第一篇:09电力电子期末总结1
09自动化电力电子期末总结
1、电力变换的种类
2、全控器件GTR、GTO、IGBT、MOSFET中文全称及驱动类型及各自优缺点
3、全控器件GTR、GTO、IGBT、MOSFET参数及使用中的注意事项
4、驱动电路及特点
5、晶闸管的两种外形、管脚、符号
6、晶闸管导通、关断条件及导通关断规律
7、晶闸管额定电压、额定电流定义
8、晶闸管额定电压、额定电流的确定方法(有关计算)
9、触发角、导通角、移相范围的概念
10、单相半控桥续流二极管作用
11、续流二极管对阻感输出波形、移相范围的影响
12、三相半波、三相桥起始位置,电阻负载电流断续时临界角度
13、三相半波、三相桥中晶闸管导通规律与先后导通的晶闸管相差的角度
14、变压器漏抗对整流电压大小及逆变电压大小的影响
15、换相重叠角受何影响
16、有源逆变条件
17、什么叫逆变失败(颠覆)?逆变失败原因?
18、最小逆变角min?确定依据?min? 取值范围?
19、对触发电路输出脉冲的基本要求。20、锯齿波触发电路基本构成?基本原理?
21、锯齿波触发电路定相的原则。
22、过电压的原因及常用保护器件
23、过电流保护的常用器件
24、晶闸管串联、并联要求(串联均压,并联均流)
25、降压斩波、升压斩波电路结构及工作原理
26、降压斩波、升压斩波输出电压=?和输出电流=?
27、斩波电路中三种控制方式
28、什么是换流,有哪几种方式?各适用于什么场合?
29、电压型、电流型无源逆变特点 30、180度导电型三相无源逆变各器件导通规律,换相注意事项 31、180度导电型三相无源逆变在一个周期各阶段输出电压uab,ubc,uca,ua,ub,uc及波形 32、120度导电型三相无源逆变各器件导通规律 33、120度导电型三相无源逆变在一个周期各阶段输出电流iab,ibc,ica,ia,ib,ic及波形
34、PWM控制的理论基础
35、PWM在无源逆变中的两种控制方式?
36、SPWM调制中载波和信号波各是什么
37、同步调制、异步调制?各自优缺点?
38、股则采样法?自然采样法?
39、单相全控桥(阻感负载)a=30°、60°绘制ud、id、uT1和iVT1的波形
三相半波(阻感负载)a=30°、60°绘制ud、id、uT1和iVT1的波形 三相全控桥(阻感负载)a=30°、60°绘制ud、id、uT1和iVT1的波形 并掌握移相范围、晶闸管最大电压、导通角等等(见波形总结)上述波形如考虑漏抗,要求会绘制ud、和iVT1的波形
40、单相桥、三相半波、三相桥受变压器漏抗影响Ud? coscos()?换向重叠角计算(包括整流即有源逆变电路)
41、单相交流调压电路电阻负载和阻感负载工作原理。
42、单相交交变频电路结构及工作原理。
43、交交变频电路特点
44、软开关的基本概念
计算题类型参考:
1、单相桥式全控整流器电路,其中,U2=100V,负载中R=2Ω,L值极大,当a=30°时,要求:
①作出ud、id和i2的波形;
②求整流输出平均电压Ud、电流Id,变压器二次电流有效值I2;③考虑安全裕量,确定晶闸管的额定电压和额定电流。
2、单相桥式全控整流电路,U2=100V,负载中R=20Ω,L值极大,反电动势E=60V,当a=30°时,要求:
①作出ud、id和i2的波形;
② 求整流输出平均电压Ud、电流Id,变压器二次电流有效值I2;③考虑安全裕量,确定晶闸管的额定电压和额定电流。
3、单相半控桥如图所示,U2 =100V,电阻电感负载,2Ω,L值极大,当a=60°时求流过器件中电流的有效值,并作出ud、id、iVT、iVD的波形。
4、三相半波可控整流电路,U2 =100V,带电阻电感负载,R=5Ω ,L值极大,当a=60°时,要求:
① 画出ud、id和iVT的波形;
② 计算Ud、Id、IdVT和IVT.5、三相桥式全控整流电路,U2 =100V,带电阻电感负载,R=5Ω ,L值极大,当a=60°时,要求:
① 画出ud、id和iVT的波形;
② 计算Ud、Id、IdVT和IVT。
6、三相半波整流电路,反电动势阻感负载,R=1Ω,L=∞,U2=100V,LB=1mH,求当a=30°时、E=50V时Ud、Id和的值并作出ud,iVD和i2的波形。
7、三相半波逆变电路,反电动势阻感负载,R=1Ω , L=∞,U2=100V,LB=1mH,求当=30°时、E=—120V时Ud、Id和的值并作出ud,iVD和i2的波形。
8、三相全控桥,反电动势阻感负载,E=200V,R=1Ω,L=∞,U2=220V,a=60°,当①LB=0和②LB=1mH,情况下分别求Ud、Id的值,后者还应求 v并分别作出ud和iVT的波形。
9、单相全控桥变流器,反电动势阻感负载,R=1Ω,L=∞,U2=100V,LB=0.5mH,当EM=-99V,β=60°时求Ud、Id和v的值。
10、三相桥式全控整流电路,L=0.2H,R=4Ω,要求Ud=0~220V可变。试求:
(1)变压器次级相电压有效值;
(2)计算晶闸管电压、电流。如电压、电流裕量取2倍,选择晶闸管型号;(3)变压器次级电流有效值;(4)计算变压器次级容量;
试题类型:填空:10个空 10分
选择:10个 20分
问答:4个 20分
计算(含画图):4道 50分
考试说明:闭卷、可带计算器、提供部分公式、提供如下波形(画图时可以此为基准、注意相位)
成绩评定:试卷成绩占:70%平时成绩占:10% 实验成绩占:20%
没交实验报告的没有实验成绩
第二篇:电力电子学习总结
电力电子学学习心得
这学期经过十几周的学习,与本科时期掌握的电力电子技术的知识相比,我对电力电子学有了更加深入的、详细的了解。采用半导体电力开关器件构成各种开关电路,按一定的规律,周期性地,实时、适式的控制开关器件的通、断状态,可以实现电子开关型电力变化和控制。这种电力电子变换和控制,被称为电力电子学或电力电子技术。
在第一章电力电子变化和控制技术导论的学习中,我了解了电力电子学科的形成、四类基本的开关型电力电子变换电路、两种基本的控制方式(相控和脉冲宽度调制控制)、两类应用领域(电力变换电源和电力补偿控制),以及电力电子变换器的基本特性。经过这一章的学习,我对电力电子变换和控制技术有了一个全貌的认识。接下来的一章里学习了各类半导体电力开关器件的基本工作原理和静态特性。然后又学习了直流-直流(DC/DC),直流-交流(DC/AC),交流-直流(AC/DC),交流-交流(AC/AC)四类电力电子变换的工作原理和特性以及电力电子变换器中的辅助元器件和系统,还分析了开关器件的开通关断过程和各种缓冲器,以及电力电子变换电路的两类典型应用:多级开关电路组合型交流、直流电源和电力电子开关型电力补偿、控制器等。
在这学期的学习中,我们在老师的指导下还尝试了多种新的学习方法,例如分组学习并做PPT重点总结、自主学习后课堂讲解等,这些方法都大大的调动了我们课下学习的积极性,课前的预习也使我们上课时能更好的理解以及吸收学科知识。
感谢韩老师一学期的谆谆教诲,悉心指导,不仅使我们熟悉掌握了专业知识,也教会了我们在学习中应有的学习态度。
第三篇:电力电子课程设计总结
电力电子专业课程设计总结
随着科学技术发展的日新日异,电力电子技术在现代社会生产中占据着非常重要的地位,电力电子技术应用在是生活中可以说得是无处不在如果把计算机控制比喻为人的大脑,电磁机械等动力机构喻为人的四肢的话,则电力电子技术则可喻为循环和消化系统,它是能力转化和传递的渠道。因此作为二十一世纪的电气专业的学生而言掌握电力电子应用技术十分重要。
电力电子课程设计的目的在于进一步巩固和加深所学电力电子基本理论知识。使学生能综合运用相关关课程的基本知识,通过本课程设计,培养学生独立思考能力,学会和认识查阅和占有技术资料的重要性,了解专业工程设计的特点、思路、以及具体的方法和步骤,掌握专业课程设计中的设计计算、软件编制,硬件设计及整体调试。通过设计过程学习和管理,树立正确的设计思想和严谨的工作作风,以期达到提高学生设计能力。
从理论到实践,在专业课程设计持续的日子里,可以培养学生学到很多东西,不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过课程设计教育学生认识理论与实际相结合的重要性,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中随时会遇到各式各样的问题,同时会不断发现自己的不足之处。整了个设计过程对很多学生而言可以说是困难重重,譬如对以前所学过的知识理解得不够深刻,掌握得不够牢固,不会查阅资料,觉得无从下手等等。在课程设计过程中通过互动指导,教育学生一步一步的制定并依次实施计划,并在设计计划执行过程中教会他们查阅资料,鼓励他们克服心理上的不良情绪,不断的学习和解决难题,不断磨练炼学生意志的过程。总结本次课程设计,根据设计过程学生表现以及实习报告,本次课程设计有效培养了学生综合运用所学知识,发现,提出,分析和解决实际问题的能力。通过课程设计的教学实践,使学生所学的基础理论和专业知识得到巩固,并使学生得到运用所学理论知识解决实际问题的初步训练;使学生接触和了解实际局部设计从收集资料、方案比较、软硬件设计及整体调试的全过程,进一步提高学生的分析、综合能力以及工程设计中分析设计的基本能力,为今后的毕业设计做必要的准备,并为毕业后的工作学习提供了借鉴思路。
第四篇:电力电子实验总结
电力电子技术实验总结
随着大功率半导体开关器件的发明和变流电路的进步和发展,产生了利用这类器件和电路实现电能变换与控制的技术——电力电子技术。电力电子技术横跨电力、电子和控制三个领域,是现代电子技术的基础之一,是弱电子对强电力实现控制的桥梁和纽带,已被广泛应用于工农业生产、国防、交通、能源和人民生活的各个领域,有着极其广阔的应用前景,成为电气工程中的基础电子技术。
本学期实验课程共进行了四个实验。包括单结晶体管触发电路实验,单相半波整流电路实验,三相半波有源逆变电路实验,单相交流调压电路实验.单结晶体管触发电路实验 实验目的
(1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。(2)掌握单结晶体管触发电路的基本调试步骤。
实验线路及原理 单结晶体管触发电路利用单结晶体管(又称双基极二极管)的负阻特性和RC充放电特性,可 组成频率可调的自激振荡电路。V6为单结晶体管,其常用型号有BT33和BT35两种,由等效电阻V5和C1组成RC充电回路,由C1-V6-脉冲变压器原边组成电容放电回路,调节RP1电位器即可改变C1充电回路中的等效电阻,即改变电路的充电时间。由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压UP时,V6导通,电容通过脉冲变压器原边迅速放电,同时脉冲变压器副边输出触发脉冲;同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压Uv,使得V6重新关断,C1再次被充电,周而复始,就会在电容C1两端呈现锯齿波形,在每次V6导通的时刻,均在脉冲变压器副边输出触发脉冲;在一个梯形波周期内,V6可能导通、关断多次,但对晶闸管而言只有第一个输出脉冲起作用。电容C1的充电时间常数由等效电阻等决定,调节RP1电位器改变C1的充电时间,控制第一个有效触发脉冲的出现时刻,从而实现移相控制。
实验内容
(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察。单相半波整流电路实验 实验目的
1、熟悉强电实验的操作规程;
2、进一步了解晶闸管的工作原理;
3、掌握单相半波可控整流电路的工作原理。
4、了解不同负载下单相半波可控整流电路的工作情况。实验原理
1、晶闸管的工作原理 晶闸管的双晶体管模型和内部结构如下: 晶闸管在正常工作时,承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值一下。
2.单相半波可控整流电路(电阻性负载)2.1电路结构
若用晶闸管T替代单相半波整流电路中的二极管D,就可以得到单相半波可控整流电路的主电路。变压器副边电压u2为50HZ正弦波,负载 RL为电阻性负载。
三相半波有源逆变电路实验 实验目的
1、掌握三相半波有源逆变电路的工作原理,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。
2、观察逆变失败现象,并研究逆变失败产生原因及预防措施 注意事项
(1)参照三相半波可控整流实验的注意事项
(2)电阻调节要缓慢进行,以防主电路电流过大,损坏晶闸管.实验内容
三相半波整流电路在有源逆变状态工作下带电阻电感性负载的研究。单相交流调压电路实验 实验目的
1加深理解单相交流调压电路的工作原理;
2加深理解单相交流调压电路带阻感性负载对脉冲及移相范围的要求; 3了解KC05晶闸管移相触发器的原理和应用。实验内容
1KC05 集成移相触发电路的调试; 2单相交流调压电路带电阻性负载; 3单相交流调压电路带阻感性负载。
相对来说,这门实验课程的线路连接及线路实验原理 并不复杂,最困难的是是完成试验线路连接以后所进行的调试与操作,难以得出相关的正确的波形以及争取的结果和参数。这是由于对实验的过程及原理理解的不深刻,对相关的知识掌握的不够透彻,不能熟练应用到实际操作以及应用当中。并且动手能力不够强,对实验过程不熟悉,实验操作生疏,缺乏相关的实际操作经验以及实际操作技巧,遇到实际操作中的问题难以独立解决,如何下手。对操作过程中的错误以及故障难以发现排除。
《电力电子技术》遵循的学习思路为:理论联系实践,实践促进创新。在学习该课程的过程中,注重对基本概念和基本方法的理解,在理论推导中引出工程应用的概念,在实例分析中强化理论概念,加深了我们对电力拖动自动控制系统的认识和理解。本课程综合性、理论性和实践性都较强,要求我们在掌握基本理论的基础上,能综合运用学过的专业知识,根据生产工艺的具体要求,实现对电机的控制和对一般自动控制系统的分析和设计,从而培养了我们学生的理论联系实际的能力、分析问题和解决问题的能力。
虽然实验台只是一个小型的模拟平台,但是通过对它的学习和操作,我们对有关的知识将会有一个更广泛的认识,而且它对我们以后的学习也会有帮助的。实验中个人的力量是不及群体的力量的,我们分工合作,做事的效率高了很多。虽然有时候会为了一些细节争论不休,但最后得出的总是最好的结论。而且实验也教会我们在团队中要善于与人相处,与人共事,不要一个人解决所有问题。总之,这次课程设计对于我们有很大的帮助。通过这次课程使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,这毕竟第一次做的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固。
这次课程使我学到了更多实用的知识,让我对实验设备及实验原理有了更进一步的认识。通过本次的实验课程,我还发现自己以前学习中所出现的一些薄弱环节,并为今后的学习指明了方向,同时也会为将来的工作打下一个良好的基础。这次的实验课程为我们提供了一个很好的锻炼机会,使我们及早了解一些相关知识以便以后运用到实际中去。通过这次的实验课程,我知道只有通过刻苦的学习,加强对知识的熟练掌握程度,在现实的中才会得心应手,应对自如。
总体来说,经过这次实验课程,我还从中学到了很多课本上所没有提及的知识。我会把这此实验课程作为我人生的起点,在以后的工作学习中不断要求自己,完善自己,让自己做的更好。
实验过程中,获得了很多收获,获得了很多感悟,当然也遇到了很多困难。但我们都一一克服了他们,成功的完成了实验。并在解决问题,克服困难的过程中,发现了自己平时忽略的,隐藏的问题,以及一些不该出现的粗心大意的小毛病。通过这些,我们认识的更加深刻,了解的更加深入。做到了学以致用,对知识掌握得更加牢固。通过了这的学习,真的对它有了一个全新的认识,我会坚持对它的学习,使自己一个长足的提高!
第五篇:电力电子重点总结
电力电子重点总结
1各电力电子器件的特点、导通条件、导通维持条件、关断条件 电力二极管(不可控器件),静态特性主要指其伏安特性,当电力二极管承受的正向电压大到一定值时,正向电流才开始明显增加处于稳定导通状态。当其承受反向电压时,只有少子引起的微小而数值近似恒定的反向饱和漏电流,但随温度的升高而有所增加。动态特性电力二极管在零偏置(外加电压为零),正向偏置和反向偏置这三种状态之间转换的时候必然经历一个过渡过程,因而其电压—电流特性不能用伏安特性来描述,而是随时间变化的。并且往往专指反映通态和断态之间转换过程的开关特性。晶闸管(半控型器件),(1)当晶闸管承受反向电压是,不论门极是否有触发电流,晶闸管都不会导通。(2)晶闸管是一种单向导电器件,即在正常触发导通时电流只能从阳极流向阴极。(3)晶闸管导通的条件,晶闸管承受正向电压,同时在门极有触发电流作用。只有在这两个条件同时具备的情况下晶闸管才能导通。(4)晶闸管的关断条件:若要使已导通的晶闸管关断,只能利用外加反偏电压或外电路的作用使流过晶闸管的电流降到接近于零的某个临界值以下。(5)晶闸管维持导通的条件:晶闸管一旦导通,门极就失去控制作用,不论门极触发信号是否还存在,只要流过晶闸管的电流不低于其维持电流,晶闸管就能维持导通。(6)晶闸管误导通条件:阳极正偏电压过高;du/dt过大;结温过高。(7)晶闸管具有双向阻断作用,既具有正向电压阻断能力,又具有反向电压阻断能力。而不是像二极管那样仅具有反向电压阻断能力。PE系统需要隔离的原因及隔离措施;主电路中的电压和电流一般都比较大,而控制带南路的元器件只能承受较小的电压和电流,因此在主电路和控制电路连接的路径上,如驱动电路于主电路的连接处,或者驱动电路与控制信号的连接处,以及主电路与检测电路的连接处,一般都需要通过光或磁的手段来传递信号并实现电气隔离。强,弱电系统之间通常需要电气隔离,不共地,消除相互影响,减小干扰,提高可靠性。
3单相半波整流电路的α移相范围、波形分析、续流二极管的作用、输出直流电压、电流的计算