第一篇:初中数学新课程标准案例式导读与学习内容要点(写写帮整理)
《初中数学新课程标准案例式导读与学习内容要点》心得体会
如今《标准》更加准确、规范、明了、和全面,增强可操作性,更适合于教材编写、教师教学、学习评价.明确了要进一步处理好以下几个关系:一是关注过程和结果的关系;二是学生自主学习和教师讲授的关系;三是合情推理和演绎推理的关系;四是生活情境和知识系统性的关系.修改后的标准,既增加了部分内容,也删减了一些内容,对知识的学习要求也进行了重新的界定,给我印象最深的有以下几点:
1、学生的知识形成过程,是我们开展教学的主线。
在现实教学中,不少教师不是按学生的知识形成过程开展教学,而是习惯于把教学过程归结为教师讲、学生听,教师写、学生抄,上课做不完,课外继续练,在大量反复操作的基础上达到掌握的目的。教学评价时,主要看结果,即分数的高低。新“课标”指出:“对学生学习的评价,既要关注学生学习的结果,更要关注他们在学习过程中的变化和发展。”对此,教师应改变过去那种轻过程,重结论,单纯依靠重复操练的“经验性”教法,按学生的知识形成过程开展教学,减轻学生大量的重复操练产生的课业负担,让学生学得积极、主动。
2、学生积极参与学习全过程,是检验教学效果的关键。
课堂教学方法的改革是实施素质教育的着力点之一。因此,教师在课堂教学中,应真正把学生当作数学学习的主人,发挥学生的主体作用,让学生积极参与学习的全过程,使他们的知识与能力在参与学习的过程中得到全面发展。对此,在教学中,教师要根据学科特点与学生的心理规律,创设情境,注重诱发学生的求知欲,激发参与动机,强化参与意识,提高参与兴趣,从而使学生自始至终主动参与学习的全过程。在参与学习的全过程中,教师要及时收集、反馈信息并作出评价调控。使学生在精神上得到满足,享受到成功的喜悦。对于有畏难情绪、不积极参加学习的学生,教师应给予真诚的鼓励、热情的帮助、细心的辅导,促其从“要我参与”转变为“我要参与”,增强学生参与的主动性,积极性投入到学习的全过程中。为了让学生在有限的时间里参与活动的时间尽量多些,参与活动的效率尽量高些,教师应多考虑使用现代化教学手段,把抽象的数学知识由“静态”变为“动态”的画面,有利于反映事物变化的过程,易于学生理解掌握知识。在课堂教学中,教师要尽量多地为学生提供参与说、议、做、练等多种活动的机会,让学生动口、动手、动脑,努力营造学生全面参与学习的浓厚气氛。与此同时,教师还要教给学生参与的方法,提高参与的质效。达到培养学生的主体意识、合作意识、创新意识和应用意识,使学生在独立探索、解决问题过程中,学会数学的思维方法。
3、教师必须重视对释疑解难过程的调控。
新“课标”指出,要让学生“形成实事求是的态度以及进行质疑和独立思考习惯”。在教学中教师要多鼓励学生大胆设疑、质疑、释疑、辩错。设疑,即放手让学生发现问题,大胆提出问题。学生如能发现问题,提出问题,表明他们已在积极探索事物之间的关系,是积极思维的表现。通过设疑,培养学生追根究底、不断探索、创新的精神。质疑,即对学生提出的问题进行交流讨论。在教学过程中当学生不满足于教师的讲解,对教师的讲解产生疑问时,教师应加以肯定和鼓励,不要忙于把现成的答案告诉学生。而应采用交流讨论的形式,让学生充分发表意见,互相启发,触发思维,寻求正确的答案,从而培养学生好求甚解、凡事多问的精神,让学生“学会与人合作,并能与他人交流思维的过程和结果”。释疑,即学生在老师的指导下解决疑难的问题。在教学的过程中,要充分发挥教学民主,让学生把自己当作学习的主人,敢于举手发表不同的意见,积极去找问题、找病因、找解题方法。这样,有利于激发学生的学习兴趣,培养学生富有创新、敢于实践、独立思考的精神。辨错,即学生对教师的有意“示错”进行分析、判断、提高防错能力。在教学中,教师有时可恰到好处,有意的把估计学生易错的做法显示给学生,以引起学生的注意,然后通过师生共同分析错因,加以纠错。达到及时、有效预防,并避免学生出现类似错误的目的。这样,可防患于未然,并提高学生分析、判断、解决问题的能力。
4、教师要调动学生积极性,讲究教与学过程的统一。
教师要不断地改进教法、指导学法,把教与学过程很好地统一起来。
首先,要着眼于诱导,变学生“苦学”为“乐学”,使学生“能积极参与数学学习活动,对数学有好奇心与求知欲”。教师要千方百计诱导学生产生强烈的求知欲与正确的学习动机,以及浓厚的兴趣和高昂的学习热情,使学生获得成功的喜悦和体验,保持旺盛的学习情绪和精力,全身心地投入到学习中去。其次,要着重于指导变“学会”为“会学”。就是说,在教学中教师要认真指导学生自己学会学习,包括学习方法的指导科和认识策略的指导。教师对学生学法指导科学得体,就可以促进学生变知识为能力,变“学会”为“会学”,学生就能根据已有的知识和能力去自学分析、解决新知识和新问题,从而实现“不同的人在数学上得到不同的发展”。
第二篇:初中数学新课程标准案例式导读与学习内容要点
《初中数学新课程标准案例式导读与学习内容要点》心得体会
如今《标准》更加准确、规范、明了、和全面,增强可操作性,更适合于教材编写、教师教学、学习评价.明确了要进一步处理好以下几个关系:一是关注过程和结果的关系;二是学生自主学习和教师讲授的关系;三是合情推理和演绎推理的关系;四是生活情境和知识系统性的关系.修改后的标准,既增加了部分内容,也删减了一些内容,对知识的学习要求也进行了重新的界定,给我印象最深的有以下几点:
1、学生的知识形成过程,是我们开展教学的主线。
在现实教学中,不少教师不是按学生的知识形成过程开展教学,而是习惯于把教学过程归结为教师讲、学生听,教师写、学生抄,上课做不完,课外继续练,在大量反复操作的基础上达到掌握的目的。教学评价时,主要看结果,即分数的高低。新“课标”指出:“对学生学习的评价,既要关注学生学习的结果,更要关注他们在学习过程中的变化和发展。”对此,教师应改变过去那种轻过程,重结论,单纯依靠重复操练的“经验性”教法,按学生的知识形成过程开展教学,减轻学生大量的重复操练产生的课业负担,让学生学得积极、主动。
2、学生积极参与学习全过程,是检验教学效果的关键。
课堂教学方法的改革是实施素质教育的着力点之一。因此,教师在课堂教学中,应真正把学生当作数学学习的主人,发挥学生的主体作用,让学生积极参与学习的全过程,使他们的知识与能力在参与学习的过程中得到全面发展。对此,在教学中,教师要根据学科特点与学生的心理规律,创设情境,注重诱发学生的求知欲,激发参与动机,强化参与意识,提高参与兴趣,从而使学生自始至终主动参与学习的全过程。在参与学习的全过程中,教师要及时收集、反馈信息并作出评价调控。使学生在精神上得到满足,享受到成功的喜悦。对于有畏难情绪、不积极参加学习的学生,教师应给予真诚的鼓励、热情的帮助、细心的辅导,促其从“要我参与”转变为“我要参与”,增强学生参与的主动性,积极性投入到学习的全过程中。为了让学生在有限的时间里参与活动的时间尽量多些,参与活动的效率尽量高些,教师
应多考虑使用现代化教学手段,把抽象的数学知识由“静态”变为“动态”的画面,有利于反映事物变化的过程,易于学生理解掌握知识。在课堂教学中,教师要尽量多地为学生提供参与说、议、做、练等多种活动的机会,让学生动口、动手、动脑,努力营造学生全面参与学习的浓厚气氛。与此同时,教师还要教给学生参与的方法,提高参与的质效。达到培养学生的主体意识、合作意识、创新意识和应用意识,使学生在独立探索、解决问题过程中,学会数学的思维方法。
3、教师必须重视对释疑解难过程的调控。
新“课标”指出,要让学生“形成实事求是的态度以及进行质疑和独立思考习惯”。在教学中教师要多鼓励学生大胆设疑、质疑、释疑、辩错。设疑,即放手让学生发现问题,大胆提出问题。学生如能发现问题,提出问题,表明他们已在积极探索事物之间的关系,是积极思维的表现。通过设疑,培养学生追根究底、不断探索、创新的精神。质疑,即对学生提出的问题进行交流讨论。在教学过程中当学生不满足于教师的讲解,对教师的讲解产生疑问时,教师应加以肯定和鼓励,不要忙于把现成的答案告诉学生。而应采用交流讨论的形式,让学生充分发表意见,互相启发,触发思维,寻求正确的答案,从而培养学生好求甚解、凡事多问的精神,让学生“学会与人合作,并能与他人交流思维的过程和结果”。释疑,即学生在老师的指导下解决疑难的问题。在教学的过程中,要充分发挥教学民主,让学生把自己当作学习的主人,敢于举手发表不同的意见,积极去找问题、找病因、找解题方法。这样,有利于激发学生的学习兴趣,培养学生富有创新、敢于实践、独立思考的精神。辨错,即学生对教师的有意“示错”进行分析、判断、提高防错能力。在教学中,教师有时可恰到好处,有意的把估计学生易错的做法显示给学生,以引起学生的注意,然后通过师生共同分析错因,加以纠错。达到及时、有效预防,并避免学生出现类似错误的目的。这样,可防患于未然,并提高学生分析、判断、解决问题的能力。
4、教师要调动学生积极性,讲究教与学过程的统一。
教师要不断地改进教法、指导学法,把教与学过程很好地统一起来。
首先,要着眼于诱导,变学生“苦学”为“乐学”,使学生“能积极参与数学学习活动,对数
学有好奇心与求知欲”。教师要千方百计诱导学生产生强烈的求知欲与正确的学习动机,以及浓厚的兴趣和高昂的学习热情,使学生获得成功的喜悦和体验,保持旺盛的学习情绪和精力,全身心地投入到学习中去。其次,要着重于指导变“学会”为“会学”。就是说,在教学中教师要认真指导学生自己学会学习,包括学习方法的指导科和认识策略的指导。教师对学生学法指导科学得体,就可以促进学生变知识为能力,变“学会”为“会学”,学生就能根据已有的知识和能力去自学分析、解决新知识和新问题,从而实现“不同的人在数学上得到不同的发展”。
第三篇:小学数学《课程标准案例式导读与学习内容要点》学习心得体会
小学数学《课程标准案例式导读与学习内容要点》学习心得体会
这一学,按学校校本培训要求,我利用课余时间自学了《课程标准案例式导读与学习内容要点》(小学数学)一书,感觉受益匪浅,现将我自学的一点学习心得体会总结如下:
一、把握书本内容,理清结构脉络
2011年版《课程标准案例式导读与学习内容要点》(小学数学)一书共分为六章,同时附有学习内容要点。第一章为“课程基本理念、课程目标与核心概念解读”,阐述了义务教育数学课程设计所遵循的基本理念、课程目标与核心概念及解读,对于广大教师从整体上、根本上理解课程标准是非常重要的。第二至第五章分别是“数与代数”、“图形与几何”、“统计与概率”、“综合与实践”四个方面的内容展现与案例解读,最后的一些课堂教学案例用于解读《2011年版》中变化较大的或教学中的热点或难点议题。第六章为“教学建议和评价建议”,最后附有学习要点并给出细致解读。
二、案例式解读呈现新课标理解的立体图景,是本书的亮点
案例解读,呈现了一幅幅形象生动的对新课标理解的立体图景。在每一章的内容展现之后都专门安排了“案例解析”,给出一些案例用于解读《2011年版》中变化较大或教学中的热点或难点问题。“案例式”,即将新修订课标的解读与教育教学实践有机结合,将新课标解读与一线教师的实际经验、操作程式、教学思路相融合,也就是真正做到让教师即学即用、容易上手。案例基本分为教学条件和实际情况分析、学习目标的达成、教学步骤的设计、教学效果评价等几个方面,特别是教学条件分析这一项,值得我们去学习与应用。在教学条件分析这一项里,教师会从课程标准分析、教材分析、学生分析、我的思考几个方面进行深入的分析,从而做到心中有数,设计的教案更有针对性和实效性。如:第二章中的案例4“一个数的几分之几是多少”的教学设计中,教师的学生分析,设置了两个题目做了调研,题目一:小明有6个苹果,小立的苹果个数是小明的2/3,小立有几个苹果?题目二:如果列式为6×2/3,你认为对吗?为什么?调研后教师通过统计表的形式对统计结果及时进行统计,根据数据能更有效地进行教学设计。紧接着教师作出思考。这对于我今后的教学设计非常有指导意义,那就是在进行教学设计时首先要做好充分的准备工作,备教材及课标要求,备学生(进行一些调研及数据分析)、进行深入思考,同时把它们融入到课件制作中去,这样的教学设计才更加有效。
三、几点较为深刻的感悟
1、将“双基”拓展为“四基”。小学生通过语文学习不仅仅要获得必备的语言知识和技能,更重要的是在学习过程中积累和运用学习经验,新增加的“双基”,特别是“基本实践活动”更加强调学生的主体体验,突出了以学生为本的基本理念。提出基本思想、基本活动的原因,则是为了切实发展学生的实践能力和创新精神,特别是创新精神在新时代发展中尤为重要。
2、作为教师,思想观念要与时俱进,许多新课程标准的理念都需要教师在心里扎下根:比如:以学生为本,一切为了学生的发展;倡导学生自主、合作、探究的学习模式;教师不能只靠课本,而是成为课程的开发者,教学的组织者;不断营造师生平等的班级氛围;倡导师生平等对话合作交流等。在具体教学实施过程中把学习的主动权还给学生,引导他们潜心阅读,静心涵泳,用心体会。用我们新的视界和才识赋予学生新的环境与“装备”,促进学生的全面发展。
通过学习小学数学《课程标准案例式导读与学习内容要点》,我对《2011年版》新课程标准有了进一步的认识,以上就是我自学《课程标准案例式导读与学习内容要点》心得体会,一篇篇鲜活的案例分析让我们一线教师觉得亲切,此书对于我今后的教学设计及教学实践有着深刻的指导意义。
第四篇:《课程标准案例式导读与学习内容要点》一书的学习心得
《课程标准案例式导读与学习内容要点》一书的学习心得
按校本培训学习要求,我利用空余时间自学了《课程标准案例式导读与学习内容要点》(小学语文)一书,受益匪浅,现将我的学习心得体会总结如下:
一、把握整体结构,理清脉络。
本书共分有十个章节,同时附有学习内容要点。第一章为“语文新课程总述”,阐述了本世纪初启动的基础教育课程改革颁布实施的《全日制义务教育语文课程标准》对中国的社会、经济所产生的巨大变化以及社会所需要的关注。将“课程基本性质的确认”、“课程基本理念的坚持”、“课程设计的调整与完善”进行了解读,在解读的同时并附有案例说明。第二~六章分别以“识字写字教学”、“阅读教学”、“习作教学”、“口语交际教学”“综合性学习”等五个方面进行解读与案例分析,所给出的一些案例用于解读《2011年版》中变化较大或教学中的热点或难点问题。第七章为“教学建议”,这一部分内容再次重申了教学实施的原则、方法和策略,其要求是:
一、发挥师生双方的主动性和创造性,二、体现语文课程的实践性和综合性,三、重视能力发展和情意导向的融洽,四、培养学生的创新精神和实践能力。第八章为“评价建议”明确指出了评价目的要科学、全面。导读中从四个方面来加以说明:
一、评价的多种功能,二、评价方式的多样,三、评价主体的多元与互动,四、评价的整体性和综合性。第九章为“教材编写建议”,说明了语文教材的科学特性,具有引领学生的作用,鼓励学生课外阅读的兴趣。第十章为“课程资源开发与利用”最后附有学习要点并作出具体解释。
二、案例式解都是亮点,呈现对新课标理解的立体图景。
在每一章的每一节中,都安排了“案例”,这些案例都是用来解读《2011年版》中变化较大或教学中的热点或难点问题。“案例式”,即将新修订课标的解读与教育教学实践有机结合,将课标解读与教师一些的工作习惯、话语习惯、思维习惯融会贯通,也就是真正做到让教师喜闻乐见、即学即用。理论与案例,呈现了一幅幅对新课标理解的立体图景。案例基本分为教学背景分析、学习目标、教学过程设计、学习效果评价等方面,特别是教学背景分析这一项,值得我们去学习与应用。在教学背景分析这一项里,教者从课程标准分析、教材分析、学生分析、我的思考几个方面进行深入的剖析,从而做到心中有数,设计的教案更有针对性和实用性。如:第四章中的“继承‘以说促写’、‘读写结合’的传统经验”案例“写话课《我喜爱的苹果》”的教学设计中,教师将本次教学分为四个步骤:分块观察→分块说话→整体连贯说话→写一段话。从说到写,先说后写做到言之有序,达到文之成理。在儿童学习写作的初级阶段口头语言是“敲门砖”,是通向书面语言的一条快捷通道。只有通过说写结合的训练,才是更有效的教学。
三、撷取一些片断,与大家分享
1、将“双基”拓展为“四基”。学生通过语文学习不仅仅要获得必需的知识和技能,更重要的是在学习过程中积累和运用,新增加的“双基”,特别是“基本实践活动”更加强调学生的主体体验,体现了以学生为本的基本理念。提出基本思想、基本活动的原因,切实发展学生的实践能力和创新精神,特别是创新精神。
2、作为教师,要学会等待学生、善待学生、期待学生。等待学生,是为学生提供思考的环境,创设合适的情境,留足探索的时间,鼓励学生独立思考、表达自己的想法,鼓励学生敢于提出问题。善待学生,对于学生可能看起来有些稚嫩甚至可能是“胡思乱想”的念头,教师要鼓励学生大胆表达,捕捉其中的价值。期待学生,教给学生思考的方法,不断地激励学生,必要时指引进一步思考的方向。总之,教师要学会“留白”,教师有时要学会变得“拙”一些,教师的“拙”换来的可能是学生的精彩。
3、《标准》指出:“现代社会要求公民具备良好的人文素养和科学素养,具备创新精神、合作意识和开放的视野,具备包括阅读理解与表达交流在内的多方面的基本能力,以及运用现代技术搜集和处理信息的能力。语文教育应该而且能够为培养和造就一代新人发挥重要作用。”同时又提出,“语文课程应为提高学生道德品质(思想道德素质)和科学文化素养,弘扬和培育民族精神,增强民族创造力和凝聚力,发挥积极的作用。”。
通过学习《课程标准案例式导读与学习内容要点》,我对《2011年版》新课程标准有了进一步的认识,一篇篇鲜活的案例分析让我们一线教师觉得亲切,此书对于我今后的教学设计及教学有着深刻的指导意义。
第五篇:初中数学新课程标准
初中数学新课程标准 第一部分 前 言
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛 应用的过程。20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。数学可以帮助人们更好 地 探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收 集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考 虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
一、基本理念
1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数 学教育面向全体
学生,实现:
--人人学有价值的数学;
--人人都能获得必需的数学;
--不同的人在数学上得到不同的发展。
2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理 和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想 和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文
明的重要组成部分。
3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利 于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富 有个性的过程。
4.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之 上。教师应激发 学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经
验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
5.评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教 学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活 动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
6.现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式 产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作 为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更 多的精力投入到现实的、探索性的数学活动中去。
二、设计思路
(一)关于学段
为了体现义务教育阶段数学课程的整体性,《全日制义务教育数学课程标准(实验 稿)》(以下简称 《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段:
第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
(二)关于目标
根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,《标准》明 确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度等四个方
面作出了进一步的阐述。
《标准》中不仅使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目 标动词,而且使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性 目标动词,从而更好地体现了《标准》对学生在数学思考、解决问题以及情感与态度等方面 的要
求。
知识技能目标 了解(认识)能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体 情境中辨认出这一对象。
理解 能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
掌握 能在理解的基础上,把对象运用到新的情境中。
灵活运用 能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
过程性目标 经历(感受)在特定的数学活动中,获得一些初步的经验。
体验(体会)参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。
探索 主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与
其他对象的区别和联系。
(三)关于学习内容 在各个学段中,《标准》安排了“数与代数” “空间与图形” “统计与概率” “实践与 综合应用”四个学习领域。课程内容的学习,强调学生的数学活动,发展学生的数感、符号 感、空间观念、统计观念,以及应用意识与推理能力。
数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情 境中把握数的相对 大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
空间观念主要表现在:能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进 行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。
统计观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在 现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。
为了体现数学课程的灵活性和选择性,《标准》在内容标准中仅规定了学生在相应学段应该达到的基本水平,教材编者及各地区、学校,特别是教师应根据学生的学习愿望及其发展的可能性,实施因材施教。同时,《标准》并不规定内容的呈现顺序和形式, 教材可以有多种编排方式。
(四)关于实施建议
《标准》针对教学、评价、教材编写、课程资源的利用与开发提出了建议,供有关人员参考,以保证《标准》的顺利实施。第二部分 课程目标
一、总体目标
通过义务教育阶段的数学学习,学生能够:
● 获得适应未来社会生活和进一步发展所必需的重要数学知 识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;
● 初步学会运用数学的思维方式去观察、分析现实社会,去 解决日常生活中和其他学科学习中的问题,增强应用数学的意识;
● 体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;
● 具有初步的创新精神和实践能力,在情感态度和一般能力 方面都能得到充分发展。
具体阐述如下:
知识与技能
● 经历将一些实际问题抽象为数与代数问题的过程,掌 握数与代数的基础知识和基本技能,并能解决简单的问题。
● 经历探究物体与图形的形状、大小、位置关系和变换的过程,掌 握空间与图形的基础知识和基本技能,并能解决简单的问题。
● 经历提出问题、收集和处理数据、作出决策和预测的过程,掌握 统计与概率的基础知识和基本技能,并能解决简单的问题。
数学思考
● 经历运用数学符号和图形描述现实世界的过程,建立 初步的数感和符号感,发展抽象思维。
● 丰富对现实空间及图形的认识,建立初步的空间观念,发展形象 思维。● 经历运用数据描述信息、作出推断的过程,发展统计观念。
● 经历观察、实验、猜想、证明等数学活动过程,发展合情推理能 力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。
解决问题
● 初步学会从数学的角度提出问题、理解问题,并能综合 运用所学的知识和技能解决问题,发展应用意识。
● 形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。● 学会与人合作,并能与他人交流思维的过程和结果。● 初步形成评价与反思的意识。情感与态度
● 能积极参与数学学习活动,对数学有好奇心与求知欲。
● 在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
● 初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
● 形成实事求是的态度以及进行质疑和独立思考的习惯。以上四个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用,它 们是在丰富多彩的数学活动中实现的。其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提。
二、学段目标
第一学段(1~3年级)第二学段(4~6年级)第三学段(7~9年级)知识与技能
● 经历从日常生活中抽象出数的过程,认识万以 内的数、小数、简单的 分数和常见的量;了解四则运算的意义,掌握必要的运算(包括估算)技能。
● 经历直观认识简单几何体和平面图形的过程,了解简单几何体和平面图形,感受平移、旋转、对 称现象,能初步描述物体的相对位置,获得初步的测量(包括估测)、识图、作图等技能。
● 对数据的收集、整理、描述和分析过程有所体验,掌握一些简单 的数据处理技能;初步感受不确定现象
● 经历从现实生活中抽象出数及简单数量关系的过程,认识亿以内的数,了解分数、百分 数、负数的意义,掌握必要的运算(包括估算)技能;探索给定事物中隐含的规律,会用方程表示简单的数量关系,会解简单的方程。
● 经历探索物体与图形的形状、大小、运动和位置关系的过程,了 解简单几何体和平面图形的 基本特征,能对简单图形进行变换,能初步确定物体的位置,发展测量(包括估测)、识图、作图等技能。
● 经历收集、整理、描述和分析数据的过程,掌握一些数据处理技 能;体验事件发生的等可能性、游戏规则的公平性,能计算一些简单事件发生的可能性。
● 经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函 数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。
● 经历探索物体与图形的基本性质、变换、位置关系的过程,掌握 三角形、四边形、圆的 基本性质以及平移、旋转、轴对称、相似等的基本性质,初步认识投影与视图,掌握基本的识图、作图等技能;体会证明的必要性,能证明三角形和四边形的基本性质,掌握基本的推 理技能。● 从事收集、描述、分析数据,作出判断并进行交流的活动,感受 抽样的必要性,体会用 样本估计总体的思想,掌握必要的数据处理技能;进一步丰富对概率的认识,知道频率与概率的关系,会计算一些事件发生的概率
数学思考
● 能运用生活经验,对有关的数字信息作出解释,并初步学会用具体的数描述现实世界中的 简单现象。
●在对简单物体和图形的形状、大小、位置关系、运动的探索过程中,发展空间观念。●在教师的帮助下,初步学会选择有用信息进行简单的归纳与类比。●在解决问题过程中,能进行简单的、有条理的思考。
● 能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描 述并解决现实世界中的简单问题.●在探索物体的位置关系、图形的特征、图形的变换以及设计图案的过程中,进一步发展空间观念。
●能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。
●在解决问题过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明。
● 能对具体情境中较大的数字信息作出合理的解释和推断,能用代数式、方程、不等式、函数 刻画事物间的相互关系。
●在探索图形的性质、图形的变换以及平面图形与空间几何体的相互转换等活动过程中,初步建立空间观念,发展几何直觉。
●能收集、选择、处理数学信息,并作出合理的推断或大胆的猜测。
●能用实例对一些数学猜想作出检验,从而增加猜想的可信程度或推翻猜想。
●体会证明的必要性,发展初步的演绎推理能力。解决问题
●能在教师指导下,从日常生活中发现并提出简单的数学问题。●了解同一问题可以有不同的解决办法。●有与同伴合作解决问题的体验。
●初步学会表达解决问题的大致过程和结果。
●能从现实生活中发现并提出简单的数学问题。
●能探索出解决问题的有效方法,并试图寻找其他方法。●能借助计算器解决问题。
●在解决问题的活动中,初步学会与他人合作。
●能表达解决问题的过程,并尝试解释所得的结果。
●具有回顾与分析解决问题过程的意识。
●能结合具体情境发现并提出数学问题。●尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异。
●体会在解决问题的过程中与他人合作的重要性。
●能用文字、字母或图表等清楚地表达解决问题的过程,并解释结果的合理性。
●通过对解决问题过程的反思,获得解决问题的经验。
情感与态度
●在他人的鼓励与帮助下,对身边与数学有关的某些事物有好奇心,能够积极参与生动、直观的数学活动。
●在他人的鼓励与帮助下,能克服在数学活动中遇到的某些困难,获得成功的体验,有学好数学的信心。
●了解可以用数和形来描述某些现象,感受数学与日常生活的密切联系。●经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性。● 在他人的指导下,能够发现数学活动中的错误并及时改正。
●对周围环境中与数学有关的某些事物具有好奇心,能够主动参与教师组织的数学活动。●在他人的鼓励与引导下,能积极地克服数学活动中遇到的困难,有克服困难和运用知识解 决问题的成功体验,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得 不断的进步。
●体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。
●通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性。
●对不懂的地方或不同的观点有提出疑问的意识,并愿意对数学问题进行讨论,发现错误能及时改正。
●乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。●敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。
●体验数、符号和图形是有效地描述现实世界的重要手段,认识到数学是解决 实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。
●认识通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学 活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。
●在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解;能从交流中获益。第三部分 内容标准
本部分分别阐述各个学段中“数与代数” “空间与图形” “统计与概率” “实践与综合应用”四个领域的内容标准。
“数与代数”的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。
“空间与图形”的内容主要涉及现实世界中的物体、几何体和平面图形的形状、大小、位置关系及其变换,它是人们更好地认识和描述生活空间并进行交流的重要工具。
“统计与概率”主要研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的推断和预测。
“实践与综合应用”将帮助学生综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题,以发展他们解决问题的能力,加深对“数与代数” “空间与图形” “统计与概率”内容的理解,体会各部分内容之间的联系。
内容结构表
学段 第一学段(1~3年级)第二学段(4~6年级)第三学段(7~9年级)
数与代数
●数的认识●数的运算●常见的量 ●探索规律●数的认识 ●数的运算
●式与方程●探索规律●数与式 ●方程与不等式●函数●空间与图形 ●图形的认识 ●测量●图形与变换●图形与位置●图形的认识●测量●图形与变换●图形与位置●图形的认识●图形与变换●图形与坐标●图形与证明 ●统计与概率 ●数据统计活动初步 ●不确定现象●简单数据统计过程 ●可能性●统计 ●概率●实践与综合应用 ●实践活动 ●综合应用 ●课题学习
第三学段(7~9年级)
一、数与代数
在本学段中,学生将学习实数、整式和分式、方程和方程组、不等式和不等式组、函数 等知识,探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效地表示、处理和交流数量关系以及变化规律的工具,发展符号感,体会数学与现实生活的紧密联系,增强应用 意识,提高运用代数知识与方法解决问题的能力。
在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从 实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程,应加强方程、不等式、函数等内容的联系,介绍有关代数内容的几何背景;应避免繁琐的运算。(一)具体目标
1.数与式(1)有理数
①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不 含字母)。
③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。④理解有理数的运算律,并能运用运算律简化运算。⑤能运用有理数的运算解决简单的问题。
⑥能对含有较大数字的信息作出合理的解释和推断。[参见例1](2)实数
①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。
②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某 些数的立方根,会用计算器求平方根和立方根。
③了解无理数和实数的概念,知道实数与数轴上的点一一对应。④能用有理数估计一个无理数的大致范围。[参见例2]
⑤了解近似数与有效数字的概念;在解决实际问题中,能用计算器进行近似计算,并按问 题的要求对结果取近似值。
⑥了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则 运算(不要求分母有理化)。(3)代数式
①在现实情境中进一步理解用字母表示数的意义。
②能分析简单问题的数量关系,并用代数式表示。[参见例3与例4] ③能解释一些简单代数式的实际背景或几何意义。[参见例5]
④会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值 进行计算。
(4)整式与分式
①了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。②了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。
③会推导乘法公式:(a+b)(a-b)= a2-b2;(a+b)2 = a2+2ab+ b2,了解公式的几何背景,并能进行简单计算。
④会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。
⑤了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算。[参见例6]
2.方程与不等式(1)方程与方程组 ①能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数 学模型。
②经历用观察、画图或计算器等手段估计方程解的过程。[参见例7]
③会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中 的分式不超过两个)。
④理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的 一元二次方程。⑤能根据具体问题的实际意义,检验结果是否合理。(2)不等式与不等式组
①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。
②会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组 成的不等式组,并会用数轴确定解集。
③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单 的问题。3.函数
(1)探索具体问题中的数量关系和变化规律[参见例8](2)函数
①通过简单实例,了解常量、变量的意义。
②能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。③能结合图像对简单实际问题中的函数关系进行分析。[参见例9]
④能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。⑤能用适当的函数表示法刻画某些实际问题中变量之间的关系。[参见例10] ⑥结合对函数关系的分析,尝试对变量的变化规律进行初步预测。[参见例11](3)一次函数
①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解 其性质(k>0或k<0时,图象的变化情况 =。③理解正比例函数。
④能根据一次函数的图象求二元一次方程组的近似解。⑤能用一次函数解决实际问题。(4)反比例函数
①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。②能画出反比例函数的图象,根据图象和解析表达式y=kx(k≠0)探索并理解其性质(k>0或k<0时,图象的变化)。
③能用反比例函数解决某些实际问题。(5)二次函数
①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决 简单的实际问题。
④会利用二次函数的图象求一元二次方程的近似解。