浅谈中学几种常用证明不等式方法[五篇材料]

时间:2020-11-28 07:20:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《浅谈中学几种常用证明不等式方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《浅谈中学几种常用证明不等式方法》。

第一篇:浅谈中学几种常用证明不等式方法

成 绩:

XXXXXX大学 毕业论文 题 目:浅谈中学几种常用证明不等式的方法(外文):On the method commonly used in Middle School to prove inequality 院(系):

数学与计算机科学学院 专 业:

数学与应用数学 学生姓名:

学 号:

指导教师:

2013年3月20日 目录 1引言 1 2放缩法证明不等式 1 2.1放缩法 1 2.2(改变分子分母)放缩法 1 2.3拆补放缩法 2 2.4编组放缩法 3 2.5寻找“中介量”放缩法 4 3反正法证明不等式 4 3.1反证法定义 4 3.2反证法步骤 5 4.换元法证明不等式 6 4.1利用对称性换元,化繁为简 6 4.2三角换元法 7 4.3和差换元法 8 4.4分式换元法 8 5. 综合法证明不等式 9 5.1综合法证明不等式的依据 9 5.2用综合法证明不等式的应用 9 5.3综合法与比较法的内在联系 10 6.分析法 10 6.1分析法的定义 10 6.2分析法证明不等式的方法与步骤 11 6.3分析法证明不等式的应用 11 7.构造法证明不等式 13 7.1构造函数模型 13 7.2构造数列模型 14 8.数学归纳法证明不等式 15 8.1分析综合法 15 8.2放缩法 16 8.3递推法 16 9.判别式法证明不等式 17 10.导数法证明不等式 18 10.1利用函数的单调性证明不等式 18 9.2利用极值(或最值)19 11比较法证明不等式 20 11.1差值比较法 20 11.2商值比较法 21 11.3比较法的应用范围 21 12结束语: 参考文献 22 浅谈中学常用几种证明不等式的方法 摘要:中学数学有关不等式的证明的题型多变,技巧性很强,同时它也没有固定的程序加以规定。因而 他是中学数学考试的难点。不等式的证明的方法很多。本文将列举出中学数学常用的几种方法:放缩法、反正法、换元法、分析法、综合法、构造法、数学归纳法、判别式法、导数法、比较法。

关键词:不等式 证明方法 1引言 不等式,渗透在中学数学各个分支中。而不等式的证明在不等式中占有极其重要的地位。不等式的证明的方法是中学数学的重要知识,也成为了中学数学考试的热点问题。本文针对以上的情况,提出了中学几种常见的不等式的证明方法来和大家一起分享,希望不仅能够对我们今后碰到类似的问题起到指导的作用,而且还能够培养分析和解决问题的能力。

2放缩法证明不等式 2.1放缩法 放缩法的定义:在不等式的证明中,有时可把不等式中的某些项或因式换成数字较大或较小的数或式,以达到证明的目的,这种证明方法称为放缩法。

放缩法的形式:欲证AB,可通过适当放大或缩小,借助一个或多个中间量,使得 再利用传递性,达到欲证的目的。

2.2(改变分子分母)放缩法 在不等式有分式时,长放大或缩小分式的分子或分母,从而达到“以小代大”或“以大代小”的目的。

例1:求一切 证明:

= = 2.3拆补放缩法 在证有些不等式的时候,常将其中某些项拆开和或合并以完成证明。

例2:求证:

证明:

2.4编组放缩法 证明不等式有时把某项拆开,重新编组,利用基本不等式完成证明。

例3:求证:.证明:左 2.5寻找“中介量”放缩法 当两式难以比较大小时,可寻找“中介量”牵线搭桥,利用不等式的传递性完成证明。

例4:求证:

证明:

小结:放缩法是不等式证明中常见的变形方法之一,具有较高的技巧性。放缩 必须有目标,而且要恰到好处,需要细心观察,目标往往要从证明的结论中寻 找。

3反正法证明不等式 3.1反证法定义 “证明某个命题时,先假设它的结论的否定成立,然后从这个假设出发,根据命题的条件和已知的真命题,经过推理,得出与已知事实(条件、公理、定义、定理、法则、公式等)相矛盾的结果.这样,就证明了结论的否定不成立,从而间接地肯定了原命题的结论成立”.这种证明的方法,叫做反证法. 3.2反证法步骤 1、假设命题的结论不成立;

2、从这个结论出发,经过推理论证,得出矛盾;

3、由矛盾判定假设不正确,从而肯定命题的结论正确,即:提出假设——推出矛盾——肯定结论. 例5:已知:都是小于1的正数;

求证:中至少有一个不大于。

分析 :采用反证法证明.其证明思路是否定结论从而导出与已知或定理的矛盾从而证明假设不成立,而原命题成立.对题中“至少有一个不大于”的否命题是“全都大于”。

证明:假设 都是小于1的正数 又 故与上式矛盾,假设不成立,原命题正确 说明:

反证法是利用互为逆否命题具有等价性的思想进行推证的.反证法必须罗列各种与原命题相异的结论,缺少任何一种可能,则反证都是不完全的,遇到“至少”、“至多”、“唯一”等字句的命题常用反证法. 例6:若,求证:

证明:假设,则,即。

因为,所以 故 又即 所以 故 与假设不成立,原命题正确。

总结:反证法是根据“正难则反”的原理,即如果正面证明有困难时,或者直接证明需要分多种情况而反面只有一种情况时,可以考虑用反证法。反证法不仅在几何中有着广泛的应用,而且在代数中也经常出现。用反证法证明不等式就是最好的应用 4.换元法证明不等式 4.1利用对称性换元,化繁为简 例7:设求证:.分析:把中的两个互换,不等式不变,所以这是一个对称不等式,令 则原不等式等价于:

.证明:令,则 ,.时,有;

当时,有(否则中必有两个不为正值,不妨设, ,则,这与矛盾), 因此 , , 综上所述, 把代入上式得: 4.2三角换元法 三角换元法的基本思想是根据已知条件,引进新的变量---三角函数,把一个复杂的不等式问题转化为三角不等式的问题,再利用三角函数的性质及三角恒等式去证明,从而使不等式得证。

例8:已知,求证 分析:由已知,令,则 证明:令,说明:换元法是将较为复杂的不等式利用等价转换的思想转换成易证明的不等式.常用的换元法有(1)若,可设,;

(2)若,可设;

(3)若,可设。

4.3和差换元法 在题中有两个变量,可设,这称为和差换元法,换元后有可能简化代数式。

例9:对任意实数,求证:

分析:对于任意实数与,都有。令,则有。

证明:设,下面只须证:

∵不等式右边—不等式左边= ∴ 即 说明:利用“和差换元”可以简证难度较大的不等式.4.4分式换元法 例10:已知 分析:本题的证明方法很多,下面我们利用分式换元来进行证明 证明:设 当且仅当 说明:不等式的证明中,我们知道证明不等式时,可以利用分式换元,使其分式结构变得简单,分母变为单项式,然后把逐项分离,便于利用均值不等式。

5. 综合法证明不等式 5.1综合法证明不等式的依据(1)已知条件和不等式性质;

(2)基本不等式:

“=”号). 5.2用综合法证明不等式的应用 例11:已知是不全等的正数,求证:

. 分析:观察题目,我们很容易想到利用性质. 证明:,① 同理可得:

② ③ 是不全等的正数,①,②, ③至少有一个不等式不能取等号 ①+②+③ 5.3综合法与比较法的内在联系 由于作为综合法证明依据的不等式本身是可以根据不等式的意义、性质或比较法证出的,所以用综合法可以获证的不等式往往可以直接根据不等式的意义、性质或比较法来证明;

摆在我们面前的问题恐怕是方法的选择.方法选择不当,不是证不出来就是难度加大;

方法合理使用,会使题目难度大大下降.因此我们不要学过某种方法就抱定不放,要善于观察,根据题目的特征选择证题方法。

6.分析法 6.1分析法的定义 从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题。如果能够肯定这些充分条件都已具备,那么就可以断定原不等式成立,这种证明方法叫做分析法。

6.2分析法证明不等式的方法与步骤 用分析法论证“若A则B”这个命题的格式是:

欲证命题B为真,只需证命题B1为真,只需证命题B2为真,…… 只需证命题Bn为真,只需证命题A为真,令已知命题A为真,故命题B为真。

6.3分析法证明不等式的应用 例12:若,求证:

分析:

采用分析法证明. 证明:

原不等式成立。

说明:从这道题目我们不难看出“分析法”的证明格式,是用“”符号,不断用充分条件代替前面的不等式 6.4综合法与分析法的综合应用 条件和结论之间的关系比较复杂,根据既定法则和事实条件,由因导果,一直推究下去,有时会在中途迷失方向,使解题无法进行下去.在这种情况下,可以同时运用综合法与分析法的解题方法,执行.例13:

若是不全相等的正数,求证。

分析:利用对数的性质,所要证的不等式等价于,所以只要证,于是我们可以利用不等式的性质:即可得证。

证明:

,,且这三个不等式的等号不能同时成立(它们是3个不全等的正数)说明:分析法和综合法是对立统一的两个方面.在这道题目中,前面是分析法,后面是综合法,两种方法结合使用,使问题较易解决.分析法的证明过程恰恰是综合法的分析、思考过程,综合法的证明方法是分析思考过程的逆推。

7.构造法证明不等式 构造法作为一种数学思维方法,在解题过程中通过观察分析给出式和欲证式,充分挖掘题目的隐含信息,并进行联想与思考,恰当地构造出一个与题目相关的数学模型,将欲证的问题转化到我们所熟悉的情景之中,从而达到证题的目的,这是构造法证题的解题模式。本文以证明不等式为例,介绍几种常见的构造法。

7.1构造函数模型 我们常常利用一次函数的线性性质、二次函数的最值以及函数的单调性等性质证明某些不等式问题。在证明不等式时,抓住不等式与函数的密切关系,以问题的结构特征为起点,构造相应函数,从函数的思想和方法来解决问题。

例14:已知: 求证: 证明: 构造函数 ,此图象为一条直线.∵ ∴ 又 例15:已知都是正数,;

求证 证明: 在(0,1)上的值域为 所以,.7.2构造数列模型 对于某些自然数的不等式问题,与数列有着密切的联系,这时可构造有关数列模型,利用其单调性解决。

例16:

求证:

证明: 构造数列模型 则有,所以数列为递增数列。

又因为,故 即原不等式得证。

总结:欲证含有与自然数有关的和的不等式,可以构造函数模型,只需证明数列是单调递增,且。另外,本题也可以用数学归纳法证明,但是构造数列模型证明简洁。

8.数学归纳法证明不等式 说明数学归纳法是一种证明与正整数有关的数学命题的重要方法。主要有 两个步骤一个结论:

(1)证明当n取(如=1或2等)时结论正确(2)假设n=k(k)时结论正确,证明n=k+1时结论也正确 由(1)、(2)得出结论正确。因此,熟悉归纳步骤的证明方法是十分重要的其实归纳步骤可以看作是一个独立的证明问题,归纳假设“P(k)成立”是问题的条件而“命题P(k+1)成立”就是所要证明的结论,因此,合理运用归纳假设这一条件就成了归纳步骤中的关键,下面简要分析用数学归纳法证明不等式常涉及的方法。

8.1分析综合法 例17:求证:

证明:(1)当(2)假设 即有:

时:

因此,要证明当时,原不等式成立,只要证明成立 即证明 也就是证明 即 从而 于是当时,原不等式也成立。

由(1)、(2)可知,对于任意的正整数,原不等式都成立。

8.2放缩法 例18:求证:

证明:(1)当时,不等式成立。

(2)假设 当时 所以当时,不等式成立 由(1)、(2)可知,8.3递推法 例19:设,定义,求证:对一切 有 证明:(1)当,显然命题成立(2)假设,命题成立,即 当时,由递推公式,知 同时,当时,命题也成立。

即 由(1)、(2)可知,对一切正整数n,有 说明:证明不等式的题型多种多样,所以不等式证明是一个难点,在由n=k成立,推导n=k+1不等式也成立时,过去讲的证明不等式的方法再次都可以使用,如比较法、放缩法、分析法、反证法等,有时还要考证与原不等式的等价的命题. 9.判别式法证明不等式 判别式法是根据已知的或构造出来的一元二次方程、一元二次不等式、二次函数的根、解集、函数的性质等特征确定出其判别式所应满足的不等式,从而推出欲证的不等式的方法。

二次函数若判别式恒成立。

例20:已知,求证:

证明:令   恒成立 说明:用判别式法证不等式关键在于构造二次函数,操作简单,使用方便。

10.导数法证明不等式 证明有些不等式的题目,看似简单,但是我们无从下手,几种常用的方法都一一尝试,却没有任何作用。这时我们不妨从已有的知识下手,构造一个函数,再借助导数来确定单调性,利用单调性实现问题的转化,从而使不等式得到证明。

利用导数证明不等式的步骤:构造可导函数——研究单调性或最值——得出不等式关系——整理得出结论。

10.1利用函数的单调性证明不等式 例20:当时,证明不等式成立。

证明:设 内单调递减 成立 说明:一般地:证明,可以构造函数,如果,则是减函数,同时若,由减函数的定义 可知,时,有,即证明。

例21:求证:,其中 证明:设,则 在单调递增,又 故,成立。

说明:一般地:证明,可以构造函数如 果,则是减函数,同时若,由减函数的定义 可知,时,有,即证明。

9.2利用极值(或最值)例22:对任意实数x,证明不等式 总结:利用导数知识证明不等式是导数应用的一个重要方面,也是考试的一个热点,其关键是构造适当的函数,判段区间端点函数值与0的关系,其实质就是利用求导的方法研究函数的单调性及其极值(或最值),从而证明不等式。

11比较法证明不等式 11.1差值比较法 差值比较法:欲证AB,只需证A-B0。把不等式的两边相减,转化为不等式的差值与0的大小的问题。

差值比较法的步骤:“做差—变形—判断符号”,为了便于判断符号,我们 往往把其差值转化为积的形式和完全平方的形式。

例23:已知:,都是正数,(并且≠)求证,分析:要证,只需证明(作差)。再对其差值做出变形:(因式分解),再运用已知条件a,b∈R+,且a≠b,可把问题解决。

证明:= = 又,都是正数(并且≠)此题是不等式的典型的题目:其拆项也是有一定得技巧,需要一定的观察能力。

11.2商值比较法 商值比较法:“若”。

商值比较法步骤为:①作商:将左右两端作商;

②变形:化简商式到最简形式;

③判断商与1的大小关系,就是判定商大于1或小于1。

例24:已知,求证。

分析:发现做差变形后,很难比较其符号的大小。再看不等式的两边都是正数,可以利用商值法来与1进行比较。

证明:

①,则 ②,则 综上所述:

11.3比较法的应用范围 差值比较法应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法 商值比较法应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。

12结束语:

众所周知,在中学不等式的证明以其变形复杂、方法多样成为学习的难点。本文通过阐述中学几种常用方法,以及相应的一些例题来培养大家对数学式的变形的能力,逻辑思维能力以及分析问题和解决问题的能力。

参考文献 《机关公文常用词句集锦》一一 1、常用排比:

新水平、新境界、新举措、新发展、新突破、新成绩、新成效、新方法、新成果、新形势、新要求、新期待、新关系、新体制、新机制、新知识、新本领、新进展、新实践、新风貌、新事物、新高度;

重要性,紧迫性,自觉性、主动性、坚定性、民族性、时代性、实践性、针对性、全局性、前瞻性、战略性、积极性、创造性、长期性、复杂性、艰巨性、可讲性、鼓动性、计划性、敏锐性、有效性;

法制化、规范化、制度化、程序化、集约化、正常化、有序化、智能化、优质化、常态化、科学化、年轻化、知识化、专业化、系统性、时效性;

热心、耐心、诚心、决心、红心、真心、公心、柔心、铁心、上心、用心、痛心、童心、好心、专心、坏心、爱心、良心、关心、核心、内心、外心、中心、忠心、衷心、甘心、攻心;

政治意识、政权意识、大局意识、忧患意识、责任意识、法律意识、廉洁意识、学习意识、上进意识、管理意识;

出发点、切入点、落脚点、着眼点、结合点、关键点、着重点、着力点、根本点、支撑点;

活动力、控制力、影响力、创造力、凝聚力、战斗力;

找准出发点、把握切入点、明确落脚点、找准落脚点、抓住切入点、把握着重点、找准切入点、把握着力点、抓好落脚点;

必将激发巨大热情,凝聚无穷力量,催生丰硕成果,展现全新魅力。

审判工作有新水平、队伍建设有新境界、廉政建设有新举措、自身建设有新发展、法院管理有新突破;

不动摇、不放弃、不改变、不妥协;

政治认同、理论认同、感情认同;

是历史的必然、现实的选择、未来的方向。

多层次、多方面、多途径;

要健全民主制度,丰富民主形式,拓宽民主渠道,依法实行民主选举、民主决策、民主管理、民主监督 2、常用短语:

立足当前,着眼长远,自觉按规律办事 抓住机遇,应对挑战:量力而行,尽力而为 有重点,分步骤,全面推进,统筹兼顾,综合治理,融入全过程,贯穿各方面,切实抓好,减轻,扎实推进,加快发展,持续增收,积极稳妥,落实,从严控制严格执行,坚决制止,明确职责,高举旗帜,坚定不移,牢牢把握,积极争取,深入开展,注重强化,规范,改进,积极发展,努力建设,依法实行,良性互动,优势互补,率先发展,互惠互利,做深、做细、做实、全面分析,全面贯彻,持续推进,全面落实、实施,逐步扭转,基本形成,普遍增加,基本建立,更加完备(完善),明显提高(好转),进一步形成,不断加强(增效,深化),大幅提高,显着改善(增强),日趋完善,比较充分。

3、常用动词:

推进,推动,健全,统领,协调,统筹,转变,提高,实现,适应,改革,创新,扩大,加强,促进,巩固,保障,方向,取决于,完善,加快,振兴,崛起,分工,扶持,改善,调整,优化,解决,宣传,教育,发挥,支持,带动,帮助,深化,规范,强化,统筹,指导,服务,健全,确保,维护,优先,贯彻,实施,深化,保证,鼓励,引导,坚持,深化,强化,监督,管理,开展,规划,整合,理顺,推行,纠正,严格,满足,推广,遏制,整治,保护,健全,丰富,夯实,树立,尊重,制约,适应,发扬,拓宽,拓展,规范,改进,形成,逐步,实现,规范,坚持,调节,取缔,调控,把握,弘扬,借鉴,倡导,培育,打牢,武装,凝聚,激发,说服,感召,尊重,包容,树立,培育,发扬,提倡,营造,促进,唱响,主张,弘扬,通达,引导,疏导,着眼,吸引,塑造,搞好,履行,倾斜,惠及,简化,衔接,调处,关切,汇集,分析,排查,协商,化解,动员,联动,激发,增进,汲取,检验,保护,鼓励,完善,宽容,增强,融洽,凝聚,汇集,筑牢,考验,进取,凝聚,设置,吸纳,造就 4、常用名词 关系,力度,速度,反映,诉求,形势,任务,本质属性,重要保证,总体布局,战略任务,内在要求,重要进展,决策部署,结合点,突出地位,最大限度,指导思想,科学性,协调性,体制机制,基本方略,理念意识,基本路线,基本纲领,秩序,基本经验,出发点,落脚点,要务,核心,主体,积极因素,水平,方针,结构,增量,比重,规模,标准,办法,主体,作用,特色,差距,渠道,方式,主导,纽带,主体,载体,制度,需求,能力,负担,体系,重点,资源,职能,倾向,秩序,途径,活力,项目,工程,政策,项目,竞争力,环境,素质,权利,利益,权威,氛围,职能,作用,事权,需要,能力,基础,比重,长效机制,举措,要素,精神,根本,地位,成果,核心,精神,力量,纽带,思想,理想,活力,信念,信心,风尚,意识,主旋律,正气,热点,情绪,内涵,管理,格局,准则,网络,稳定,安全,支撑,局面,环境,关键,保证,本领,突出,位置,敏锐性,针对性,有效性,覆盖面,特点,规律,阵地,政策,措施,制度保障,水平,紧迫,任务,合力。

5、其它:

以求真务实的态度,积极推进综合调研制度化。

以为领导决策服务为目的,积极推进xx正常化。

以体现水平为责任,积极推进xx工作程序化。

以畅通安全为保障,积极推进xx工作智能化。

以立此存照为借鉴,积极推进xx工作规范化。

以解决问题为重点,积极推进xx工作有序化。

以服务机关为宗旨,积极推进xx服务优质化 以统筹兼顾为重点,积极推进xx工作常态化。

以求真务实的态度,积极参与综合调研。

以为领导决策服务为目的,把好信息督查关。

以体现xx水平为责任,进一步规范工作。

以畅通安全为保障,全力指导机要保密工作。

以立此存照为借鉴,协调推进档案史志工作。

以安全稳定为基础,积极稳妥做好信访工作。

以服务机关为宗旨,全面保障后勤服务。

以整体推进为出发点,协调做好xx工作。

以周到服务为前提,xx工作迅速到位。

以提高服务水平为目标,开始推行xx。

一.求真务实,积极推进xx工作制度化 二.建立体系,积极推进xx工作正常化。

三.规范办文,积极推进xx工作程序化。

四.各司其职,积极推进xx工作有序化。

五.注重质量,积极推进xx服务规范化。

六.统筹兼顾,积极推进xx工作正常化。

一是求真务实,抓好综合调研。

二是提高质量,做好信息工作。

三是紧跟进度,抓好督查工作。

四是高效规范,抓好文秘工作。

五是高度负责,做好保密工作。

六是协调推进,做好档案工作。

七是积极稳妥,做好信访工作。

八是严格要求,做好服务工作。

一、创思路,订制度,不断提高服务水平二、抓业务,重实效,开创工作新局面(一)着眼全局,充分发挥参谋助手作用(二)明确分工,充分搞好统筹协调工作 三、重协调,强进度,信息化工作有新成果 四、抓学习,重廉洁,自身素质取得新提高 一、注重学习,自身素质取得新提高 二、围绕中心,不断开创工作新局面 1.着眼全局,做好辅政工作。

2.高效规范,做好文秘工作。

3.紧跟进度,做好督查工作。

4.提高质量,做好信息工作。

5.周密细致,做好协调工作。

6.协调推进,做好档案工作。

一是建章立制,积极推进xx管理制度化。

二是规范办文,积极推进xx工作程序化。

三是建立体系,积极推进xx督查正常化。

四是注重质量,积极推进xx工作规范化。

五是各司其职,积极推进xx工作有序化。

首先要树立正确的群众利益观,坚持把实现好、维护好、发展好最广大人民群众的根本利益作为促进社会和谐的出发点,在全社会形成和谐社会人人共享的生动局面。

其次,是要树立正确的维护稳定观,坚持把确保稳定作为人民法院促进社会和谐的生命线。

第三,是要树立正确的纠纷解决观,坚持把调判结合作为有效化解不和谐因素、增加和谐因素的有效途径。

第四,是要树立正确的司法和谐观,最大限度地实现法律效果与社会效果的高度统一。

机关公文常用词汇集锦 动词一字部:

抓,搞,上,下,出,想,谋 动词二字部:

分析,研究,了解,掌握,发现,提出,推进,推动,制定,出台,完善,建立,健全,加强,强化,增强,促进,加深,深化,扩大,落实,细化,突出,建设,营造,开展,发挥,发扬,创新,转变,发展,统一,提高,提升,保持,优化,召开,举行,贯彻,执行,树立,引导,规范,整顿,服务,协调,沟通,配合,合作,支持,加大,开拓,拓展,巩固,保障,保证,形成,指导 名词:

体系,机制,体制,系统,规划,战略,方针,政策,措施,要点,重点,焦点,难点,热点,亮点,矛盾,问题,建设,思想,认识,作风,整治,环境,秩序,作用,地方,基层,传统,运行,监测,监控,调控,监督,工程,计划,行动,创新,增长,方式,模式,转变,质量,水平,效益,会议,文件,精神,意识,服务,协调,沟通,力度,领域,空间,成绩,成就,进展,实效,基础,前提,关键,保障,动力,条件,环节,方法,思路,设想,途径,道路,主意,办法,力气,功夫,台阶,形势,情况,意见,建议,网络,指导,指南,目录,方案 形容词一字部:

多,宽,高,大,好,快,省,新 形容词二字部:

持续,快速,协调,健康,公平,公正,公开,透明,富强,民主,文明,和谐,祥和,优良,良好,合理,稳定,平衡,均衡,稳健,平稳,统一,现代 副词一字部:

狠,早,细,实,好,很,较,再,更 副词二字部:

加快,尽快,抓紧,尽早,整体,充分,继续,深入,自觉,主动,自主,密切,大力,全力,尽力,务必,务求,有效 副词三字部:进一步 后缀:化,型,性 词组:

统一思想,提高认识,认清形势,明确任务,加强领导,完善机制,交流经验,研究问题,团结协作,密切配合,真抓实干,开拓进取,突出重点,落实责任,各司其职,各负其责,集中精力,聚精会神,一心一意,心无旁骛,兢兢业业,精益求精,一抓到底,爱岗敬业,求真务实,胸怀全局,拓宽视野。

第二篇:证明不等式方法

不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。1比较法

比较法是证明不等式的最基本方法,具体有“作差”比较和“作商”比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)

例1已知a+b≥0,求证:a3+b3≥a2b+ab

2分析:由题目观察知用“作差”比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。

∵(a3+b3)(a2b+ab2)

=a2(a-b)-b2(a-b)

=(a-b)(a2-b2)

证明: =(a-b)2(a+b)

又∵(a-b)2≥0a+b≥0

∴(a-b)2(a+b)≥0

即a3+b3≥a2b+ab2

例2 设a、b∈R+,且a≠b,求证:aabb>abba

分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同“1”比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小

证明:由a、b的对称性,不妨解a>b>0则

aabbabba=aa-bbb-a=(ab)a-b

∵ab0,∴ab1,a-b0

∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba

练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法

利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及变形有:

(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)

(2)若a、b∈R+,则a+b≥ 2ab(当且仅当a=b时,取等号)

(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)

例3 若a、b∈R,|a|≤1,|b|≤1则a1-b2+b1-a2≤

1分析:通过观察可直接套用: xy≤x2+y2

2证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1

∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立

练习2:若 ab0,证明a+1(a-b)b≥

33综合法

综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。

例4,设a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252

证明:∵ a0,b0,a+b=1

∴ab≤14或1ab≥

4左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2

=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252

练习3:已知a、b、c为正数,n是正整数,且f(n)=1gan+bn+cn

3求证:2f(n)≤f(2n)

4分析法

从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。

例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab

分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。

要证c-c2-ab<a<c+c2-ab

只需证-c2-ab<a-c<c2-ab

证明:即证 |a-c|<c2-ab

即证(a-c)2<c2-ab

即证 a2-2ac<-ab

∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知

∴ 不等式成立

练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)

25放缩法

放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。

例6:已知a、b、c、d都是正数

求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<

2分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。

证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>

ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=

1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d

∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<

b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2

综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2

练习5:已知:a<2,求证:loga(a+1)<1

6换元法

换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。

(1)三角换元:

是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。

7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A<

1证明: ∵x,y∈R+,且x-y=1,x=secθ,y=tanθ,(0<θ<xy)

∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ

=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ

=sinθ

∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1

复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤

3(2)比值换元:

对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。

例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥431

4证明:设x-1=y+12=z-23=k

于是x=k+1,y=zk-1,z=3k+

2把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2

=14(k+514)2+4314≥4314

7反证法

有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是“至少”、“唯一”或含有否定词的命题,适宜用反证法。

例9:已知p3+q3=2,求证:p+q≤

2分析:本题已知为p、q的三次,而结论中只有一次,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。

证明:解设p+q>2,那么p>2-q

∴p3>(2-q)3=8-12q+6q2-q

3将p3+q3 =2,代入得 6q2-12q+6<0

即6(q-1)2<0 由此得出矛盾∴p+q≤

2练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.求证:a>0,b>0,c>0

8数学归纳法

与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。

例10:设n∈N,且n>1,求证:(1+13)(1+15)…(1+12n-1)>2n+12

分析:观察求证式与n有关,可采用数学归纳法

证明:(1)当n=2时,左= 43,右=52

∵43>52∴不等式成立

(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12 那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①

要证①式左边>2k+32,只要证2k+12·

2k+22k+1>2k+32②

对于②〈二〉2k+2>2k+1·2k+3

〈二〉(2k+2)2>(2k+1)(2k+3)

〈二〉4k2+8k+4>4k2+8k+3

〈二〉4>3③

∵③成立 ∴②成立,即当n=k+1时,原不等式成立

由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立

练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n>132

49构造法

根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。

1构造函数法

例11:证明不等式:x1-2x <x2(x≠0)

证明:设f(x)=x1-2x-x2(x≠0)

∵f(-x)

=-x1-2-x+x2x-2x2x-1+x

2=x1-2x-[1-(1-2x)]+x2=x1-2x-x+x2

=f(x)

∴f(x)的图像表示y轴对称

∵当x>0时,1-2x<0,故f(x)<0

∴当x<0时,据图像的对称性知f(x)<0

∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)

练习9:已知a>b,2b>a+c,求证:b-b2-ab<a<b+b2-ab

2构造图形法

例12:若f(x)=1+x2,a≠b,则|f(x)-f(b)|< |a-b|

分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2

于是如下图,设A(1,a),B(1,b)则0A= 1+a2 0B=1+b2

|AB|=|a-b|又0A|-|0B<|AB|∴|f(a)-f(b)|<|a-b|

练习10:设a≥c,b≥c,c≥0,求证 c(a-c)+c(b-c)≤ab

10添项法

某些不等式的证明若能优先考虑“添项”技巧,能得到快速求解的效果。

1倍数添项

若不等式中含有奇数项的和,可通过对不等式乘以2变成偶数项的和,然后分组利用已知不等式进行放缩。

例13:已知a、b、c∈R+,那么a3+b3+c3≥3abc(当且仅当a=b=c时等号成立)证明:∵a、b、c∈R+

∴a3+b3+c3=12 [(a3+b3)+(b3+c3)+(c3+a3)]≥12 [(a2b+ab2)+(b2c+bc2)+(c2a+ca2)]=12[a(b2+c2)+b(c2+a2)+c(a2+b2)]≥12(a·2bc+b·2ca+c·2ac)=3abc

当且仅当a=b,b=c,c=a即a=b=c时,等号成立。

2平方添项

运用此法必须注意原不等号的方向

例14 :对于一切大于1的自然数n,求证:

(1+13)(1+15)…(1+12n-1> 2n+1 2)

证明:∵b > a> 0,m> 0时ba> b+ma+m

∵ [(1+13)(1+15)…(1+12n-1)]2=(43、65…2n2n-1)(43、65…2n2n-1)>(54、76…2n+12n)(43、65…2n2n-1)=2n+13> 2n+14>

∴(1+13)(1+15)…(1+12n-1)>2n+1 2)

3平均值添项

例15:在△ABC中,求证sinA+sinB+sinC≤3

32分析:∵A+B+C=π,可按A、B、C的算术平均值添项sin π

3证明:先证命题:若x>0,y<π,则sinx+siny≤2sin x+y2(当且仅当x=y时等号成立)∵0<x+y2< π,-π2< x-y2< π2sinx+siny=2sin x+y2cosx-y

2∴上式成立

反复运用这个命题,得sinA+sinB+sinC+sin π3≤2sinA+B2+2sinc+π32≤2·2sinA+B2+c+π322 =4sinπ3=332

∴sinA+sinB≠sinC≤332

练习11 在△ABC中,sin A2sinB2sinC2≤18

4利用均值不等式等号成立的条件添项

例16 :已知a、b∈R+,a≠b且a+b=1,求证a4+b4> 18

分析:若取消a≠b的限制则a=b= 12时,等号成立

证明:∵a、b∈R+∴a4+3(12)4 ≥ 44a4 [(12)4]3=12a①

同理b4+3(12)4 ≥b②

∴a4+b4≥12(a+b)-6(12)4=12-6(12)4=18③

∵a≠b ∴①②中等号不成立∴③中等号不成立∴ 原不等式成立

1.是否存在常数c,使得不等式 x2x+y+yx+2y≤c≤xx+2y+y2x+y对任意正数x,y恒成立? 错解:证明不等式x2x+y+ yx+2y≤xx+2y+y2x+y恒成立,故说明c存在。

正解:x=y得23 ≤c≤23,故猜想c= 23,下证不等式 x2x+y+ yx+2y≤23≤xx+2y+y2x+y恒成立。要证不等式xx+2y+xx+2y≤23,因为x,y是正数,即证3x(x+2y)+3y(2x+y)≤2(2 x+y)(x+2y),也即证3x2+12xy+3y2 ≤2(2x2+2y2+5xy),即2xy≤x2+y2,而此不等式恒成立,同理不等式 23≤xx+2y+y2x+y也成立,故存在c=23 使原不等式恒成立。

6.2已知x,y,z∈R+,求证:x2y2+y2z2+z2x2x+y+z ≥ xyz

错解:∵ x2y2+y2z2+z2x2≥ 3 3x2y2y2z2z2x2=3xyz3xyz 又x+y+z ≥ 3xyz ∴x2y2+y2z2+z2x2x+y+z≥ 3xyz33xyz33xyz=xyz

错因:根据不等式的性质:若a >b> 0,c >d >0,则ac bd,但 ac>bd却不一定成立 正解:x2y2+y2z2≥ 2x y2z,y2z2+z2x2≥ 2x yz2,x2y2+z2x2≥ 2x 2yz,以上三式相加,化简得:x2y2+y2z2+z2x2≥xyz(x+y+z),两边同除以x+y+z:

x2y2+y2z2+z2x2x+y+z ≥ xyz

6.3 设x+y>0,n为偶数,求证yn-1xn+xn-1yn≥

1x 1y

错证:∵yn-1xn+xn-1yn-1x-1y

=(xn-yn)(xn-1-yn-1)xnyn

n为偶数,∴ xnyn >0,又xn-yn和xn-1-yn-

1同号,∴yn-1xn+xn-1yn≥ 1x-1y

错因:在x+y>0的条件下,n为偶数时,xn-yn和xn-1-yn-1不一定同号,应分x、y同号和异号两种情况讨论。

正解:应用比较法:

yn-1xn+xn-1yn-1x-1y=(xn-yn)(xn-1-yn-1)xnyn

① 当x>0,y>0时,(xn-yn)(xn-1-yn-1)≥ 0,(xy)n >0

所以(xn-yn)(xn-1-yn-1)xnyn

≥0故:yn-1xn+xn-1yn≥ 1x-1y

② 当x,y有一个是负值时,不妨设x>0,y<0,且x+y>0,所以x>|y|

又n为偶数时,所以(xn-yn)(xn-1-yn-1)>0 又(xy)n >0,所以(xn-yn)(xn-1-yn-1)xnyn ≥0即 yn-1xn+xn-1yn≥ 1x-1y

综合①②知原不等式成立

第三篇:不等式证明若干方法

安康学院 数统系数学与应用数学 专业 11 级本科生

论文(设计)选题实习报告

11级数学与应用数学专业《科研训练2》评分表

注:综合评分60的为“及格”; <60分的为“不及格”。

第四篇:不等式的证明方法

几个简单的证明方法

一、比较法:

ab等价于ab0;而ab0等价于a

b1.即a与b的比较转化为与0

或1的比较.使用比较发时,关键是要作适当的变形,如因式分解、拆项、加减项、通分等,这是第一章中许多代数不等式的证明及其他各章初等不等式的证明所常用的证明技巧.二、综合法与分析法:

综合法是由因导果,即是由已知条件和已知的不等式出发,推导出所要证明的不等式;分析法是执果索因,即是要逐步找出使结论成立的充分条件或者充要条件,最后归结为已知的不等式或已知条件.对于条件简单而结论复杂的不等式,往往要通过分析法或分析法与综合法交替使用来寻找证明的途径.还要注意:第一,要熟悉掌握第一章的基本不等式和后面各章中著名的各种不等式;第二,要善于利用题中的隐含条件;第三,不等式的各种变性技巧.三、反证法:

正难则反.设所要证的不等式不成立,从原不等式的结论的反面出发,通过合理的逻辑推理导出矛盾,从而断定所要证的不等式成立.要注意对所有可能的反面结果都要逐一进行讨论.四、放缩法:

要证ab,又已知(或易证)ac,则只要证cb,这是利用不等式的传递性,将原不等式里的某些项适当的放大或缩小,或舍去若干项等以达证题目的.放缩法的方法有: ①添加或舍去一些项,如:a21a;n(n1)n;

②将分子或分母放大(或缩小);

③利用基本不等式,如:

log3lg5(n(n1)lg3lg522)2lglglg4; n(n1);

④利用常用结论:

k1k

1k1

1k

11k1k

12k

1k;

1k(k1)

1k1

1k

1k1

1k

1k(k1)1k;



(程度大)

1k

1

(k1)(k1)

2k1

();(程度小)

五、换元法:

换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.如:

已知x2y2a2,可设xacos,yasin;

已知x2y21,可设xrcos,yrsin(0r1); 已知

xaxa

2

ybyb

1,可设xacos,ybsin;

已知

1,可设xasec,ybtan;

六、数学归纳法法:

与自然数n有关的许多不等式,可考虑用数学归纳法证明,数学归纳法法证明不等式在数学归纳法中有专门的研究.但运用数学归纳法时要注意:

第一,数学归纳法有多种形式.李大元就证明了下述七种等价的形式:设P(n)是与n有关的命题,则

(1)、设P(n0)成立,且对于任意的kn0,从P(k)成立可推出P(k1)成立,则P(n)对所有大于n0的n都成立.(2)、设m是任给的自然数,若P(1)成立,且从P(k)(1km)成立可推出

P(k1)成立,则P(n)对所有不超过m的n都成立.(3)、(反向归纳法)设有无穷多个自然数n(例如n2m),使得P(n)成立,且从P(k1)成立可推出P(k)成立,则P(n)对所有n成立.(4)、若P(且P(n)对所有满足1nk的n成立可推出P(k1)成立,1)成立,则P(n)对所有n成立.(5)、(最小数原理)自然数集的非空子集中必有一个最小数.(6)、若P)且若P(k),P(k1)成立可推出P(k2)成立,则P(n)1(,P(2)成立,对所有n成立.(7)、(无穷递降法)若P(n)对某个n成立可推出存在n1n,使得P(n1)成立,则P(n)对所有n成立.此外,还有螺旋归纳法(又叫翘翘板归纳法):设有两个命题P(n),Q(n),若

P(1)

成立,又从P(k)成立可推出Q(k)成立,并且从Q(k)成立可推出P(k1)成立,其中k为任给自然数,则P(n),Q(n)对所有n都成立,它可以推广到两个以上的命题.这些形式虽然等价,但在不同情形中使用各有方便之处.在使用它们时,若能注意运用变形和放缩等技巧,往往可收到化难为易的奇效.对于有些不等式与两个独立的自然数m,n有关,可考虑用二重数学归纳法,即若要证命题P(m,n)对所有m,n成立,可分两步:①先证P(1,n),P(m,1)对所有m,n成立;②设P(m1,n),P(m,n1)成立,证明P(m1,n1)也成立.第二,数学归纳法与其它方法的综合运用,例如,证明

n

k

11k

sinkx0,(0x)

就要综合运用数学归纳法,反证法与极值法;有时可将n换成连续量x,用微分法或积分法.第三,并不是所有含n的不等式都能用数学归纳法证明的.七、构造法:

通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.笔者将在第三章中详细地介绍构造法.八、利用基本不等式:

善于利用已知不等式,特别是基本不等式去发现和证明新的不等式,是广泛应用的基本技巧.这种方法往往要与其它方法结合一起运用.22

例1 已知a,bR,且ab1.求证:a2b2

252

.证法一:(比较法)a,bR,ab1

b1a

a2b2

252

ab4(ab)

122(a

12)0

a(1a)4

2a2a

即a22b22

证法二:(分析法)

252

(当且仅当ab时,取等号).a22B2

252

ab4(ab)8

252

b1a

225122

(a)0a(1a)4822

显然成立,所以原不等式成立.点评:分析法是基本的数学方法,使用时,要保证“后一步”是“前一步”的充分条件.证法三:(综合法)由上分析法逆推获证(略).证法四:(反证法)

假设(a2)2(b2)2

252,则 a2b24(ab)8

252

252

.由ab1,得b1a,于是有a2(1a)212

1

所以(a)0,这与a0矛盾.22

.所以a2b2

252

.证法五:(放缩法)

∵ab1

∴左边=a2b2

a2b221252ab4

222

=右

边.点评:根据不等式左边是平方和及ab1这个特点,选用基本不等式

ab

ab2.2

证法六:(均值换元法)

∵ab1,所以可设a

12t,b

t,1

∴左边=a2b2(t2)2(t2)2

5525252

=右边.tt2t

2222

当且仅当t0时,等号成立.点评:形如ab1结构式的条件,一般可以采用均值换元.证法七:(利用一元二次方程根的判别式法)

设ya2b2,由ab1,有y(a2)2(3a)22a22a13,所以2a22a13y0,因为aR,所以442(13y)0,即y故a2b2

252

.252

.下面,笔者将运用数学归纳法证明第一章中的AG不等式.在证明之前,笔者先来证明一个引理.引理:设A0,B0,则(A+B)nAn+nA(n-1)B,其中nN.证明:由二项式定理可知

n

(A+B)=AniBiAn+nA(n-1)B

n

i0

(A+B)A+nA

nn(n-1)

B

第五篇:证明不等式方法探析

§1 不等式的定义

用不等号将两个解析式连结起来所成的式子。在一个式子中的数的关系,不全是等号,含

sinx1,ex>0,2x<3,5x5不等符号的式子,那它就是一个不等式.例如2x+2y2xy,等。根据解析式的分类也可对不等式分类,不等号两边的解析式都是代数式的不等式,称为代数不等式;也分一次或多次不等式。只要有一边是超越式,就称为超越不等式。例如

是超越不等式。lg(1+x)>x

不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于

号)“”“”连接的不等式称为非严格不等式,或称广义不等式。

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为

F(x,y,,z)G(x,y,,z)(其中不等号也可以为>,,< 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

§2 不等式的最基本性质

性质1:如果x>y,那么y<x;如果y<x,那么x>y;(对称性)

性质2:如果x>y,y>z;那么x>z;(传递性)

性质3:如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)

性质4:如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法则)性质5:如果x>y,z>0,那么xyxy>;如果x>y,z<0,那么; zzzz

性质6:如果x>y,m>n,那么xm>yn;(充分不必要条件)

性质7:如果x>y>0,m>n>0,那么xm>yn;

性质8:如果x>y>0,那么xy.如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,下面将介绍一些重要的不等式。nn

几个简单的证明方法

一、比较法:

ab等价于ab0;而ab0等价于

a

1.即a与b的比较转化为与0或1的 b

比较.使用比较发时,关键是要作适当的变形,如因式分解、拆项、加减项、通分等,这是第一章中许多代数不等式的证明及其他各章初等不等式的证明所常用的证明技巧.二、综合法与分析法:

综合法是由因导果,即是由已知条件和已知的不等式出发,推导出所要证明的不等式;分析法是执果索因,即是要逐步找出使结论成立的充分条件或者充要条件,最后归结为已知的不等式或已知条件.对于条件简单而结论复杂的不等式,往往要通过分析法或分析法与综合法交替使用来寻找证明的途径.还要注意:第一,要熟悉掌握第一章的基本不等式和后面各章中著名的各种不等式;第二,要善于利用题中的隐含条件;第三,不等式的各种变性技巧.三、反证法:

正难则反.设所要证的不等式不成立,从原不等式的结论的反面出发,通过合理的逻辑推理导出矛盾,从而断定所要证的不等式成立.要注意对所有可能的反面结果都要逐一进行讨论.四、放缩法:

要证ab,又已知(或易证)ac,则只要证cb,这是利用不等式的传递性,将原不等式里的某些项适当的放大或缩小,或舍去若干项等以达证题目的.放缩法的方法有:

①添加或舍去一些项,如:a1a;n(n1)n; ②将分子或分母放大(或缩小); ③利用基本不等式,如:

log3lg5(lg3lg

52)lglglg4; 2n(n1)

n(n1);

④利用常用结论:

k1k

1k1k

12k;

11111111 ;(程度大)22

k(k1)k1kk(k1)kk1kk

111111();(程度小)22

(k1)(k1)2k1k1kk

1五、换元法:

换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.如:

已知x2y2a2,可设xacos,yasin;

已知x2y21,可设xrcos,yrsin(0r1);

x2y

2已知221,可设xacos,ybsin;

abx2y2

已知221,可设xasec,ybtan;

ab

六、数学归纳法法:

与自然数n有关的许多不等式,可考虑用数学归纳法证明,数学归纳法法证明不等式在数学归纳法中有专门的研究.但运用数学归纳法时要注意:

第一,数学归纳法有多种形式.李大元就证明了下述七种等价的形式:设P(n)是与n有关的命题,则

(1)、设P(n0)成立,且对于任意的kn0,从P(k)成立可推出P(k1)成立,则P(n)对所有大于n0的n都成立.(2)、设m是任给的自然数,若P(1)成立,且从P(k)(1km)成立可推出P(k1)成立,则

P(n)对所有不超过m的n都成立.(3)、(反向归纳法)设有无穷多个自然数n(例如n2),使得P(n)成立,且从P(k1)成立可推出P(k)成立,则P(n)对所有n成立.(4)、若P(1)成立,且P(n)对所有满足1nk的n成立可推出P(k1)成立,则P(n)对所有n成立.(5)、(最小数原理)自然数集的非空子集中必有一个最小数.(6)、若P(1),P(2)成立,且若P(k),P(k1)成立可推出P(k2)成立,则P(n)对所有n成立.(7)、(无穷递降法)若P(n)对某个n成立可推出存在n1n,使得P(n1)成立,则P(n)对所有

m

n成立.七、构造法:

通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.笔者将在第三章中详细地介绍构造法.八、利用基本不等式:

善于利用已知不等式,特别是基本不等式去发现和证明新的不等式,是广泛应用的基本技巧.这种方法往往要与其它方法结合一起运用.构造法

构造法作为一种重要的化归手段,是数学中一种富有创造性的思维方法,在数学解题中尤其在证明不等式中有着重要的作用.文章采取了归纳总结的方法.通过构造几种数学模型,即:函数模型、方程模型、不等式模型、复数模型、矩阵模型,探讨构造法在证明不等式中的应用.3.1.1 构造函数或方程:

一、利用函数的单调性:

利用函数的单调性,不但可以证明许多不等式,还是发现和构造新不等式的基本工具.设f是定义在R的子集E上的有限函数,若x1,x2E,x1x2,f(x1)f(x2),则称f在E上递增;若f(x1)f(x2),则称f在E上严格递增;若f(x1)f(x2),则称f在E上递减;

若f(x1)f(x2),则称f在E上严格递减.递增与递减统称为单调,即

f(x)f(xx)f(x)当x0时不变号.下面,我们利用函数的单调性来证明第一章中的AG不等式.AG

不等式:An

a1a2anGn,其中ai,bi0,i1,2,,n.n

1nx

1x

(ak),x0nk1

证明:令f(x).1n

(a)n,x0kk1

则f在[,]上严格递增(当a1a2an是不全相等的正数时),于是f(0)f(1),即

GnAn成立.二、抛物线(二次方程)技巧:

某些代数式配方后,化为f(x)ax2bxc的形式,若a0,则b4ac0等价

f(x)0

.有些

f(x)

形式上不是代数式,例如,f(x)asinxcosxb(sinxcosx)1,(a0),令tsinxcosx,就可以化为t的二次三项

式;有时也可以利用卡丹公式:三次代数多项式f(x)x3pxq有三个实根的充要条件是判别式()()0.下面,我们用抛物线技巧来证明柯西不等式.三、极值方法:

极值方法包括Lagrange乘数法、最小二乘法等.函数的极值理论是发现和证明不等式的万能武器,我们可以利用变量的对称性,用局部固定法,将多元函数的极值转化为一元函数的极值处理.下面,我们用Lagrange乘数法来证明第一章中的AG不等式.q

2p2

a1a2anGn,其中ai,bi0,i1,2,,n.AG

不等式:An

n

证明:AG不等式求f(x)(x1x2xn)在条件x1x2xna下的最大值.作辅助函数F(x)(x1x2xn)(x1x2xna).n

1n

F对xk求偏导数Fx'k0,得出

f(x)nxk,k1,2,,n.(3.1.1)对k求和,得到nf(x)n(x1x2xn)na.即

f(x)a(3.1.2)从(3.1.1)式、(3.1.2)式得出xk

aaaa

.于是f在(,,)点取得最大

值nnnn

axxxna,即GnAn.,所以

1

2nnn

§2 微积分法

一、微分方法:

为证f(x)g(x),有时归结为证f(x)g(x),可使问题简化,例如第一章中的AG不等式的证明.对于某一类积分不等式,常将积分上限b换成变量x,即这往往是十分有效的证明技巧.二、积分方法:

积分方法包含用积分的性质和积分不等式.特别是积分的单调性.利用积分还可以证明某些数列或级数不等式,除了通常的黎曼积分、勒贝格积分外,用各种新积分来证明不等式是很有前途的的新方向.下面,我们用积分方法来证明第一章中的AG不等式.AG

不等式:An

b

a

f变成F(x)f,对F求导数,a

x

a1a2anGn,其中ai,bi0,i1,2,,n.n

证明:不妨设0a1a2an,于是必存在某个k,1kn1,使得akGnak1.用An表

knGn1ajAn11

1示An(a,q),Gn表示Gn(a,q),则1qj()dtqj()dt0.ajtGnGGNGntj1jk1n

即有 GnAn成立.八、利用中值定理:

包括微分中值定理和积分中值定理.在现在数学分析教材中,它们都是写成等式形式,例如

f(b)f(a)f(c)(ba),式中的c,只知道与a,b,f有关.但对于许多应用来说,只要导数f'(x)的上、下界:mf'(x)M,就得出不等式:

m

f(b)f(a)

M.ba

因此,中值定理的实质是由不等式的形式揭示出来的.

下载浅谈中学几种常用证明不等式方法[五篇材料]word格式文档
下载浅谈中学几种常用证明不等式方法[五篇材料].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    sos方法证明不等式

    数学竞赛讲座SOS方法证明不等式(sum of squares)SABSabcSbcaScab0性质一:若Sa,Sb,Sc0,则SABSabcSbcaScab0. 222222性质二:若a,b,c,Sa,Sb,Sc且满足(1)SaSb,SbSc,ScSa0,(2)若abc或abc,则S......

    不等式的证明方法探究

    不等式的证明方法探究 不等式的证明是高中数学的一个难点,题型较多,涉及的知识面多,证明方法灵活,本文通过一些实例,归纳总结了证明不等式时常用的方法和技巧。 1.比较法 比较法是......

    证明不等式的方法论文

    证明不等式的方法 李婷婷 摘要: 在我们数学学科中,不等式是十分重要的内容。如何证明不等式呢?在本文中,我主要介绍了不等式概念、基本性质和一些从初等数学中总结出的证明不等......

    高中数学不等式证明常用方法(★)

    本科生毕业设计(论文中学证明不等式的常用方法 所在学院:数学与信息技术学院专 业: 数学与应用数学姓 名: 张俊学 号: 1010510020 指导教师: 曹卫东 完成日期: 2014......

    不等式证明的若干方法

    不等式证明的若干方法 摘要:无论是在初等数学还是在高等数学中,不等式证明都是其中一块非常重要的内容.本文主要总结了高等数学中不等式的几种证明方法,高等数学中不等式证明......

    积分不等式的证明方法

    南通大学毕业论文 摘要 在高等数学的学习中,积分不等式的证明一直是一个无论在难度还是技巧性方面都很复杂的内容.对积分不等式的证明方法进行研究不但能够系统的总结其证明......

    g3.1039 不等式证明方法(二)

    考试成绩录入软件Excel登分王下载地址http://www.xiexiebang.com/soft/25875.html g3.1039 不等式证明方法(二) 一、知识回顾 1、反证法:从否定结论出发,经过逻辑推理,导出矛盾,从......

    不等式的一些证明方法

    数学系数学与应用数学专业2009级年论文(设计) 不等式的一些证明方法 [摘要]:不等式是数学中非常重要的内容,不等式的证明是学习中的重点和难点,本文除总结不等式的常规证明......