专题:抽屉原理的反思
-
抽屉原理反思
《抽屉原理》课后反思
本节课我所讲的是人教版六年级下册数学广角中的例题1、2及做一做。这部分内容主要是让学生通过动手操作时间,经历“抽屉原理”的探究过程,初步了解“抽 -
抽屉原理教学反思
抽屉原理教学反思 抽屉原理教学反思1 本课是小学六年级数学广角的内容。“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问
-
抽屉原理教学反思
抽屉原理教学反思
1、《数学广角》的教学要适当把握教学的要求。
本内容只要求学生能结合具体问题把大致的意思说出来就可以了,不必过于追求说理的“严密”性。而我对学生的 -
抽屉原理的反思
“抽屉原理”的教学反思
“抽屉原理”以前是属于奥数学习的内容,但新教材把这一知识点也纳入其中,所以只有认真地去研读了教参,学习了这一知识点的教学目标,目标有两个:一是经历 -
抽屉原理教学反思
抽屉原理教学反思发布:上前城小学时间:2011-4-27 16:55:24来源:兴庆区教育局信息中心点击:538
《抽屉原理》教学反思
吕慧慧
抽屉原理是六年级下册数学广角中的内容,这部分教材通 -
《抽屉原理》教学反思
《抽屉原理》教学反思仙居县岭下张小学王胜《抽屉原理》是义务教育小学数学六年级下册数学广角的内容,《抽屉原理》教学反思。数学课程标准指出,数学教学是师生互动与发展的过
-
抽屉原理教学反思
《抽屉原理》反思“抽屉原理”是六年级下册内容,应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉
-
《抽屉原理》教学反思(模版)
学生的数学学习过程是一个以学生已有的知识和经验为基础的主动建构的过程,数学应强调从学生的生活经验出发,将教学活动置于真实的生活背景之中,让学生亲身经历将实际问题抽象成
-
抽屉原理
抽屉原理 把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。一般地,我们将它表述为: 第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至
-
抽屉原理
《抽屉原理》教学设计 教材分析:现行小学教材人教版在十一册编入这一原理,旨在于让学生初步了解“抽屉原理”(也就是初步接触第一原理),会用“抽屉原理”解决实际有关“存在”问
-
抽屉原理范文合集
抽屉原理 【知识要点】 抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。 把3个苹果放进2个抽屉里,一定
-
抽屉原理
抽屉原理 一、 起源 抽屉原理最先是由19 世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称"迪里赫莱原理",也有称"鸽巢原理"的.这个原理可以简单地叙述为
-
抽屉原理
抽屉原理(1) 抽屉原则(1) 如果把n+k (k 大于等于1)件东西放入n个抽屉,那么至少有一个抽屉中有2件或2件以上的东西。 学习例题 例1.某次联欢会有100人参加,每人在这个联欢会上至少有
-
抽屉原理
4分割图形构造“抽屉”与“苹果” 在一个几何图形内, 有一些已知点, 可以根据问题的要求, 将几何图形进行分割, 用这些分割成的图形作抽屉, 从而对已知点进行分类, 再集中对
-
抽屉原理
B15六年级专题讲座(十五)简单的抽屉原理 赵民强 抽屉原理一 把n+1个苹果放入n个抽屉中,则必有一个抽屉中至少放了两个苹果. 在解答实际问题时,关键在于找准什么是“抽屉”和
-
抽屉原理
抽屉原理专项练习1.把红、黄、蓝三种颜色的球各5个放到一个袋子里,至少取多少个球可以保证取到两个颜色相同的球?请简要说明理由. 2.某校有201人参加数学竞赛,按百分制计分且得
-
抽屉原理
抽屉原理(鸽巢问题) 抽屉原理有两条: (1)如果把xk(k>1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。 (2)如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至
-
抽屉原理
抽屉原理 1、某校六年级有367人,一定有至少有两个学生的生日是同一天,为什么?2、某校有30名同学是2月份出生的,能否有两个学生的生日是在同一天?3、15个小朋友中,至少有几个小朋友