八上全等三角形课件

时间:2019-05-11 20:58:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《八上全等三角形课件》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《八上全等三角形课件》。

第一篇:八上全等三角形课件

三角形是由不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形叫做三角形.常见的三角形按边分有普通三角形(三条边都不相等),等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。下面是小编为你带来的八上全等三角形课件,欢迎阅读。

1全等三角形

形状、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形(congrucnt figures).能够完全重合的两个三角形叫做全等三角形(congruent trangles).平移、翻折、旋转前后的图形全等。

把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

假设:△ABC 和 △DEF 全等,则记作 △ABC ≌ △DEF

全等三角形的性质:

全等三角形的对应边相等,全等三角形的对应角相等。三角形全等的判定

判定的方法:

1.三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)。

2.两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)。

3.两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)。

4.两角和其中一个角的对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS”)。

Tips:“角角边”的判定方法是基于“边角边”的简化版,因为两内角相等,则第三内角必定相等(三内角和等于180度)。

5.斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。角的平分线的性质

如何做角平分线?

假设有∠AOB

1.先取圆规设置固定长度,在OB和OA上画出点N和M。

2.在将圆规长度设为M到N长度的一半及以上。

3.使用圆规分别以N、M为圆心画出两条适当长度的弧,并取得交点P

4.连接OP,即为角平分线。

角的平分线的性质:

1.角的平分线上的点到角的两边的距离相等。

Tips:”点到线的距离“指的是垂线长度,而不是任意线段长度。

2.角的内部到角的两边的距离相等的点在角的平分线上。

第二篇:全等三角形课件

全等三角形课件

【教学目标】

1.使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;

2.继续培养学生画图、实 验,发现新知识的能力.【重点难点】

1.难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;

2.重点:灵活运用SSS判定两个三角形是否全等.【教学过程 】

一、创设问题情境,引入新课

请问同学,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的.(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等.)

上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全

等.满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究.二、实践探索,总结规律

1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段、、,分别为、、,你能画出这个三角形吗?

先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤.步骤:

(1)画一线段AB使 它的长度等于c(4.8cm).(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.(3)连结AC、BC.△ABC即为所求

把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?

换三条线段,再试试看,是否有同样的 结论

请你结合画图、对比,说说你发现了什么?

同学们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的.这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(S.S.S.).2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?

(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形.)

3、问题

3、你用这个“SSS”三角形全等的判定法解释三角形具有稳定性吗?

(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)

4、范例:

例1 如图19.2.2,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA.解:已知 AD=BC,AB=DC,又因为AC是公共边,由(S.S.S.)全等判定法,可知 △ABC≌△CDA5、练习:

6、试一试:已知一个三角形的三个内 角分别为、、,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?

(所画出的三角形都是相似的,但大小不一定相 同).三个对应角相等的两个三角形不一定全等.三、加强练习,巩固知识

1、如图,△ABC≌△DCB全等吗?为什么?

2、如图,AD是△ABC的中线,.与 相等吗?请说明理由.四、小结

本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用(SSS)来判定三角形全等.三个角对应相等的两个三角不一定会全等.五、作业

第三篇:人教版八·上全等三角形[最终版]

本节课的内容是人教版义务教育课程标准实验教科书《数学》八年级(上)§11.1 全等三角形第一课时,主要内容是全等三角形概念及探索发现全等三角形的性质,并能用其解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解。新课标对本节课的要求是:“了解全等三角形的有关概念,探索并掌全等三角形的性质。”

在本节课的学习之前,学生已经掌握了三角形的概念、分类及性质,并学习了全等形的定义及性质,这节课的授课就是利用两个形状和大小相同的三角形通过平移及自己动手作比较得出全等形三角形的概念。通过图形的变换,形成对应的概念,获得全等形三角形的性质,并能够运用全等三角形性质解决问题。

第四篇:全等三角形电子课件

全等三角形电子课件讲解了什么是全等形、全等三角形及全等三角形的对应元素、以下是小编整理的全等三角形电子课件,希望下面对数学全等三角形定理公式的内容讲解学习,学生们都能很好的掌握。

【教学目标】

1、使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;

2、继续培养学生画图、实 验,发现新知识的能力、【重点难点】

1、难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;

2、重点:灵活运用SSS判定两个三角形是否全等、【教学过程 】

一、创设问题情境,引入新课

请问学生,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的、(学生们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等、)

上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等、满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究、二、实践探索,总结规律

1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?

先请几位学生说说画图思路后,教师指导,学生们动手画,教师演示并叙述书写出步骤、步骤:

(1)画一线段AB使 它的长度等于c(4、8cm)、(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C、(3)连结AC、BC、△ABC即为所求

把你画的三角形与其他学生的图形叠合在一起,你们会发现什么?

换三条线段,再试试看,是否有同样的 结论

请你结合画图、对比,说说你发现了什么?

学生们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的、这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(S、S、S、)、2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?

(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形、)

3、问题

3、你用这个“SSS”三角形全等的判定法解释三角形具有稳定性吗?

(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)

三、小结

本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用(SSS)来判定三角形全等、三个角对应相等的两个三角不一定会全等。

第五篇:全等三角形判定课件

全等三角形是几何学中的重要概念,下面就是小编为您收集整理的全等三角形判定课件的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!

全等三角形判定课件

教学目标:

1、知识目标:

(1)知道什么是全等形、全等三角形及全等三角形的对应元素;

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角、对应边。

2、能力目标:

(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3、情感目标:

(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、全等形及全等三角形概念的引入

(1)动画(几何画板)显示:

问题:你能发现这两个三角形有什么美妙的关系吗?

一般学生都能发现这两个三角形是完全重合的。

(2)学生自己动手

画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

(3)获取概念

让学生用自己的语言叙述:

全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发现:

(1)电脑动画显示:

问题:对应边、对应角有何关系?

由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用

(1)投影显示题目:

D、AD∥BC,且AD=BC

分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

说明:根据位置元素来找:有相等元素,其即为对应元素:

然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

说明:利用“运动法”来找

翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

求证:AE∥CF

分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

∴AE∥CF

说明:解此题的关键是找准对应角,可以用平移法。

分析:AB不是全等三角形的对应边,但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

可利用已知的AD与BC求得。

说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

(2)题目的解决

这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

投影显示:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

(3)有公共边的,公共边一定是对应边;

(4)有公共角的,角一定是对应角;

(5)有对顶角的,对顶角一定是对应角;

两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

4、课堂独立练习,巩固提高

此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

5、小结:

(1)如何找全等三角形的对应边、对应角(基本方法)

(2)全等三角形的性质

(3)性质的应用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a.书面作业P55#2、3、4

b.上交作业(中考题)

思考题:

板书设计:

探究活动

(2)证明 :AF∥DE

下载八上全等三角形课件word格式文档
下载八上全等三角形课件.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    全等三角形优质课课件

    一、教材背景及学情分析:本节课的内容是人教版义务教育课程标准实验教科书《数学》八年级(上)12.1 全等三角形第一课时,主要内容是全等三角形概念及利用全等三角形的性质,探索发......

    全等三角形的课件

    一般来说考试中出现的线段与角相等需要证明全等,我们可以用全等的相应知识点来解题。下面是关于全等三角形的课件的内容,欢迎阅读!一、教材分析(一) 本节内容在教材中的地位与作......

    关于全等三角形教学课件

    全等三角形是我们小学数学必上课程。下面小编带来的是关于全等三角形教学课件,希望对你有帮助。一、教材分析本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形......

    全等三角形的判定课件

    【教学目标】1.探索三角形全等“边角边”的条件.2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.【教学重、难点】1.应用“边角边”证明两个三角......

    全等三角形的性质课件

    篇一:全等三角形的性质课件执教老师:xx教学内容:湘教版数学八年级上册第三单元“全等三角形的性质”教学目标:1、在现实情境中,了解全等形的概念及全等三角形的概念及其性质2、在......

    全等三角形判定2课件范文

    导语:课件(courseware)是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。以下是小编整理全等三角形判定2课件的资......

    证明三角形全等的课件[大全五篇]

    学习是一个循序渐进的过程,需要同学们不断的学习和努力。小编为大家提供了证明三角形全等的课件,希望能帮助大家更好的复习所学的知识。证明三角形全等的课件一、设计的意图:现......

    数学全等三角形复习课件(合集5篇)

    同学们身边有很多的全等形,全等三角形是最基本,应用最广泛的一类全等形,要想学好全等知识,一定要掌握下面的内容。接下来小编为你带来数学全等三角形复习课件,希望对你有帮助。一......