?还有哪些问题?与同伴进行讨论。
(如:你学到了什么?懂得了什么?你发现了什么?还有什么困惑?应注意什么?还想知道什么?)【设计意图及教法说明】通过问题式的小结,让学生再次归纳、总结本节课的重点,弥补教学中的不足。
(五)推荐作业,分层落实
必做题:课本第134页习题1、2题。
选做题:已知y与2x成反比例,且当x=2时,y=-1,求:(1)y与x的函数关系式。(2)当x=4时,y的值。(3)当y=4时,x的值。
【设计意图及教法说明】作业以推荐的形式进行,必做题体现了对新课标下“学有价值的数学”、“人人能获得必要的数学”的落实,选做题体现了让“不同的人在数学上得到不同的发展”。
第四篇:初中数学万能说课稿
数学科目是一科很考验我们逻辑思维的课程,以下是小编整理的初中数学万能说课稿模板,欢迎阅读参考!
一、教材分析
1、教材的地位和作用
这节教材是初中数学____ 年级 册的内容,是初中数学的重要内容之一。一方面,这是在学习了____ 的基础上,对____的进一步深入和拓展;另一方面,又为学习____ 等
知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。
2、学情分析
关于学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:
难点确定为:
二、教学目标分析
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:
1.知识与技能目标:
2.过程与方法目标:
3.情感态度与价值目标:
三、教学方法分析
本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、教学过程分析
为了有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习就知,温故知新
设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
(3)发现问题,探求新知
设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳。
(4)分析思考,加深理解
设计意图:数学教学论指出,数学概念(定理等)要明确其 内涵和外延(条件、结论、应用范围等),通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。
(5)强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6)小结归纳,拓展深化
其中小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.(7)当堂检测 对比反馈
(8)布置作业,提高升华
要以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上是我对本节课的见解,不足之处敬请各位评委谅解!
第五篇:初中数学课件 直角三角形
专题18
直角三角形
阅读与思考从代数角度,考察方程的正整数解,古希腊人找到了这个方程的全部整数解:
其中,是自然数,,一奇一偶.17世纪,法国数学家提出猜想:当时,方程无正整数解.1994年,美国普林斯顿大学教授维尔斯证明了费尔马猜想.直角三角形是一类特殊三角形,有以下丰富的性质:
角的关系:两锐角互余;
边的关系:斜边的平方等于两直角边的平方和;
边角关系:所对的直角边等于斜边的一半.这些性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系等方面.在现阶段,勾股定理是求线段的长度的主要方法,若图形缺少条件直角条件,则可通过作辅助垂线的方法,构造直角三角形为勾股定理的应用创造必要条件;运用勾股定理的逆定理,通过代数方法计算,也是证明两直线垂直的一种方法.熟悉以下基本图形基本结论:
例题与求解
【例l】(1)直角△ABC三边的长分别是,和5,则△ABC的周长=_____________.△ABC的面积=_____________.(2)如图,已知Rt△ABC的两直角边AC=5,BC=12,D是BC上一点,当AD是∠A的平分线时,则CD=_____________.(太原市竞赛试题)
解题思路:对于(1),应分类讨论;对于(2),能在Rt△ACD中求出CD吗?从角平分线性质入手.【例2】如图所示的方格纸中,点A,B,C,都在方格线的交点,则∠ACB=()
A.120°
B.135°
C.150°
D.165°
(“希望杯”邀请赛试题)
解题思路:方格纸有许多隐含条件,这是解本例的基础.【例3】如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC=60°,求∠ACB的度数.(“祖冲之杯”邀请赛试题)
解题思路:不能简单地由角的关系推出∠ACB的度数,综合运用条件PC=2PB及∠APC=60°,构造出含30°的直角三角形是解本例的关键.【例4】如图,在△ABC中,∠C=90°,∠A=30°,分别以AB,AC为边在△ABC的外侧作等边△ABE和等边△ACD,DE与AB交于F,求证:EF=FD.(上海市竞赛试题)
解题思路:已知FD为Rt△FAD的斜边,因此需作辅助线,构造以EF为斜边的直角三角形,通过全等三角形证明.【例5】在证明含有线段平方之间的和(差)关系时,常常要联想到勾股定理,若图中缺少直角条件,则可通过作辅助线,构造直角三角形.如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD,求证:
(北京市竞赛试题)
解题思路:由待证结论易联想到勾股定理,因此,三条线段可构成直角三角形,应设法将这三条线段集中在同一三角形中.【例6】在运用勾股定理时,常常对进行变形,运用乘法公式、整数与方程知识综合求解.斯特瓦尔特定理:
如图,设D为△ABC的边BC上任意一点,a,b,c为△ABC三边长,则.请证明结论成立.解题思路:本题充分体现了勾股定理运用中的数形结合思想.能力训练
A级
1.在很多情况下,需要由线段的数量关系去判断线段的垂直位置关系,这就要熟悉一些常用的勾股数组.如图,D为△ABC的边BC上一点,已知AB=13,AD=12,AC=15,BD=5,则BC=_____________.2.如图,在Rt△ABC中∠C=90°,BE平分∠ABC交AC于E,DE是斜边AB的垂直平分线,且DE=1cm,则AC=_____________cm.3.如图,四边形ABCD中,已知AB∶BC∶CD∶DA=2∶2∶3∶1,且∠B=90°,则∠DAB=_____________.(上海市竞赛试题)
4.如图,在△ABC中,AB=5,AC=13,边BC上的中线AD=6,则BC的长为_____________.(湖北省预赛试题)
5.如果一个三角形的一条边是另一条边的2倍,并且有一个角是30
º,那么这个三角形的形状是()
A.直角三角形
B.钝角三角形
C.锐角三角形
D.不能确定
(山东省竞赛试题)
6.如图,小正方形边长为1,连结小正方形的三个顶点可得△ABC,则AC边上的高为()
A.B.C.D.(福州市中考试题)
7.如图,一个长为25分米的梯子,斜立在一竖直的墙上,这时梯足距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯足将滑()
A.15分米
B.9分米
C.8分米
D.5分米
8.如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,AD=5,那么等于()
A.1
B.2
C.D.9.如图,△ABC中,AB=BC=CA,AE=CD,AD,BE相交于P,BQ⊥AD于Q,求证:BP=2PQ.(北京市竞赛试题)
10.如图,△ABC中,AB=AC.(1)若P是BC边上中点,连结AP,求证:
(2)P是BC边上任意一点,上面的结论还成立吗?若成立,请证明;若不成立,请说明理由;
(3)若P是BC边延长线上一点,线段AB,AP,BP,CP之间有什么样的关系?请证明你的结论.11.如图,直线OB是一次函数图象,点A的坐标为(0,2),在直线OB
上找点C,使得△ACO为等腰三角形,求点C的坐标.12.已知:如图,将矩形ABCD沿对角线BD折叠,使点C落在处,交AD于E,AD=8,AB=4,求△BED的面积.(山西省中考试题)
B级
1.若△ABC的三边a,b,c满足条件:,则这个三角形最长边上的高为_____________.2.如图,在等腰Rt△ABC中,∠A=90°,P是△ABC内的一点,PA=1,PB=3,PC=,则∠CPA=_____________.3.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为_____________.4.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB交CD于E,交CB于F,且EG∥AB交CB于G,则CF与GB的大小关系是()
A.CF>GB
B.CF=GB
C.CF<GB
D.无法确定
5.在△ABC中,∠B是钝角,AB=6,CB=8,则AD的范围是()
A.8<AC<10
B.8<AC<14
C.2<AC<14
D.10<AC<14
(江苏省竞赛试题)
6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有()
A.1个
B.2个
C.3个
D.4个
(浙江省竞赛试题)
7.如图,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E,F分别是AB,AC边上的点,且DE⊥DF,若BE=12,CF=5,求△DEF的面积.(四川省联赛试题)
8.如图,在Rt△ABC中,∠A=90°,D为斜边BC中点,DE⊥DF,求证:
(江苏省竞赛试题)
9.探索性试题是指问题中的题设条件或结论不完整,从而有深入探讨的余地,存在型命题的探索,是给定条件后,判断所研究的对象是否存在.周长为6,面积为整数的直角三角形是否存在?若不存在,请给出证明;若存在,请证明有几个.(全国联赛试题)
10.如图,在△ABC中,∠BAC=45°,AD⊥BC于D,BD=3,CD=2,求△ABC面积.(天津市竞赛试题)
11.如图,在△ABC中,∠BAC=90°,AB=AC,E,F分别是BC上两点,若∠EAF=45°,试推断BE,CF,EF之间数量关系,并说明理由.12.已知在Rt△ABC中,∠ACB=90°,AC=BC,∠MCN=45°.(1)如图1,当M,N在AB上时,求证:
(2)如图2,将∠MCN绕点C旋转,当M在BA的延长线上时,上述结论是否成立?若成立,请证明;若不成立,请说明理由.(天津市中考试题)