第一篇:公务员考试--行测数字推理题解题技巧大全及经典题型总结
第一部分:数字推理题的解题技巧
行政能力倾向测试是公务员(civil servant)考试必考的一科,数字推理题又是行政测试中一直以来的固定题型。如果给予足够的时间,数字推理并不难;但由于行政试卷整体量大,时间短,很少有人能在规定的考试时间内做完,尤其是对于文科的版友们来说,数字推理、数字运算(应用题)以及最后的资料分析是阻碍他们行政拿高分的关卡。并且,由于数字推理处于行政A类的第一项,B类的第二项,开头做不好,对以后的考试有着较大的影响。应广大版友,特别是MM版友的要求,甘蔗结合杨猛80元书上的习题,把自己的数字推理题解题心得总结出来。如果能使各位备考的版友对数字推理有所了解,我在网吧花了7块钱打的这篇文章也就值了。
数字推理考察的是数字之间的联系,对运算能力的要求并不高。所以,文科的朋友不必担心数学知识不够用或是以前学的不好。只要经过足够的练习,这部分是可以拿高分的,至少不会拖你的后腿。抽根烟,下面开始聊聊。
一、解题前的准备
1.熟记各种数字的运算关系。
如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。这是迅速准确解好数字推理题材的前提。常见的需记住的数字关系如下:
(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144
13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。当看到这些数字时,立刻就能想到平方立方的可能性。熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。如 216,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样 215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。
2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。根号运算掌握简单规律则可,也不难。3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。
二、解题方法
按数字之间的关系,可将数字推理题分为以下十种类型: 1.和差关系。又分为等差、移动求和或差两种。
(1)等差关系。这种题属于比较简单的,不经练习也能在短时间内做出。建议解这种题时,用
口算。
12,20,30,42,()127,112,97,82,()
3,4,7,12,(),28(2)移动求和或差。从第三项起,每一项都是前两项之和或差,这种题初次做稍有难度,做多 了也就简单了。1,2,3,5,(),13 A 9
B 1C 8
D7 选C。1+2=3,2+3=5,3+5=8,5+8=13 2,5,7,(),19,31,50 A 1
2B 1
3C 10
D11 选A 0,1,1,2,4,7,13,()A 22 B 23 C 24 D 25 选C。注意此题为前三项之和等于下一项。一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。5,3,2,1,1,()A-3 B-2
C 0
D2 选C。
2.乘除关系。又分为等比、移动求积或商两种
(1)等比。从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。8,12,18,27,(40.5)后项与前项之比为1.5。6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,3(2)移动求积或商关系。从第三项起,每一项都是前两项之积或商。2,5,10,50,(500)100,50,2,25,(2/25)
3,4,6,12,36,(216)此题稍有难度,从第三项起,第项为前两项之积除以2 1,7,8,57,(457)
后项为前两项之积+1 3.平方关系
1,4,9,16,25,(36),49
66,83,102,123,(146)
8,9,10,11,12的平方后+2 4.立方关系
1,8,27,(81),125
3,10,29,(83),127
立方后+2
0,1,2,9,(730)
有难度,后项为前项的立方+1 5.分数数列。一般这种数列出难题较少,关键是把分子和分母看作两个不同的数列,有的还需进
行简单的通分,则可得出答案
1/
24/
39/
416/
525/6
(36/7)
分子为等比,分母为等差
2/3
1/2
2/5
1/3(1/4)
将1/2化为2/4,1/3化为2/6,可知
下一个为2/8 6.带根号的数列。这种题难度一般也不大,掌握根号的简单运算则可。限于计算机水平比较烂,打不出根号,无法列题。7.质数数列
2,3,5,(7),11 4,6,10,14,22,(26)
质数数列除以2 20,22,25,30,37,(48)后项与前项相减得质数数列。8.双重数列。又分为三种:(1)每两项为一组,如
1,3,3,9,5,15,7,(21)第一与第二,第三与第四等每两项后项与前项之比为3
2,5,7,10,9,12,10,(13)每两项之差为3
1/7,14,1/21,42,1/36,72,1/52,()两项为一组,每组的后项等于前项倒数*2(2)两个数列相隔,其中一个数列可能无任何规律,但只要把握有规律变化的数列就可得出结果。
22,39,25,38,31,37,40,36,(52)由两个数列,22,25,31,40,()和39,38,37,36组成,相互隔开,均为等差。
34,36,35,35,(36),34,37,(33)由两个数列相隔而成,一个递增,一个递减(3)数列中的数字带小数,其中整数部分为一个数列,小数部分为另一个数列。
2.01, 4.03,8.04,16.07,(32.11)
整数部分为等比,小数部分为移动求和数列。双重数列难题也较少。能看出是双重数列,题目一般已经解出。特别是前两种,当数字的个数超过7个时,为双重数列的可能性相当大。
9.组合数列。
此种数列最难。前面8种数列,单独出题几乎没有难题,也出不了难题,但8种数列关系两两组合,变态的甚至三种关系组合,就形成了比较难解的题目了。最常见的是和差关系与乘除关系组合、和差关系与平方立方关系组合。只有在熟悉前面所述8种关系的基础上,才能较好较快地解决这类题。
1,1,3,7,17,41()
A 89 B 99 C 109 D 119 选B。此为移动求和与乘除关系组合。第三项为第二项*2+第一项
65,35,17,3,()A
1B
2C 0
D 4 选A。平方关系与和差关系组合,分别为8的平方+1,6的平方-1,4的平方+1,2的平方-1,下一个应为0的平方+1=1 4,6,10,18,34,()
A 50
B 6
4C 66
D 68 选C。各差关系与等比关系组合。依次相减,得2,4,8,16(),可推知下一个为32,32+34=66 6,15,35,77,()A 106 B 117 C 136 D 163 选D。等差与等比组合。前项*2+3,5,7依次得后项,得出下一个应为77*2+9=163 2,8,24,64,()
A 160 B 512
C 124
D 164 选A。此题较复杂,幂数列与等差数列组合。2=1*2的1次方,8=2*2的平方,24=3*2的3次方,64=4*2的4次方,下一个则为5*2的5次方=160 0,6,24,60,120,()
A 186 B 210 C 220 D 226 选B。和差与立方关系组合。0=1的3次方-1,6=2的3次方-2,24=3的3次方-3,60=4的3次方-4,120=5的3次方-5。
1,4,8,14,24,42,()A 76
B 66
C 64
D68 选A。两个等差与一个等比数列组合 依次相减,得3,4,6,10,18,()再相减,得1,2,4,8,(),此为等比数列,下一个为16,倒推可知选A。
10.其他数列。
2,6,12,20,()
A 40
B 32
C 30
D 28 选C。2=1*2,6=2*3,12=3*4,20=4*5,下一个为5*6=30
1,1,2,6,24,()
A 48 B 96 C 120 D 144 选C。后项=前项*递增数列。1=1*1,2=1*2,6=2*3,24=6*4,下一个为120=24*5
1,4,8,13,16,20,()
A20
B 2
5C 27
D28 选B。每三项为一重复,依次相减得3,4,5。下个重复也为3,4,5,推知得25。
27,16,5,(),1/7 A 16
B 1
C 0
D 2 选B。依次为3的3次方,4的2次方,5的1次方,6的0次方,7的-1次方。
这些数列部分也属于组合数列,但由于与前面所讲的和差,乘除,平方等关系不同,故在此列为其他数列。这种数列一般难题也较多。
综上所述,行政推理题大致就这些类型。至于经验,我想,要在熟练掌握各种简单运算关系的基础上,多做练习,对各种常见数字形成一种知觉定势,或者可以说是条件反射。看到这些数字时,就能立即大致想到思路,达到这种程度,一般的数字推理题是难不了你了,考试时十道数字推理在最短的时间内正确完成7道是没有问题的。但如果想百尺竿头更进一步,还请继续多做难题。强烈建议继续关注我们的清风百合江苏公务员,在下次公务员考试之前,复习冲刺的时候,我们会把一些难题汇总并做解答,对大家一定会有更多的帮助的。讲了这么多,自我感觉差不多了。这篇文章主要是写给没有经过公务员考试且还未开始准备公务员考试的版友看的属于入门基础篇,高手见笑了。仓促完成,难免有不妥之处,欢迎版友们提出让我改善。目前准备江苏省公务员考试时间很充裕,有兴趣的朋友可以先开始看书准备。也欢迎有对推理题有不懂的朋友把题目帖出来,大家讨论。我不可能解出所有题,但我们清风版上人才众多,潜水者不计其数,肯定会有高手帮助大家。
第二部分:数学运算题型及讲解
一、对分问题 例题:
一根绳子长40米,将它对折剪断;再对剪断;第三次对折剪断,此时每根绳子长 多少米?
A、5B、10C、15D、20 解答:
答案为A。对分一次为2等份,二次为2×2等份,三次为2×2×2等份,答案可 知。无论对折多少次,都以此类推。
二、“栽树问题” 例题:
(1)如果一米远栽一棵树,则285米远可栽多少棵树? A、285B、286C、287D、284(2)有一块正方形操场,边长为50米,沿场边每隔一米栽一棵树,问栽满四周 可栽多少棵树?
A、200B、201C、202D、199 解答:
(1)答案为B。1米远时可栽2棵树,2米时可栽3棵树,依此类推,285米可栽 286棵树。
(2)答案为A。根据上题,边长共为200米,就可栽201棵树。但起点和终点重 合,因此只能栽200棵。以后遇到类似题目,可直接以边长乘以4即可行也答案。考生应掌握好本题型。
三、跳井问题 例题:
青蛙在井底向上爬,井深10米,青蛙每次跳上5米,又滑下来4米,象这样青蛙 需跳几次方可出井?
A、6次B、5次C、9次D、10次
解答:答案为A。考生不要被题中的枝节所蒙蔽,每次上5米下4米实际上就是每 次跳1米,因此10米花10次就可全部跳出。这样想就错了。因为跳到一定时候,就出了井口,不再下滑。
四、会议问题
例题:某单位召开一次会议。会前制定了费用预算。后来由于会期缩短了3天,因此节省了一些费用,仅伙食费一项就节约了5000元,这笔钱占预算伙食费的1/3。伙食费预算占会议总预算的3/5,问会议的总预算是多少元? A、20000B、25000C、30000D、35000 解答:答案为B。预算伙食费用为:5000÷1/3=15000元。15000元占总额预算的 3/5,则总预算为:15000÷3/5=25000元。本题系1997年中央国家机关及北京市公 务员考试中的原题(或者数字有改动)。
五、日历问题 例题:
某一天小张发现办公桌上的台历已经有7天没有翻了,就一次翻了7张,这7天 的日期加起来,得数恰好是77。问这一天是几号? A、13B、14C、15D、17 解答:答案为C。7天加起来数字之和为77,则平均数11这天正好位于中间,答案 由此可推出。
六、其他问题 例题:
(1)在一本300页的书中,数字“1”在书中出现了多少次?
A、140B、160C、180D、120(2)一个体积为1立方米的正方体,如果将它分为体积各为1立方分米的正方体,并沿一条直线将它们一个一个连起来,问可连多长(米)? A、100B、10C、1000D、10000(3)有一段布料,正好做16套儿童服装或12套成人服装,已知做3套成人服装比 做2套儿童服装多用布6米。问这段布有多少米? A、24B、36C、48D、18(4)某次考试有30道判断题,每做对一道题得4分,不做或做错一道题倒扣2分,小周共得96分,问他做对了多少道题?
A、24B、26C、28D、25(5)树上有8只小鸟,一个猎人举枪打死了2只,问树上还有几只鸟?
A、6B、4C、2D、0 解答:
(1)答案为B。解题时不妨从个位、十位、百位分别来看,个位出现“1”的次数为 30,十位也为30,百位为100。
(2)答案为A。大正方体可分为1000个小正方体,显然就可以排1000分米长,1000 分米就是100米。考生不要忽略了题中的单位是米。
(3)答案为C。设布有X米,列出一元一次方程:X/6×3-X/2×2=6,解得X=48 米。
(4)答案为B。设做对了X道题,列出一元一次方程:4×X-(30-X)×2=96,解 得X=26。
(5)答案为D。枪响之后,鸟或死或飞,树上是不会有鸟了。
第三部分: 数字推理题的各种规律 一.题型:
□ 等差数列及其变式
【例题1】2,5,8,()
A 10 B 11 C 12 D 13
【解答】从上题的前3个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B。
【例题2】3,4,6,9,(),18
A 11 B 12 C 13 D 14
【解答】答案为C。这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目。顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,„„。显然,括号内的数字应填13。在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式。
□ 等比数列及其变式
【例题3】3,9,27,81()
A 243 B 342 C 433 D 135
【解答】答案为A。这也是一种最基本的排列方式,等比数列。其特点为相邻两个数字之间的商是一个常数。该题中后项与前项相除得数均为3,故括号内的数字应填243。
【例题4】8,8,12,24,60,()
A 90 B 120 C 180 D 240
【解答】答案为C。该题难度较大,可以视为等比数列的一个变形。题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,1.5,2,2.5,3,因此括号内的数字应为60×3=180。这种规律对于没有类似实践经验的应试者往往很难想到。我们在这里作为例题专门加以强调。该题是1997年中央国家机关录用大学毕业生考试的原题。
【例题5】8,14,26,50,()
A 76 B 98 C 100 D 104
【解答】答案为B。这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的2倍减2之后得到后一项。故括号内的数字应为50×2-2=98。
□ 等差与等比混合式
【例题6】5,4,10,8,15,16,(),()
A 20,18 B 18,32 C 20,32 D 18,32
【解答】此题是一道典型的等差、等比数列的混合题。其中奇数项是以5为首项、等差为5的等差数列,偶数项是以4为首项、等比为2的等比数列。这样一来答案就可以容易得知是C。这种题型的灵活度高,可以随意地拆加或重新组合,可以说是在等比和等差数列当中的最有难度的一种题型。
□ 求和相加式与求差相减式
【例题7】34,35,69,104,()
A 138 B 139 C 173 D 179
【解答】答案为C。观察数字的前三项,发现有这样一个规律,第一项与第二项相加等于第三项,34+35=69,这种假想的规律迅速在下一个数字中进行检验,35+69=104,得到了验证,说明假设的规律正确,以此规律得到该题的正确答案为173。在数字推理测验中,前两项或几项的和等于后一项是数字排列的又一重要规律。
【例题8】5,3,2,1,1,()
A-3 B-2 C 0 D 2
【解答】这题与上题同属一个类型,有点不同的是上题是相加形式的,而这题属于相减形式,即第一项5与第二项3的差等于第三项2,第四项又是第二项和第三项之差„„所以,第四项和第五项之差就是未知项,即1-1=0,故答案为C。
□ 求积相乘式与求商相除式
【例题9】2,5,10,50,()
A 100 B 200 C 250 D 500
【解答】这是一道相乘形式的题,由观察可知这个数列中的第三项10等于第一、第二项之积,第四项则是第二、第三两项之积,可知未知项应该是第三、第四项之积,故答案应为D。
【例题10】100,50,2,25,()
A 1 B 3 C 2/25 D 2/5
【解答】这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是2/25,即选C。
□ 求平方数及其变式
【例题11】1,4,9,(),25,36
A 10 B 14 C 20 D 16
【解答】答案为D。这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是1的平方,第二个数字是2的平方,第三个数字是3的平方,第五和第六个数字分别是5、6的平方,所以第四个数字必定是4的平方。对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的。
【例题12】66,83,102,123,()
A 144 B 145 C 146 D 147
【解答】答案为C。这是一道平方型数列的变式,其规律是8,9,10,11,的平方后再加2,故括号内的数字应为12的平方再加2,得146。这种在平方数列基础上加减乘除一个常数或有规律的数列,初看起来显得理不出头绪,不知从哪里下手,但只要把握住平方规律,问题就可以划繁为简了。
□ 求立方数及其变式
【例题13】1,8,27,()
A 36 B 64 C 72 D81
【解答】答案为B。各项分别是1,2,3,4的立方,故括号内应填的数字是64。
【例题14】0,6,24,60,120,()
A 186 B 210 C 220 D 226
【解答】答案为B。这也是一道比较有难度的题目,但如果你能想到它是立方型的变式,问题也就解决了一半,至少找到了解决问题的突破口,这道题的规律是:第一个数是1的立方减1,第二个数是2的立方减2,第三个数是3的立方减3,第四个数是4的立方减4,依此类推,空格处应为6的立方减6,即210。
□ 双重数列
【例题15】257,178,259,173,261,168,263,()
A 275 B 279 C 164 D 163
【解答】答案为D。通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小,„„。也就是说,奇数项的都是大数,而偶数项的都是小数。可以判断,这是两项数列交替排列在一起而形成的一种排列方式。在这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找。我们可以看到,奇数项是257,259,261,263,是一种等差数列的排列方式。而偶数项是178,173,168,(),也是一个等差数列,所以括号中的数应为168-5=163。顺便说一下,该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化。
两个数列交替排列在一列数字中,也是数字推理测验中一种较常见的形式。只有当你把这一列数字判断为多组数列交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经80%了。
□ 简单有理化式
二、解题技巧
数字推理题的解题方法
数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧,对解答数字推理问题大有帮助。
1快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。
2推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算。
3空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导。
4若自己一时难以找出规律,可用常见的规律来“对号入座”,加以验证。常见的排列规律有:
(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);
(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减。
(3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减;
如:2 4 8 16 32 64()
这是一个“公比”为2(即相邻数之间的比值为2)的等比数列,空缺项应为128。
(4)二级等差:相邻数之间的差或比构成了一个等差数列;
如:4 2 2 3 6 15
相邻数之间的比是一个等差数列,依次为:0.5、1、1.5、2、2.5。
(5)二级等比数列:相邻数之间的差或比构成一个等比数理;
如:0 1 3 7 15 31()
相邻数之间的差是一个等比数列,依次为1、2、4、8、16,空缺项应为63。
(6)加法规律:前两个数之和等于第三个数,如例题23;
(7)减法规律:前两个数之差等于第三个数;
如:5 3 2 1 1 0 1()
相邻数之差等于第三个数,空缺项应为-1。
(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;
(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含;
如:2 3 10 15 26 35()
1*1+1=2, 2*2-1=3,3*3+1=10,4*4-1=15......空缺项应为50。
(10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列。
如:1 2 6 15 31()
相邻数之间的差是完全平方序列,依次为1、4、9、16,空缺项应为31+25=56。4道最BT公务员考试数字推理题汇总 1、15,18,54,(),210
A 106 B 107 C 123 D 112 2、1988的1989次方+1989的1988的次方„„ 个位数是多少呢? 3、1/2,1/3,2/3,6/3,(),54/36
A 9/12, B 18/3 ,C 18/6 ,D 18/36 4、4,3,2,0,1,-3,()
A-6 , B-2 , C 1/2 ,D 0 5、16,718,9110,()
A 10110,B 11112,C 11102,D 10111 6、3/2,9/4,25/8,()
A 65/16, B 41/8, C 49/16, D 57/8 7、5,(),39,60,105.A.10 B.14 C.25 D.30 8、8754896×48933=()
A.428303315966 B.428403225876 C.428430329557 D.428403325968
9、今天是星期二,55×50天之后()。
A.星期一 B.星期二 C.星期三 D.星期四
10、一段布 料,正好做12套儿童服装或9套成人服装,已知做3套成人服装比做2套儿童服装多用布6米,这段布有多长?
A 24
B 36
C54
D 48
11、有一桶水第一次倒出其中的6分之一,第二次倒出3分之一,最后倒出4分之一,此时连水带桶有20千克,桶重为5千克,问桶中最初有多少千克水?
A 50 B 80 C 100 D 36
12、甲数比乙数大25%,则乙数比甲数小()
A 20%
B 30%
C 25%
D 33%
13、一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车? A B 8 C 6 D4
14、某校 转来6名新生,校长要把他们安排在三个班,每班两人,有多少中安排方法? A 18
B 24 C 36 D 46
15、某人把60000元投资于股票和债券,其中股票的年回报率为6%,债券的年回报率为10%。如果这个人一年的总投资收益为4200元,那么他用了多少钱买债券? A.45000 B.15000 C.6000 D.4800
16、一粮站原有粮食272吨,上午存粮增加25%,下午存粮减少20%,则此时的存
粮为()吨。
A.340
B.292
C.272
D.268 17、3 2 53 32()
A.7/5
B.5/6
C.3/5
D.3/4 18、17 126 163 1124()
19、-2,-1,1,5()29(2000年题)
A.17 B.15 C.13 D.11 20、5 9 15 17()
A 21
B 24
C 32
D 34
21、81 30 15 12(){江苏的真题} A10
B8
C13
D14 22、3,2,53,32,()A 75
B 5 6
C 35
D 34 23、2,3,28,65,()
A 214B 83C 414D 314 24、0,1,3,8,21,(),144 25、2,15,7,40,77,()A96,B126,C138,,D156 26、4,4,6,12,(),90 27、56,79,129,202()
A、331 B、269 C、304 D、333 28、2,3,6,9,17,()
A 19 B 27 C 33
D 45 29、5,6,6,9,(),90
A 12, B 15, C 18, D 21 30、16 17 18 20()
A21
B22
C23
D24 31、9、12、21、48、()32、172、84、40、18、()33、4、16、37、58、89、145、42、(?)、4、16、.....答案
1、答案是A 能被3整除嘛
2、答:应该也是找规律的吧,1988的4次个位就是6,六的任何次数都是六,所以,1988的1999次数个位和1988的一次相等,也就是8 后面那个相同的方法个位是1 忘说一句了,6乘8个位也是8
3、C(1/3)/(1/2)=2/3 以此类推
4、c两个数列 4,2,1-〉1/2(依次除以2);3,0,-3
5、答案是11112 分成三部分:
从左往右数第一位数分别是:5、7、9、11 从左往右数第二位数都是:1
从左往右数第三位数分别是:6、8、10、12
6、思路:原数列可化为1又1/2, 2又1/4, 3又1/8。故答案为4又1/16 = 65/16
7、答案B。5=2^2+1,14=4^2-2,39=6^2+3,60=8^2-4,105=10^2+5
8、答 直接末尾相乘,几得8,选D。、解题思路:从55是7的倍数减1,50是7的倍数加1,快速推出少1天。如果用55×50÷7=396余6,也可推出答案,但较费时
10、思路:设儿童为x,成人为y,则列出等式12X=9Y 2X=3Y-6 得出,x=3,则布为3*12=36,选B
11、答5/6*2/3*3/4X=15 得出,x=36 答案为D
12、已X,甲1.25X,结果就是0.25/1.25=20% 答案为A
13、B
14、无答案公布 sorry 大家来给些答案吧 15、0.06x+0.1y=4200 , x+y=60000, 即可解出。
答案为B 16、272*1.25*0.8=272 答案为C
17、分数变形:A 数列可化为:3/1 4/2 5/3 6/4 7/5
18、依次为2^3-1,3^3-1,„„,得出6^3-1
19、依次为2^3-1,3^3-1,„„,得出6^3-1 20、思路:5和15差10,9和17差8,那15和(?)差6 5+10=15 9+8=17 15+6=21 21、81/3+3=30,30/3+5=15,15/3+7=12,12/3+9=13 答案为1322
22、思路:小公的讲解
2,3,5,7,11,13,17.....变成2,3,53,32,75,53,32,117,75,53,32......3,2,(这是一段,由2和3组成的),53,32(这是第二段,由2、3、5组成的)75,53,32(这是第三段,由2、3、5、7组成的),117,75,53,32()这是由2、3、5、7、11组成的)
不是,首先看题目,有2,3,5,然后看选项,最适合的是75(出现了7,有了7就有了质数列的基础),然后就找数字组成的规律,就是复合型数字,而A符合这两个规律,所以才选A
2,3,5,后面接什么?按题干的规律,只有接7才是成为一个常见的数列:质数列,如果看BCD接4和6的话,组成的分别是2,3,5,6(规律不简单)和2,3,5,4(4怎么会在5的后面?也不对)
质数列就是由质数组成的从2开始递增的数列
23、无思路!暂定思路为:2*65+3*28=214,24、0+3=1*3,1+8=3*3,3+21=8*3,21+144=?*3。得出?=55。
25、这题有点变态,不讲了,看了没有好处
26、答案30。4/4=1,6/12=1/2,?/90=1/3
27、不知道思路,经过讨论:
79-56=23
129-79=50
202-129=73
因为23+50=73,所以下一项和差必定为50+73=123 ?-202=123,得出?=325,无此选项!
28、三个相加成数列,3个相加为11,18,32,7的级差 则此处级差应该是21,则相加为53,则53-17-9=27 答案,分别是27。
29、答案为C
思路: 5×6/5=6,6*6/4=9,6*9/3=18(5-3)*(6-3)=6(6-3)*(6-3)=9(6-3)*(9-3)=18
30、思路:
22、23结果未定,等待大家答复!
31、答案为129
9+3=12,12+3平方=21,21+3立方=48
32、答案为7
172/2-2=84
84/2-2=40
40/2-2=18
18/2-2=7
第四部分:数字推理题典!
4,18,56,130,()A.26 B.24 C.32 D.16 答案是B,各项除3的余数分别是1.0.2.1 0.对于1、0、2、1、0,每三项相加=>3、3、3 等差 1,3,4,8,16,()A.26 B.24 C.32 D.16 我选B 3-1=2 8-4=4 24-16=8 可以看出2,4,8为等比数列 1,1,3,7,17,41,()A.89
B.99
C.109
D.119 我选B 1*2+1=3 2*3+1=7 2*7+3=17 „
2*41+17=99 1,3,4,8,16,()A.26 B.24 C.32 D.16 我选 C 1+3=4 1+3+4=8 „
1+3+4+8=32 1,5,19,49,109,()。A.170 B.180 C 190 D.200
1*1+4=5 5*3+4=19 9*5+4=49 13*7+4=95 17*9+4=157 4,18,56,130,()A216
B217
C218
D219 我搜了一下,以前有人问过,说答案是A 如果选A的话,我又一个解释 每项都除以4=>取余数0、2、0、2、0 仅供参考~:)
1.256,269,286,302,()
A.2
54B.307
C.294
D.316
解析: 2+5+6=13
256+13=269
2+6+9=17
269+17=286 2+8+6=16
286+16=302 ?=302+3+2=307
2.72 , 36 , 24 , 18 ,()
A.12
B.16
C.14.4
D.16.4 解析:(方法一)
相邻两项相除,72
/
/
/
2/1
3/2
4/3(分子与分母相差1且前一项的分子是后一项的分母)接下来貌似该轮到5/4,而18/14.4=5/4.选C
(方法二)6×12=72,6×6=36,6×4=24,6×3 =18,6×X
现在转化为求X 12,6,4,3,X 12/6,6/4,4/3,3/X化简得2/1,3/2,4/3,3/X,注意前三项有规律,即分子比分母大一,则3/X=5/4 可解得:X=12/5 再用6×12/5=14.4
3.8 , 10 , 14 , 18 ,()
A.24
B.32
C.26
D.20 分析:8,10,14,18分别相差2,4,4,?可考虑满足2/4=4/?则?=8 所以,此题选18+8=26
4.3 , 11 , 13 , 29 , 31 ,()
A.52
B.53
C.54
D.55 分析:奇偶项分别相差11-3=8,29-13=16=8×2,?-31=24=8×3则可得?=55,故此题选D
5.-2/5,1/5,-8/750,()。
A 11/375
B 9/375
C 7/375
D 8/375 解析:-2/5,1/5,-8/750,11/375=> 4/(-10),1/5,8/(-750),11/375=> 分子 4、1、8、11=>头尾相减=>7、7 分母-10、5、-750、375=>分2组(-10,5)、(-750,375)=>每组第二项除以第一项=>-1/2,-1/2 所以答案为A
6.16 , 8 , 8 , 12 , 24 , 60 ,()A.90
B.120
C.180
D.240 分析:相邻两项的商为0.5,1,1.5,2,2.5,3,所以选180 10.2,3,6,9,17,()A.18
B.23
C.36
D.45 分析:6+9=15=3×5 3+17=20=4×5 那么2+?=5×5=25
所以?=23 11.3,2,5/3,3/2,()
A.7/5
B.5/6
C.3/5
D.3/4
分析:通分 3/1
4/2 5/3 6/4----7/5
13.20,22,25,30,37,()
A.39
B.4C.48
D.51
分析:它们相差的值分别为2,3,5,7。都为质数,则下一个质数为11 则37+11=48 16.3 ,10 ,11 ,(),127 A.44
B.52
C.66
D.78 解析:3=1^3+2 10=2^3+2 11=3^2+2 66=4^3+2 127=5^3+2 其中
指数成3、3、2、3、3规律
25.1,2/3,5/9,(1/2),7/15,4/9,4/9
A.1/2
B.3/4
C.2/13
D.3/7 解析:1/1、2/3、5/
9、1/2、7/
15、4/
9、4/9=>规律以1/2为对称=>在1/2左侧,分子的2倍-1=分母;在1/2时,分子的2倍=分母;在1/2右侧,分子的2倍+1=分母 31.5,5,14,38,87 ,()
A.167
B.168
C.169
D.170 解析:前三项相加再加一个常数×变量
(即:N1是常数;N2是变量,a+b+c+N1×N2)5+5+14+14×1=38 38+87+14+14×2=167
32.(),36,19,10,5,2 A.77
B.69
C.54
D.48 解析:5-2=3 10-5=5 19-10=9 36-19=17 5-3=2 9-5=4 17-9=8 所以X-17应该=16 16+17=33 为最后的数跟36的差 36+33=69 所以答案是 69
33.1,2,5,29,()A.34
B.846
C.866
D.37 解析:5=2^2+1^2
29=5^2+2^2
()=29^2+5^2
所以()=866,选c
34.-2/5,1/5,-8/750 ,()
A.11/375
B.9/375
C.7/375
D.8/375 解析:把1/5化成5/25
先把1/5化为5/25,之后不论正负号,从分子看分别是:2,5,8
即:5-2=3,8-5=3,那么?-8=3
?=11
所以答案是11/375 36.1/3,1/6,1/2,2/3,()解析:1/3+1/6=1/2 1/6+1/2=2/3 1/2+2/3=7/6 41.3 , 8 , 11 , 9 , 10 ,()
A.10
B.18
C.16
D.14 解析:答案是A 3, 8, 11, 9, 10, 10=> 3(第一项)×1+5=8(第二项)3×1+8=11 3×1+6=9 3×1+7=10 3×1+10=10 其中 5、8、6、7、7=> 5+8=6+7 8+6=7+7
42.4,3,1,12,9,3,17,5,()
A.12
B.13
C.14
D.1
5解析: 本题初看较难,亦乱,但仔细分析,便不难发现,这是一道三个数字为一组的题,在每组数字中,第一个数字是后两个数字之和,即4=3+1,12=9+3,那么依此规律,()内的数字就是17-5=12。
故本题的正确答案为A。
44.19,4,18,3,16,1,17,()
A.5
B.4
C.3
D.2解析:本题初看较难,亦乱,但仔细分析便可发现,这是一道两个数字为一组的减法规律的题,19-4=15,18-3=15,16-1=15,那么,依此规律,()内的数为17-2=15。故本题的正确答案为D。
45.1,2,2,4,8,()
A.280
B.320
C.340
D.360
解析:本题初看较难,但仔细分析后便发现,这是一道四个数字为一组的乘法数列题,在每组数字中,前三个数相乘等于第四个数,即2×5×2=20,3×4×3=36,5×6×5=150,依此规律,()内之数则为8×5×8=320。故本题正确答案为B。
46.6,14,30,62,()
A.85
B.92
C.126
D.250
解析:本题仔细分析后可知,后一个数是前一个数的2倍加2,14=6×2+2,30=14×2+2,62=30×2+2,依此规律,()内之数为62×2+2=126。
故本题正确答案为C。
48.12,2,2,3,14,2,7,1,18,3,2,3,40,10,(),4A.4
B.3
C.2
D.1解析:本题初看很乱,数字也多,但仔细分析后便可看出,这道题每组有四个数字,且第一个数字被第二、三个数字连除之后得第四个数字,即12÷2÷2=3,14÷2÷7=1,18÷3÷2=3,依此规律,()内的数字应是40÷10÷4=1。故本题的正确答案为D。
49.2,3,10,15,26,35,()
A.40
B.45
C.50
D.5解析:本题是道初看不易找到规律的题,可试着用平方与加减法规律去解答,即2=12+1,3=22-1,10=32+1,15=42-1,26=52+1,35=62-1,依此规律,()内之数应为72+1=50。
故本题的正确答案为C。
50.7 ,9 ,-1 , 5 ,(-3)A.3
B.-3
C.2
D.-1 解析:7,9,-1,5,(-3)=>从第一项起,(第一项 减 第二项)×(1/2)=第三项
51.3,7,47,2207,()
A.4414
B 6621
C.8828
D.4870847
解析:本题可用前一个数的平方减2得出后一个数,这就是本题的规律。即7=32-2,47=72-2,22072-2=4870847,本题可直接选D,因为A、B、C只是四位数,可排除。而四位数的平方是7位数。故本题的正确答案为D。
52.4,11,30,67,()
A.126
B.127
C.128
D.129
解析:这道题有点难,初看不知是何种规律,但仔细观之,可分析出来,4=1^3+3,11=2^3+3,30=3^3+3,67=4^3+3,这是一个自然数列的立方分别加3而得。依此规律,()内之数应为5^3+3=128。
故本题的正确答案为C。
53.5 , 6 , 6/5 , 1/5 ,()A.6
B.1/6
C.1/30
D.6/25 解析:(方法一)头尾相乘=>6/
5、6/
5、6/5=>选D
(方法二)后项除以前项:6/5=6/5
1/5=(6/5)/6 ;()=(1/5)/(6/5);所以()=1/6,选b
54.22,24,27,32,39,()
A.40
B.42
C.50
D.52解析:本题初看不知是何规律,可试用减法,后一个数减去前一个数后得出:24-22=2,27-24=3,32-27=5,39-32=7,它们的差就成了一个质数数列,依此规律,()内之数应为11+39=50。
故本题正确答案为C。
55.2/51,5/51,10/51,17/51 ,()
A.15/51
B.16/51
C.26/51
D.37/5
1解析:本题中分母相同,可只从分子中找规律,即2、5、10、17,这是由自然数列1、2、3、4的平方分别加1而得,()内的分子为52+1=26。故本题的正确答案为C
56.20/9,4/3,7/9,4/9,1/4,()
A.5/36
B.1/6
C.1/9
D.1/14
4解析:这是一道分数难题,分母与分子均不同。可将分母先通分,最小的分母是36,通分后分子分别是20×4=80,4×12=48,7×4=28,4×4=16,1×9=9,然后再从分子80、48、28、16、9中找规律。80=(48-28)×4,48=(28-16)×4,28=(16-9)×4,可见这个规律是第一个分子等于第二个分子与第三个分子之差的4倍,依此规律,()内分数应是16=(9-?)×4,即(36-16)÷4=5。故本题的正确答案为A。
57.23,46,48,96,54,108,99,()
A.200
B.199
C.198
D.197
解析:本题的每个双数项都是本组单数项的2倍,依此规律,()内的数应为99×2=198。本题不用考虑第2与第3,第4与第5,第6与第7个数之间的关系。故本题的正确答案为C。
58.1.1,2.2,4.3,7.4,11.5,()
A.155
B.156
C.158
D.166
解析:此题初看较乱,又是整数又是小数。遇到此类题时,可将小数与整数分开来看,先看小数部分,依次为0.1,0.2,0.3,0.4,0.5,那么,()内的小数应为0.6,这是个自然数列。再看整数部分,即后一个整数是前一个数的小数与整数之和,2=1+1,4=2+2,7=4+3,11=7+4,那么,()内的整数应为11+5=16。故本题的正确答案为D。
59.0.75,0.65,0.45,()
A.0.78
B.0.88
C.0.55
D.0.96
解析:在这个小数数列中,前三个数皆能被0.05除尽,依此规律,在四个选项中,只有C能被0.05除尽。
故本题的正确答案为C。
60.1.16,8.25,27.36,64.49,()
A.65.25
B.125.64
C.125.81
D.125.0
1解析:此题先看小数部分,16、25、36、49分别是4、5、6、7自然数列的平方,所以()内的小数应为8.2=64,再看整数部分,1=13,8=23,27=33,64=43,依此规律,()内的整数就是5.3=125。故本题的正确答案为B。
61.2,3,2,(),6
A.4
B.5
C.7
D.8
解析:由于第2个2的平方=4,所以,这个数列就成了自然数列2、3、4、()、6了,内的数应当就是5了。
故本题的正确答案应为B。
62.25,16,(),4A.2
B.3
C.3
D.6
解析:根据 的原理,25=5,16=4,4=2,5、4、()、2是个自然数列,所以()内之数为3。故本题的正确答案为C。
63.1/2,2/5,3/10,4/17,()
A.4/24
B.4/25
C.5/26
D.7/26
解析:该题中,分子是1、2、3、4的自然数列,()内分数的分子应为5。分母2、5、10、17一下子找不出规律,用后一个数减去前一个数后得5-2=3,10-5=5,17-10=7,这样就成了公差为2的等差数列了,下一个数则为9,()内的分数的分母应为17+9=26。故本题的正确答案为C。
65.-2,6,-18,54,()
A.-162
B.-172
C.152
D.16
4解析:在此题中,相邻两个数相比6÷(-2)=-3,(-18)÷6=-3,54÷(-18)=-3,可见,其公比为-3。据此规律,()内之数应为54×(-3)=-162。故本题的正确答案为A。
66.7 , 9 ,-1 , 5 ,(-3)A.3
B.-3
C.2
D.-1 解析:7,9,-1,5,(-3)=>从第一项起,(第一项 减 第二项)×(1/2)=第三项
67.5 , 6 , 6/5 , 1/5 ,()A.6
B.1/6
C.1/30
D.6/2
5解析:头尾相乘=>6/
5、6/
5、6/5,选D
68.2,12,36,80,150,()
A.250
B.252
C.253
D.2
解析:这是一道难题,也可用幂来解答之
2=2×1的2次方,12=3×2的2次方,36=4×3的2次方,80=5×4的2次方,150=6×5的2次方,依此规律,()内之数应为7×6的2次方=252。故本题的正确答案为B。
69.0,6,78,(),15620 A.240
B.252
C.1020
D.7771 解析:0=1×1-1 6=2×2×2-2 78=3×3×3×3-3 ?=4×4×4×4×4-4 15620=5×5×5×5×5×5-5
答案是1020 选C
74.5 , 10 , 26 , 65 , 145 ,()
A.197
B.226
C.257
D.290 分析:2^2+1=5 3^2+1=10 5^2+1=26 8^2+1=65 12^2+1=145 17^2+1=290 纵向看2、3、5、8、12、17之间的差分别是1、2、3、4、5
75.
解析:观察可知,繁分数中共有12个分母数字较大的分数,按常规的通分方法显然行不通。若取最大值和最小值来讨论算式的取值范围,也较
找出算式的整数部分。
因此,S的整数部分是165。
76.65,35,17,3,(1)8平方加一,6平方减一,4平方加一,2平方减一,0平方加一。
77.23,89,43,2,(3)
取前三个数,分别提取个位和百位的相同公约数列在后面。
79.3/7,5/8,5/9,8/11,7/11,()A.11/14
B.10/13
C.15/17
D.11/12 解析:每一项的分母减去分子,之后分别是:
7-3=4
8-5=3
9-5=4
11-8=3
11-7=4 从以上推论得知:每一项的分母减去分子后形成一个4和3的循环数列,所以 推出下一个循环数必定为3,只有A选项符合要求,故答案为A。
80.1,2,4,6,9,(),18 A.11
B.12
C.13
D.14 分析:(1+2+4+6)-2×2=9
(2+4+6+9)-2×4=13
(13+6+9+4)-2×8=18 所以选C
85.1,10,3,5,()
A.11
B.9
C.12
D.4 分析
(一):两两相比,1/10,3/5通分,1/10,6/10,下组应该是11/10,故答案A 分析
(二):要把数字变成汉字,看笔画1、10、3、5、(4)一、十、三、五、四 88.1,2,5,29,()A.34
B.846
C.866
D.37 解析:5=2^2+1^2
29=5^2+2^2
()=29^2+5^2
所以()=866,选C
89.1 , 2 , 1 , 6 , 9 , 10 ,()A.13
B.12
C.19
D.17 解析:1+2+1=4=2平方 2+1+6=3平方 1+6+9=4平方 6+9+10=5平方
9+10+(?)=6平方
答案:17
90.1/2,1/6,1/12,1/30,()
A.1/42
B.1/40
C.11/42
D.1/50 解析:主要是分母的规律,2=1×2,6=2×3,12=3×4,30=5×6,?=6×7
所以答案是A
91.13 , 14 , 16 , 21 ,(), 76 A.23
B.35
C.27 解析:按奇偶偶排列,选项中只有22是偶数
92.1 , 2 , 2 , 6 , 3 , 15 , 3 , 21 , 4 ,()A.46
B.20
C.12
D.44 解析:2/1=2
6/2=3
15/3=5
21/3=7
44/4=11
93.3 , 2 , 3 , 7 , 18 ,()A.47
B.24
C.36
D.70 解析:第一项和第三项的和为中间项的三倍
94.4,5,(),40,104 A.7
B.9
C.11
D.13 解析:5-4=1^3 104-64=4^3 由此推断答案是13,因为:13-5=8,是2的立方;40-13=27,是3的立方,所以答案选D
95.0,12,24,14,120,16,()
A.280
B.32 C.64
D.336 解析:奇数项 1的立方-1
3的立方-3
5的立方-5
7的立方-7
96.3 , 7 , 16 , 107 ,()解析:答案是16×107-5 第三项等于前两项相乘减5
98.1 , 10 , 38 , 102 ,()
A.221
B.223
C.225
D.227 解析:2×2-3 4×4-6 7×7-11 11×11-19 16×16-31 3
6-3=3
11-6=5
19-11=8
31-19=12 5-3=2
8-5=3
12-8=4 100.0 ,22 ,47 ,120 ,(),195 解析:2 5 7 11 13 的平方,-4-3-2-1 0-1
答案是169
101.11,30,67,()
解析:2的立方加3,3的立方加3.......答案是128
102.102 ,96 ,108 ,84 ,132,()
解析:依次相差-
6、+
12、-
24、+
48、(-96)所以答案是 36
103.1,32,81,64,25,(),1,1/8 解析:1^6、2^5、3^4、4^3、5^
2、(6^1)、7^1、8^-1。答案是6
104.-2,-8,0,64,()解析:1^3×(-2)=-2
2^3×(-1)=-8
3^3×0=0
4^3×1=64
答案:5^3×2=250
105.2,3,13,175,()解析:(C=B^2+2×A)
13=3^2+2×2
175=13^2+2×3 答案: 30651=175^2+2×13
106.3 , 7 , 16 , 107,()解析:16=3×7-5 107=16×7-5 答案:1707=107×16-5
107.0,12,24,14,120,16,()A.280
B.32
C.64
D.336 解析:奇数项 1的立方-1
3的立方-3
5的立方-5
7的立方-7
108.16,17,36,111,448,()
A.639
B.758
C.2245
D.3465 解析:16×1=16 16+1=17,17×2=34 34+2=36,36×3=108 108+3=111,111×4=444 444+4=448,448×5=2240 2240+5=2245 110.5,6,6,9,(),90 A.1
2B.1
5C.18 D.21 解析:6=(5-3)×(6-3)
9=(6-3)×(6-3)
18=(6-3)×(9-3)
90=(9-3)×(18-3)
111.55 , 66 , 78 , 82 ,()
A.98
B.100
C.96
D.102 解析:56-5-6=45=5×9
66-6-6=54=6×9
78-7-8=63=7×9
82-8-2=72=8×9
98-9-8=81=9×9
112.1 , 13 , 45 , 169 ,()A.443
B.889
C.365
D.701 解析:1
由13的各位数的和1+3得
由45的各位数4+5 由169的各位数1+6+9
(25)
由B选项的889(8+8+9=25)
113.2,5,20,12,-8,(),10 A.7
B.8
C.12
D.-8 解析:本题规律:2+10=12;20+(-8)=12;12;所以5+(7)=12,首尾2项相加之和为12
114.59 , 40 , 48 ,(),37 , 18 A.29
B.32
C.44
D.43 解析:第一项减第二项等于19
第二项加8等于第三项
依次减19加8下去
115.1 , 2 , 1 , 6 , 9 , 10 ,()A.13
B.12
C.19
D.17 解析:1+2+1=4=2平方 2+1+6=3平方 1+6+9=4平方 6+9+10=5平方 9+10+()=6平方 答案17
116.1/3 , 5/9 , 2/3 , 13/21 ,()A.6/17
B.17/27
C.29/28
D.19/27
解析:1/3,5/9,2/3,13/21,(17/27)=>1/3,5/9,12/18,13/21,(17/27)每项分母与分子差=>2、4、6、8、10等差
117.1 , 2 , 1 , 6 , 9 , 10 ,()
A.13
B.12
C.19
D.17 解析:1+2+1=4 2+1+6=9 1+6+9=16 6+9+10=25 9+10+17=36
118.1 , 2/3 , 5/9 ,(), 7/15 , 4/9 , 4/9 解析:3/3 , 4/6 , 5/9 ,(6/12), 7/15 , 8/18
119.-7,0,1,2,9,()解析:-7等于-2的立方加1,0等于-1的立方加1,1等于0的立方加1,2等于1的立方加1,9等于2的立方加1,所以最后空填3的立方加1,即28
120.2,2,8,38,()A.76
B.81
C.144
D.182 解析: 后项=前项×5-再前一项
121.63,26,7,0,-2,-9,()解析:63=4^3-1 26=3^3-1 7=2^3-1 0=1^3-1-2=(-1)^3-1-9=(-2)3-1(-3)^3-1=-28
122.0,1,3,8,21,()解析:1×3-0=3 3×3-1=8 8×3-3=21 21×3-8=55
123.0.003,0.06,0.9,12,()解析:0.003=0.003×1 0.06=0.03×2 0.9=0.3×3 12=3×4 于是后面就是30×5=150
124.1,7,8,57,()解析:1^2+7=8 7^2+8=57 8^2+57=121
125.4,12,8,10,()解析::(4+12)/2=8
(12+8)/2=10
(8+10)/2=9
126.3,4,6,12,36,()
解析:后面除前面,两两相除得出4/3, 3/2, 2,3,X,我们发现A×B=C于是我们得到X=2×3=6于是36×6=216
127.5,25,61,113,()解析:25-5=20 61-25=20+16 113-61=36+16 x-113=52+16
129.9,1,4,3,40,()A.8
1B.80
C.121 D.120 解析:除于三的余数是011011
答案是121
130.5,5,14,38,87,()
A.167
B.168
C.169
D.170 解析:5+1^1-1=5 5+3^2=1
414+5^2-1=38 38+7^2=87 87+9^2-1=167 133.1 , 5 , 19 , 49 , 109 ,()A.170
B.180
C.190
D.200 解析:19-5+1=15 ①
②-①=21 49-19+(5+1)=36 ②
③-②=49 109-49+(19+5+1)=85 ③
④-③=70(70=21+49)?-109+(49+19+5+1)=④
④=155 ?=155+109-(49+19+5+1)=190
134.4/9 , 1 , 4/3 ,(), 12 , 36 解析:4/9 × 36 =16
× 12 =12
==>x=6
4/3 × x =8
/
135.2 , 7 , 16 , 39 , 94 ,()A.227
B.237
C.242
D.257 解析:第一项+第二项×2 =第三项
136.-26 ,-6 , 2 , 4 , 6 ,()A.8
B.10
C.12
D.14 解析:选D;-3的3次加1,-2的3次加2,-1的3次加3,0的3次加4, 1的3次加5,2的3次加6
137.1 , 128 , 243 , 64 ,()A.121.5
B.1/6
C.5
D.358 1/3 解析:1的9次方,2的7次方,3的5次方,6的三次方,后面应该是5的一次方
所以选C 138.5 , 14,38,87,()
A.167
B.168
C.169
D.170 解析:5+1^2-1=5 5+3^2=14 14+5^2-1=38
38+7^2=87 87+9^2-1=167 所以选A
139.1,2,3,7,46 ,()
A.2109
B.1289
C.322
D.147 解析:2^2-1=3 3^2-2=7 7^2-3=46
46^2-7=2109
140.0,1,3,8,22,63,()
解析:1×3-0=3 3×3-1=8 8×3-2=22 22×3-3=63 63×3-4=185 142.5 , 6 , 6 , 9 ,(), 90 A.12
B.15
C.18
D.21 解析:(5-3)×(6-3)=6..........(6-3)×(9-3)=18 选C 145.2 , 90 , 46 , 68 , 57 ,()
A.65
B.62.5
C.63
D.62 解析:前两项之和除以2为第三项,所以答案为62.5
146.20 , 26 , 35 , 50 , 71 ,()A.95
B.104
C.100
D.102 解析:前后项之差的数列为6 9
分别为3×2
3×3
3×5
3×7,则接下来的为3×11=33,71+33=104选B
147.18 , 4 , 12 , 9 , 9 , 20 ,(), 43 A.8
B.11
C.30
D.9 解析:奇数项,偶数项分别成规律。
偶数项为4×2+1=9,9×2+2=20,20×2+3=43 答案所求为奇数项,奇数项前后项差为6,3,等差数列下来便为0 则答案为9,选D
148.-1 , 0 , 31 , 80 , 63 ,(), 5 解析:0-(-1)=1=1^6 31-(-1)=32=2^5 80-(-1)=81=3^4
149.3 , 8 , 11 , 20 , 71 ,()
A.168
B.233
C.91
D.304 解析:把奇数项和偶数项分开看:3,11,71的规律是:(3+1)×3=11+1,(11+1)×6=71+18,20,168的规律可比照推出:2×8+4=20,20×8+8=168
150.2 , 2 , 0 , 7 , 9 , 9 ,()
A.13
B.12
C.18
D.17 解析:前三项之和分别是2,3,4,5的平方,所以C
151.8 , 8 ,(), 36 , 81 , 169 A.16
B.27
C.8
D.26 解析:8+8=16=4^2,后面分别是4,6,9,13的平方,即后项减前项分别是2,3,4的一组等差数列,选A
152.102 , 96 , 108 , 84 , 132 ,()解析:依次相差-
6、+
12、-
24、+
48、(-96)所以答案是 36
154.-2 ,-8 , 0 , 64 ,()解析:1^3×(-2)=-2
2^3×(-1)=-8
3^3×0=0
4^3×1=64
答案:5^3×2=250
155.2 , 3 , 13 , 175 ,()解析:(C=B^2+2×A)
13=3^2+2×2
175=13^2+2×3
答案: 30651=175^2+2×13
156.3 , 7 , 16 , 107 ,()解析:16=3^7-5 63-(-1)=64=4^3 24-(-1)=25=5^2 5-(-1)=6=6^1 选B
107=16^7-5
答案:1707=107^16-5
166.求32+62+122+242+42+82+162+322
A.2225
B.2025
C.1725
D.2125 解析:由勾股定理知 32+ 42 = 52 , 62 + 82 =102,122+ 162=202 242+322 = 402 所以:
32+62+122+242+42+82+162+322 =>52+102+202+402=>25+100+400+1600=2125 178.18 , 4 , 12 , 9 , 9 , 20 ,(), 43 解析:两个数列18
相减得第3个数列:6
0 所以:()=9
179.5 , 7 , 21 , 25 ,()
A.30
B.31
C.32
D.34 解析:25=21+5-1
?=25+7-1
180.1 , 8 , 9 , 4 ,(), 1/6 A.3
B.2
C.1
D.1/3 解析:1^4 2^3 3^2 4^1 5^0 6^-1
181.16 , 27 , 16 ,(), 1 A.5
B.6
C.7
D.8 解析:2^4 3^3 4^2 5^1 6^0
182.2 , 3 , 6 , 9 , 18 ,()解析:题中数字均+3,得到新的数列:5,6,9,12,21,()+3 6-5=1,9-6=3,12-9=3,21-12=9,可以看出()+3-21=3×9=27,所以()=27+21-3=45
183.1 , 3 , 4 , 6 , 11 , 19 ,()解析:3-1=2,4-3=1,11-6=5,19-11=8
得出数列:2 1 2 5 8 15
2+1+2=5
1+2+5=8
2+5+8=15
184.1,2,9,121,()
A.251
B.441
C.16900
D.960 解析:前两项和的平方等于第三项
(1+2)^2=9(2+9)^2=121(121+9)^2=16900
187.5 , 6 , 6 , 9 ,(), 90
A.12
B.15
C.18
D.21 解析:(5-3)(6-3)=6(6-3)(9-3)=18(18-3)(9-3)=90 所以,答案是18
188.1 , 1 , 2 , 6 ,()
A.19
B.27
C.30
D.24 解析:后一数是前一数的1,2,3,4倍 答案是24
189.-2 ,-1 , 2 , 5 ,(),29 解析:2的次方从0开始,依次递增,每个数字都减去3,即2的0次方减3等于-2,2的1次方减3等于-1,2的2次方减3等于1,2的3次方减3等5,则2的4次方减3等于13
190.3,11,13,29,31,()解析:2的平方-1 3的平方+2 4的平方-3 5的平方+4 6的平方-5 后面的是7的平方+6了
所以答案为53
191.5,5,14,38,87,()A.167
B.68
C.169
D.170 解析:它们之间的差分别为0 9 24 49 0=1的平方-1 9=3的平方
24=5的平方-1 49=7的平方
所以接下来的差值应该为9的平方-1=80 87+80=167
所以答案为167
192.102 , 96 , 108 ,84 , 132 ,()解析:102-96=6 96-108=-12 108-84=24 84-132=-48 132-X=96,X=36
193.0,6,24,60,120,()
解析:0=1^3-1
6=2^3-2
24=3^3-3
60=4^3-4
120=5^3-5
210=6^3-6
194.18 , 9 , 4 , 2 ,(), 1/6
A.3
B.2
C.1
D.1/3 解析:18/9=2 4/2=2 1/3除以1/6=2
198.4.5,3.5,2.8,5.2,4.4,3.6,5.7,()A.2.3
B.3.3
C.4.3
D.5.3 解析:(方法一)4.5,3.5,2.8,5.2,4.4,3.6,5.7,2.3
视为4、3、2、5、4、3、5、2和5、5、8、2、4、6、7、3的组合 其中 4、3、2、5、4、3、5、2=>4、3;
2、5;
4、3;
5、2分四组,每组和为7 5、5、8、2、4、6、7、3=>5、5;
8、2;
4、6;
7、3分四组,每组和为10
(方法2)4.5+3.5=8 2.8+5.2=8 4.4+3.6=8 5.7+?=8 ?=2.3
200.0,1/4,1/4,3/16,1/8,(5/64)解析:(方法一)0,1/4,1/4,3/16,1/8,(5/64)=> 0/
2、1/
4、2/
8、3/
16、4/
32、5/64 分子 0、1、2、3、4、5 等差 分母2、4、8、16、32 等比
(方法二)1/4=1/41/4×1/4 ; 1/8=3/163/16×1/4
201.16 , 17 , 36 , 111 , 448 ,()A.247
2B.224
5C.186
3D.1679 解析:16×1+1=17
17×2+2=36
36×3+3=111
111×4+4=448
448×5+5=2245
203.133/57 , 119/51 , 91/39 , 49/21 ,(), 7/3 A.28/12
B.21/14
C.28/9
D.31/15 解析:133/57=119/51=91/39=49/21=(28/12)=7/3 所以答案为A
204.0 , 4 , 18 , 48 , 100 ,()A.140
B.160
C.180
D.200 解析: 0
180
作差
作差
205.1 , 1 , 3 , 7 , 17 , 41 ,()A.89
B.99
C.109
D.119 解析:从第3项起,每一项=前一项×2+再前一项
206.22 , 35 , 56 , 90 ,(), 234 A.162
B.156
C.148
D.145 解析:22
145
234
作差
作差
=>
8+13=21 13+21=34
207.5 , 8 ,-4 , 9 ,(), 30 , 18 , 21
A.14
B.17
C.20
D.26 解析:5 ;-4 ; 17 30 ; 18 =>分四组,每组第二项减第一项=>3、13、13、3
208.6 , 4 , 8 , 9 , 12 , 9 ,(), 26 , 30 A.12
B.16
C.18
D.22 解析:6 ; 9 ; 16
30=>分三组,每组作差=>
2、-4;-
3、3;-
10、-4=>每组作差=>6;-6;-6
209.1 , 4 , 16 , 57 ,()A.165
B.76
C.92
D.187 解析:1×3 + 1(既:1^2)
4×3 + 4(既:2^2)
16×3 + 9(既:3^2)
57×3 + 16(既:4^2)= 187 210.-7,0,1,2,9 ,()A.12
B.18
C.24
D.28 解析:-7=(-2)^3+1
0=(-1)^3+1
1=0^3+1
2=1^3+1
9=2^3+1
28=3^3+1
211.-3,-2,5,24,61 ,(122)A.125
B.124
C.123
D.122 解析:-3=0^3-3
-2=1^3-3
5=2^3-3
24=3^3-3
61=4^3-3
122=5^3-3
212.20/9,4/3,7/9,4/9,1/4,(5/36)A.5/36 B.1/6 C.1/9 D.1/144 解析:20/9=20/9 4/3=24/18 7/9=28/36 4/9=32/72 1/4=36/144 5/36=40/288 其中
分子20、24、28、32、36、40等差 分母9、18、36、72、144、288等比
216.23,89,43,2,()A.3
B.239
C.259
D.269
解析:2是23、89、43中十位数2、8、4的最大公约数 3是23、89、46中个位数3、9、3的最大公约数
所以选A
217.1 , 2/3 , 5/9 ,(), 7/15 , 4/9 A.1/2
B.3/4
C.2/13
D.3/7 解析:1,2/3,5/9,1/2,7/15,4/9=>3/
3、4/
6、5/
9、6/
12、7/
15、8/18=> 分子3、4、5、6、7、8等差 分母3、6、9、12、15、18等差
220.6 , 4 , 8 , 9 ,12 , 9 ,(), 26 , 30 解析:头尾相加=>36、30、24、18、12等差
223.4 , 2 , 2 , 3 , 6 , 15 ,(?)A.16
B.30
C.45
D.50 解析:每一项与前一项之商=>1/2、1、3/2、2、5/
2、3等差
261.7 , 9 , 40 , 74 , 1526 ,()
解析:7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。所以7×7-9=40 , 9×9-7=74 , 40×40-74=1526 , 74×74-40=5436
262.2 , 7 , 28 , 63 ,(), 215 解析:2=1^3+1
7=2^3-1
28=3^3+1
63=4^3-1
所以()=5^3+1=126
215=6^3-1
263.3 , 4 , 7 , 16 ,(), 124 解析:两项相减=>1、3、9、27、81等比
264.10,9,17,50,()A.69
B.110
C.154
D.199 解析:9=10×1-1
17=9×2-1
50=17×3-1
199=50×4-1
265.1 , 23 , 59 ,(), 715 A.12
B.34
C.214
D.37 解析:从第二项起作变化23,59,37,715=>(2,3)(5,9)(3,7)(7,15)=>
2×2-第一项=3
5×2-第一项=9
3×2+第一项=7
7×2+第一项=15
266.-7,0,1,2,9,()A.12
B.18
C.24
D.28 解析:-2^3+1=7
-1^3+1=0
1^3+1=2
2^3+1=9
3^3+1=28
267.1 , 2 , 8 , 28 ,()A.72
B.100 C.64 D.56 解析:1×2+2×3=8
2×2+8×3=28
8×2+28×3=100
268.3 , 11 , 13 , 29 , 31()
A.52
B.53
C.54
D.55 解析:11=3^2+2 13=4^2-3 29=5^2+4 31=6^2-5 55=7^2+6
269.14 , 4 , 3 ,-2 ,(-4)A.-3
B.4
C.-4
D.-8
解析: 2除以3用余数表示的话,可以这样表示商为-1且余数为1,同理,-4除以3用余数表示为商为-2且余数为2
2、因此14,4,3,-2,(-4),每一项都除以3,余数为2、1、0、1、2 =>选C ps:余数一定是大于0的,但商可以小于0,因此,-2除以3的余数不能为-2,这与2除以3的余数是2是不一样的,同时,根据余数小于除数的原理,-2除以3的余数只能为1
270.-1,0,1,2,9,(730)解析:(-1)^3+1=0
0^3+1=1
1^3+1=2
2^3+1=9
9^3+1=730
271.2,8,24,64,(160)解析:1×2=2
2×4=8
3×8=24
4×16=64
5×32=160
272.4 , 2 , 2 , 3 , 6 , 15,(45)A.16
B.30
C.45
D.50 解析:每一项与前一项之商=>1/2、1、3/2、2、5/
2、3等差
273.7,9,40,74,1526,(5436)解析:7×7-9=40
9×9-7=74
40×40-74=1526
74×74-40=5436
274.0,1,3,8,21,(55)
解析:第二个数乘以3减去第一个数得下个数
280.8 , 12 , 24 , 60 ,()
解析:12-8=4,24-12=12,60-24=36,()-60=? 差可以排为4,12,36,?
可以看出这是等比数列,所以?=108 所以()=168 289.5,41,149,329,(581)解析:0×0+5=5
6×6+5=41
12×12+5=149
18×18+5=329
290.1,1,2,3,8,(13)
解析:各项先都除以第一项=>得商数列1、2、3、8、13=>对于商数列=>
2×2-1(商数列的第一项)=3
3×2+2=8
8×2-3=13
291.2,33,45,58,(612)解析:把数列中的各数的十位和个位拆分开=> 可以分解成3、4、5、6与2、3、5、8、12 的组合。3、4、5、6 一级等差 2、3、5、8、12
二级等差
297.2 , 2 , 0 , 7 , 9 , 9 ,()A.13
B.12
C.18
D.17 解析:2+2+0=4
2+0+7=9
0+7+9=16
7+9+9=25
9+9+?=36
?=18
299.3 , 2 , 5/3 , 3/2 ,()A.7/5
B.5/6
C.3/5
D.3/4 解析:(方法一)3/
1、2/
1、5/
3、3/
2、7/5=>分子减分母=>2、1、2、1、2
=>答案A
(方法二)原数列3,2,5/3,3/2 可以变为3/1,4/2,5/3,6/4,分子上是3,4,5,6,分母上是1,2,3,4,均够成自然数数列,由此可知下一数为7/5
(2)、5,15,10,215,()A.415 B.-115 C.445 D.-112 解析:10=5*5-15
215=15*15-10 115=10*10-215(3)、4,18,56,130,()A.216 B.217 C.218 D.219(6)、5,10,15,85,140,()
A.285 B.7225 C.305 D.7445 解析: 5^2=10+15,10^2=15+85,15^2=85+140,85^2=140+7085(1)、1,2,3,7,16,(),191 A.66 B.65 C.64 D.63 解析:1^2+2=3,2^2+3=7,7^2+16=65
1)48,2,4,6,54,(),3,9
A.6 B.5 C.2 D.3 解析:第一题四个四个为一组,答案应该是2
1,2,4,6,9,(c),18 A、11
B、12
C、13
D、18 解析:
思路1我有一个解释,仅供参考~:)1+2+4-1=6 2+4+6-3=9 4+6+9-6=13 6+9+13-10=18 其中 1、3、6、10二级等差
思路2: 应该是13,我是这样推理的:(1+4)/2=2余1(2+6)/2=4余0(4+9)/2=6余1(6+?)/2=9余0或者1(9+18)/2=?余0或者1
满足条件的只有13
(7)120,20,(),-4
A.0 B.16 C.18 D.19 120=5^3-5 20=5^2-5 0=5^1-5-4=5^0-5 所以答案是A
(8)6, 13 , 32, 69,()A.121 B.133 C.125 D.130 选D 6=3*2+0 13=3*4+1 32=3*10+2 69=3*22+3 130=3*42+4 42-22=20,22-10=12,10-4=6,4-2=2 20-12=8,12-6=6,6-2=4 8、6、4等差。
1,9,45,(),891 A.52 B.49 C.189 D.293 答案应该是C 1=1*3^0 9=3*3^1 45=5*3^2 189=7*3^3 891=11*3^4 1、3、5、7、11的规律 1)48,2,4,6,54,(),3,9 A.6 B.5 C.2 D.3 我选C 48=2×4×6 54=?×3×9 =>2(2)-7, 3, 4,(), 11 A.-6 B.7 C.10 D.13
我选B 前两个数相加的和的绝对值=第三个数=>选B
9)3.3,5.7,13.5,()A.7.7 B.4.2 C.11.4 D.6.8
我选A 把分子拆开为一组数列:3,5,13,? 把分母拆开为一组数列:3,7,5,? 以上两组数列均为质数列 故分子 ?=>7 分母 ?=>7 再把推出的分子和分母重新组合还原本数字项=>7.7 以上是个人的拙见,还望高人能够指点一二.......这些数全可以被2除尽!!那低人就乱说一通啦~~呵呵:)
1、这个题没有分数,谈不上分子分母的问题,我想一定是笔误了。
2、个人觉得,把小数点左边的3、5、13、7和小数点右边的3、7、5、7看成奇数,也许能好些,因为,从做题来看,凡是质数列都是连续的,如2、3、5、7、11、13。。,而奇数有不连续的情况。
3、我也选A,同意你的想法~!并且我搜了一下,答案也是A的。仅供参考喽~:)
(4)33.1,88.1,47.1,()A.29.3 B.34.5 C.16.1 D.28.9
我选C 小数点左边:33、88、47、16成奇、偶、奇、偶的规律 小数点右边:1、1、1、1 等差 仅供参考~:)
1,312,514,()
A.718,B.716,C.819,D.518
答案为B B,中间都是1,然后第一个数字比最后一个数字大一 3,5,7 2,4,6 中间夹个1 2、8、24、64、()
A、88
B、98
C、159
D、160 1*2=2 2*4=8 3*8=24 4*16=64 5*32=160 思路二:(8-2)*4=24
(24-8)*4=64 所以(64-24)*4=160 8、8、12、24、60、()
A、240
B、180
C、120
D、80
8*1=8,12*2=24,60*3=180 后项除以前项,1,1.5,2,2.5,3比例递增0、1、2、9、()
A、12
B、18
C、729
D、730 后项等于前一项的立方加1 1 8 9 4()1/6
A 3 B 2 C 1 D 1/3 1的4次方,2的3次方,3的平方,2的一次方,1的零次方等于1 应该是:1的4次方,2的3次方,3的平方,4的一次方,5的零次方等于1,6的负1次方 22 35 56 90()234 A 162 B 156 C 148 D 145
22+35-1=56 35+56-1=90 56+90-1=145
90+145-1=234 两个数字之间分别相差13 21 34 55
而34=13+21
55=21+34
89=34+55
128,243,64,(),1/6 A.5
B.16 C.67 D.10 128=2^7 243=3^5 64=4^3 5=5^1 1/6=6^-1 答案为A,5
5,5,14,38,87,()A A.167 B.168 C.169 D.170 5-5=0
14-5=9
38-14=24
87-38=49
167-87=80 0=1的平方-1
9=3的平方
24=5的平方-1
49=7的平方
3,7,47,2207,()A.4414 B.6621 C.8828 D.4870847 D 3的平方-2=7 7的平方-2=47 47的平方-2=2207 2207的平方-2=
不用具体算 尾数为7的一定是答案
1,8,9,4,(),1/6 A.3
B.2
C.1 D.1/3 这个我会,答案是C 1^4=1 ,2^3=8 ,3^2=9 ,4^1=4 ,5^0=1 ,6^-1=1/6
5,17,21,25,()A.30 B.31 C.32 D.34
80=9的平方-1 是奇数、偶数的问题
第一题 9,15,22,28,33,39,(),61
A 51
B
C 53
D 55 第二题 3/2, 1, 7/10,9/17,(), 3/19
A 11/24 B 11/27
C 11/26 D 15/26
第一题:答案D,不知道对不对。
两个等差数列28-15=13,39-28=11,61-39=22
22-9=13,33-22=11,55-33=22 第二题:答案C,但好像最后一个数有问题吧 3/2,5/5,7/10,9/17,11/26,13/37 分子3,5,7,9,(11),13 分母之差为3,5,7,9,11 1.5
7.5
22.5
()A60
B78.25
C78.75
D80 128
243
()
1/6 A5
B16
C 67
D 10 一题
3÷1.5=2 7.5÷3=2.5 22.5÷7.5=3 78.75÷22.5=3.5
第二题 2^7=128 3^5=243 4^3=64 5^1=5 6^-1=1/6 15,27,59,(),103 A.80 B.81 C.82 D.83 个位(十位做参考,要加上去的): 5.7.9.11.13 十位和百位:1.2.5.?.10(其实是9+1)
那很明显了,要填的数字应该是7(作为十位)和11(作为百位),那答案就是81。所以 B...63 , 26, 7, 0,-2,-9,()A-18,B-20,C-26, D-28 太简单了,N的立方减1,依次是4的立方减1,3的立方减1,2的立方减1,„,所以空格处是-3的立方减1,答案是D 是D,也可这样认为: 63-26=37,26-7=19,7-0=7,0-(-2)=2,-2-(-9)=7,-9-(-28)=19
3,6,21,60,()A.183 B.189 C.190 D.243 3*6+3=21 3*21-3=60 3*60+3=183 9
()
A 81
B80
C 121
D 120 c 用3整除结果为0 1 1,0 1 11、8,8,12,24,60,()
A、90
B、120
C、180
D、2402、2,3,10,15,26,35,()
A、48
B、50
C、52
1。8,8,12,24,60,X 比例 1 所以60*3=180 2。隔项 2,10,26,X 差所以26+24=50 第二题是,1的平方加1,2的平方减1,3的平方加1,4的平方减1,依次来推
1:3,1,5,1,11,1,21,1,()A、43 B、42 C、40 D、41 2:1/11,7,1/7,26,1/3,()A、-1 B、63 C、64 D、62 1 选A 分成两个数列 3 5 11 21 ? 5+3×2=11 11+5×2=21 21+11×2=43 2选b 数列7 26 ? 2的立方-1=7 3的立方-1=26 4的立方-1=63 9,1,4,3,40,(c)A.81 B.80 C.121 D.120 除以3的余数分别是 0 1 1 0 1 1 4,13,22,31,45,54,(),()
A 60,68
B 55,61
C 61,70
D 72,80 答案 C 两两份组,差都是9 只有C满足
D、一题
33, 211, 55,()A 56
B 311
C 66
D 77 第二题 ,24,60,120
A 186
B 200
C 210
D 220 第一:d 3+2=5 3+1+1=5 =》 2+5=7 1+1+5=7 第二题
6,24,60,120 前后相除得4/1,5/2,6/3
可推出下一个为7/4 120×7/4=210选C 第二题规律 N三次方-N 我的思路是: 6×1=6 8×3=24 10×6=60 12×10=120 14×15=210选c 35,710,1115,34,()。A.1930 B.1925 C.2125 D.78-164,316,-54,()。
A.6 B.7 C.8 D.72 第一题我是这么考虑的,感觉不是很对呵呵!
35是3+5=8,710是7+1+0=8,1115是1+1+1+5=8,34是3+4=7,所以下个数也应该是各个位数字和为7,只有B符合
第一题 4个数中除34外除3的余数为2,而答案中只有B除3的余数为2 第二题 三个数个十百三位相加后分别为11 10 9所以我认为答案应该是C -1,0,1,2,9,()答案 11,82,729,730,730 n^3+1 1,5,19,49,109,()
A 120 B 180 C 190 D 200 第二道我发现一定的规律,但没答案可选,希望对解出答案有帮助 1,5,19,49,109分别两者之间的差 为4,14,30,60 4=2^3-4;14=2^4-2;30=2^5-2;60=2^6-4.=>2^7-2=126 =>109+126=235 56,66,78,82,()? 9,1,4,3,40,()? 第一题:
56-5-6=45=5*9
66-6-6=54=6*9
78-7-8=63=7*9
82-8-2=72=8*9
98-9-8=81=9*9 40.甲、乙两人从400米的环形跑道的一点A,背向同时出发,8分钟后,两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,那么,两人第三次相遇的地点,与A点沿跑道上的最短距离是多少?
A.166 B.176 C.224 D.234(2000年题)答案稍后送上
甲每秒多走0.1米,那么8分钟多走0.1*(8*60)=48米 设甲距A点X米,乙距A点Y米,X+Y=400 X-Y=48 X=223 Y=176 答案:B 因为甲比乙速度快,8分钟内甲比乙多跑了48。而在前面的二圈内二个人都是跑了八百米,差距只是在第三圈。
这题不必用一元方程式,二元就更没有必要了!!一共8分钟,每秒0.1米,那么甲多跑了48米!那么两人在第3圈相遇时距离中点(起点对称点)就是48的一半,那么此处距离起点的最近距离就是200减24=176了!!
第一题
1.5
7.5
22.5()第二题
()
第三题
()22
53=4*3+31 31=3*3+22 22=2*3+16 16=1*3+13 第二题: 2×7+7=21 6×7+7=49 12×7+7=91 20×7+7=147 3,1,5,1,11,1,21,1,()。两列 3 5 11 21 3x2+5=11 5x2+11=21 11x2+21=43 43 3*2-1=5 5*2+1=11 11*2-1=21 21*2+1=43 1,33,65,12,?
A.7
B.12
C.9
D。8 假如把各个数字分开看,如下: 1 3-------相差2 3 6-------相差3 5 1-------相差4 2 7-------相差5 我选A 9,1,4,3,40,(c)A.81 B.80 C.121 D.120 看除3的余数
11011 2000年一道真题
25. 18()1/6
A.3
B.2
C.1
D.1/3 2002年(A)一道真题 2、20,22,25,30,37,()
A.39
B.45
C.48
D.51 2.题是一个差数列并且还是质数,差分别是 2,3,5,7,11,所以括号里填 37+11=48(此题也在黑龙江省2005年4月份行测中出现过)第一个题应该是 8 9 4()1/6 1是1的4次方,8是2的3次方,9是3的2次方,4是4的1次方,由此推知,空缺项应为5的0次方即1,且6的-1次方为1/6 0,6,78,(),15620 A 240 B 252
C 1020
D 7771 0=1*1-1 6=2*2*2-2 78=3*3*3*3-3 ?=4*4*4*4*4-4 15620=5*5*5*5*5*5-5
答案是1020 选C 1。1.01,2.02,3.04,5.07,(),13.16
A.7.09 B.7.01 C.8.10 D.8.11 2.3,1,5,1,11,1,21,1,()
A.43 B.42 C.40 D.41 3.6,7,19,33,71,()A.127 B.130 C.137 D.140 4.1/11,7,1/7,26,1/3,()A.-1 B.63 C.64 D.62 5.-2/5,1/5,-8/750,()
A.11/375 B.9/375 C.7/375D.8/375 请大家帮忙做哦`答案我知道我想知道解题思路!奉上客案给各位作参考哈~~` 1.D 2.A 3.C 4.B 5.A 1整数部分是 第一项和第三项的和 除以2 小数部分是12345的等差
2.3*2-1,5*2+1,11*2-1,所以下面是21*2+1 第3题是前项*2加后项等于第三项
第4题只有7=2的三次方-1,26=3的3次方-1,那么63=4的3次方-1 5 d 两项两项
3,7,47,2207,()
A.4414B.6621C.8828D.4870847 后项=前项^2-2 第1题:
1,3,6,12,()A.20 B.24 C.18 D.32 第2题: 7、5、3、10、1、()、()
A、15、-4 B、20、-2 C、15、-1 D、20、0 第3题:
124,3612,51020,()
A、7084 B、71428 C、81632 D、91836 第二题,偶数项是等比数列,奇数项的差是等差数列,答案是D 第二题D 7 3
0
相减后为 4 第2题我知道了。分两列,选 D。
第一个括号里必须是 15 或 20。第一个括号里必须是 0 或 1。所以只能选 D。第一题24是么? 3-1=2 6-3=3 12-6=6 2*6=12 12+12=24 124 是 1 2 4 3612是 3 6 12 51020是 5 10 20 下一个应是7开头 因为成等差 7 14 28
5,12,24,36,52,()A 58 B62 C 68 D 72 2 ,57,17,59.()A 77 B 89 C 329 D501 3
16,25,36,50,81,100,169,200,(C)A 289 B225 C324 D 441
第二篇:公务员考试行测各种题型解题技巧及考场技巧(总结版)
国家公务员行测答题技巧大全
考生们都知道,在国家公务员考试中做行测题没有行测答题技巧是不行的,那么短的时间内把每一道完完整整进行思考很难行得通,掌握一定技巧就很关键,相信通过一段时间的积累,在国家公务员考试中,你就是王者。山西中公教育专家总结了公务员行测试卷中可能用到的常用答题技巧,期望为考生备考提速。
公务员行测答题技巧之数学运算:
1.分析选项整体性,三奇一偶选其偶,三偶一奇选其奇。
2.选项有升降,最大最小不必看,答案多为中间项;答案排序处在中间的两个中的一个往往是正确的选项。
3.选项中如果有明显的整百整千的数字,先代入验证,多为正解。
4.看到题目中存在比例关系,在选项中选择满足该比例中数字整除特性的选项为正解。5.一个复杂的数学计算问题,答案中尾数不同,直接应用尾数法解题即可。
6.极值问题中,问最小在选项中多为第二小的,问最大在选项中多为第二大的(先代入验证)。
公务员行测答题技巧之选词填空:
1.注意找语境中与所填写词语相呼应的词、短语或句子。
2.重点落在语境与所选词语的逻辑关系上,而不是选项的词语上。
3.选项中近义词辨析方向是从范围不同角度辨析的,选择范围大的。4.从语意轻重角度辨析的,选项要么选最重的,要么选最轻的。
5.成语辨析题选择晦涩难懂的成语。
公务员行测答题技巧之片段阅读:
1.选项要选积极向上的。
2.选项是文中原话不选。
3.选项如违反客观常识不选。
4.选项如违反国家大政方针不选。
5.启示、告诉、道理材料的片段阅读,不选文字内容层面的选项。
6.启示、告诉、道理材料的片段阅读,选择激励人的选项或在精神上有触动的选项。
7.提问方式是选标题的,选择短小精悍的选项。
8.提问方式是“错误的”“不正确的”,要通读材料在选择选项,不能断章取义。
公务员行测答题技巧之逻辑推理:
1.数字比例与题干接近的选项要注意。
2.定义判断题注意提问方式是属于还是不属于。
3.定义判断若出现多定义,不提问的定义不用看。
4.削弱型和加强型推理题题干中未提信息若出现一般为无关选项。5.评价型推理题正确答案一般兼顾双方。
6.结论型推理题正确答案一般为语气较弱的选项。
7.排除弱化项、主观项、论题偏离项,剩下往往是答案。
公务员行测答题技巧之图形推理
1.图形本身变化不大考虑对称、旋转、平移、翻转等。
2.图形本身变化较大考虑元素数量、叠加等。
3.若图形复杂多变且出现怪图,重点考虑共性,如共同元素数量、位置关系等。
4.空间型图形推理注意合理利用橡皮、小刀等工具模拟题干。
公务员行测答题技巧之数列问题: 1.全奇必是奇:数列给出的项如果全是奇数,答案必是奇数;全偶必是偶:数列给出的项如果全是偶数,答案必是偶数。
2.奇偶奇偶间隔走:数列给出的项如果是奇数和偶数间隔,答案必须符合此规律。3.从怪原则:选项中有0、1等多数为正确选项。
4.题目中全部都是整数,选项中出现分数或小数多为正确答案;同理题干全部都是小数或分数,选项中出现整数多为正确答案。
5.看出整体有单调性,如果题目为单调递增,选项中只有一个是大于题干中最后一个数字的,那么一般是正确答案。
6.分数数列中,分母多为质数,分数多需要分子,分母拆分找规律。
数学运算常用解题思路
第一节 技巧性方法
一直接代入思想,该方法主要是将题目的选项直接代入题干判断选项正误的方法。由于公务员考试的能力测试都为客观题,即全部的“四选一”单选。因此直接代入就有一定的可能。而在代入时需要注意一下两点
1、代入验证的使用。即将选项代入题干中验证,若符合要求,便是正确答案。
2、代入排除的使用。有时运气没那么好第一个代入就是正确答案,因此,我们可以代入后不是正确答案就直接删除的方法。
二数字特性法,指不通过具体的计算得出最后的结果,只需考虑最终结果所应满足的数字特性,从而排除错误选项得到正确的方法。
常用的有,大小特性,奇偶特性,尾数特性,余数特性,整数特性,因子特性,等多种方法。
三、赋值法,当某个量的实际值不影响结果时,题目多选择不直接给出该量的值,这对于很多考生而言,容易陷入千头万绪而无从下手的困境。一般选择保持不变的那个量先进行复制,并由此推出其他的量,也即尽量减少重复复制
四、差异分析法,通过分析不同情形之间的差异来获得问题的解答方法。本质在于去除相同部分的干扰,从而使得需要分析的对象变得更加简洁明了。这一思想多用在完成某一任务,存在两种以上的方案时。
五、整体法,即将繁琐的细节给予抛开只考虑一个整体或某一种情况,快速计算整体情形下的结果,然后与具体情形进行比较分析得出结果。
六、列方程法,这是我们在学校里学到的方法,在考试前应多加练习。
【真题精析】
例1.(2008.广东)某人工作一年的报酬是18000元和一台全自动洗衣机.他干了7个月,得到9500元和一台全自动洗衣机,问这台洗衣机值多少元? A.8500元 B.2400元 C.2000元 D.1700元 [答案]B
[秒杀技巧]解题关键是每个月所得报酬相同。
[解析]设这台洗衣机值x元,则,解 得x=2400。
【真题精析】
例1.(2006.江苏B类)某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是: A.2:5 B.1:3 C.1:4 D.1:5 [答案]C
[解析]运用十字交叉法有:
所以男教练员与男运动员人数之比为2%:8%=1:4。
【真题精析】
例1.(2007.安徽)一个最简分数,分子和分母的和是50,如果分子、分母都减去5,得到的最简分数是2/3,这个分数原来是多少? A.20/29 B.21/29 C.29/30 D.29/50 [答案]B
[解析]根据“分子和分母的和是50”,只有B项正确。
【真题精析】
例1.(2007.江西)设 A.10/9 B.11/9 C.7/9 D.5/7 [答案]B [解析]根据
第二节 思路性方法
【真题精析】
例1.(2007.西藏)一种挥发性药水,原来有一整瓶,第二天挥发后变为原来的1/2;第三天变为第二天的2/3;第四天变为第三天的3/4,请问第几天时药水还剩下1/30瓶? A.5天 B.12天 C.30天 D.100天 [答案]C
[解析]根据题意可知,第二天剩下的药水为整瓶的1/2,第三天剩下的药水为整瓶的1/2×2/3=1/3,第四天剩下的药水为整瓶的1/3×3/4 =1/4,以此类推,第30天剩下的药水为整瓶的1/30。
【真题精析】
例1.(2008.吉林甲级)有个人发现图书馆的那本《大英百科全书》的第21、42、64、65、121、137、138、190页对他有用,便把这几页偷偷的撕下带走了,那他一共撕去了: A.4张 B.6张 C.7张 D.8张 [答案]C
[秒杀技巧]不连续的数字肯定不能占据一张纸,连续数字存在占据同一张纸上的可能。[解析]由题意可知,在所给出的页码中,有两组连续的页码,即64、65和137、138。假设64和65是同一张纸,则137和138页必不在同一张纸上;反之亦然。因此,他只可能撕去7张纸。
【真题精析】
例1.2007.浙江)某部队战士排成了一个6行、8列的长方阵。现在要求各行从左至右1,2,1,2,1,2,1,2报数,再各列从前到后1,2,3,1,2,3报数。问在两次报数中,所报数字不同的战士有:
A.18个 B.24个 C.32个 D.36个 [答案]C
[解析]根据题意可列表如下:
表格中用“★”标记的即为每次报数相同的战士,故每列中两次所报数字不同的战士数均为4,故共有4×8=32个战士两次所报数字不同。因此,选C。
数学运算秒杀技巧
【真题精析】
例1:(2009.河南)1×2×3+2×3X4+3×4×5+„+28×29×30=()A.188690 B.188790 C.188890 D.188990 [答案]B [秒杀]每一项都是三个连续自然数的乘积,则结果一定能被3整除。分析选项,只有B符合。
【真题精析】
例l:(2004.山东)某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数(包括不做)相差多少?
A.33 B 39 C.17 D.16 [答案]D [秒杀]根据题意,答对的题目数十答错的题目数一总题目数50(偶数),故二者之差也应是偶数。分析选项,只有D符合。
[解析]设答对题数为x,答错题数(包括不做)为y,则有,所以答对题数和答错题数(包括不做)相差为16。
【真题精析】
例1:(2006.国考)一个三位数除以9余7,除以5余2,除以4余3,这样的三位数共有:
A.5个 B.6个 C.7个 D.8个
[答案]A [秒杀]周期为4,5,9的最小公倍数9×5×4 =180。由于1000÷180=5------100,而满足条件的最小三位数一定大于100,故共有5个数字。
[解析]运用中国剩余定理,计算出最小的符合题意的数字为187,而4,5,6的最小公倍数为180,则 187+180n<1000,有5个数字。
【真题精析】
例1:(2005.湖南)一堆沙重480吨,用5辆载重相同的汽车运3次,完成了运输任务的25%,余下的沙由9辆同样的汽车来运,几次可以运完? A.4次 B.5次 C.6次 D.7次
[答案]B [秒杀]根据“用5辆载重相同的汽车运3次,完成了运输任务的25%”可知,剩下的1-25%=75%可由这5辆载重相同的汽车运9次,即相当于9辆相同的汽车运5次。因此,选B。
[解析]5辆汽车3次运沙480×25 %=120吨,即每辆车每次可以运沙8吨。故9辆车每次可以运沙72吨,则剩下的360吨需要运输360÷72=5次。
【真题精析】
例1:(2008.江西)A、B、C、D、E这5个小组开展扑克比赛,每两个小组之间都 要比赛一场,到现在为止,A组已经比赛了4场,B组已经比赛3场,C组已经比赛了 2场,D组已经比赛了1场。问E组比了几场?
A.0 B.1 C.2 D.3 [答案]C [秒杀]将五位人的比赛关系用右图表示,因此,选C。
[解析]显然A组与B、C、D、E都比赛了一场,则D组只能和A组比赛了一场,B组只能和A、C、E各比赛一场,C组只能和A、B各比赛一场,因此D组只和A、B各比赛一场,答案为C。
【真题精析】
例1:(873×477-198)÷(476×874+199)=()A.1 B.2 C.3 D.4 [答案]A [秒杀]873×477-198与476×874+199数值相差不大,故二者之商一定小于2。因此,选A。
[解析]原式=
【真题精析】 例1:有甲、乙两个项目组,乙组任务临时加重时,从甲组抽调了四分之一的组员。此后甲组任务也有所加重,于是又从乙组调回了重组后乙组人数的十分之一。此时甲组与乙组人数相等。由此可以得出结论:
A.甲组原有16人,乙组原有11人 B.甲、乙两组原组员人数之比为16:11 C.甲组原有11人,乙组原有16人 D.甲、乙两组原组员人数比为11:16 [答案]B [秒杀]分析选项,B、D包含了A、C的情况,即如果B.D正确,则A、C正确,故可以排除A、C。根据“乙组任务临时加重时,从甲组抽调了四分之一的组员。此后甲组任务也有所加重,于是又从乙组调回了重组后乙组人数的十分之一。此时甲组与乙组人数相等”可以判断出甲组人数多于乙组,排除D0因此,选B。
[解析]根据题意:设甲组原有x人,乙组原有y人,则有,解得。因此,选B。
数字推理八大解题方法
【真题精析】
例1.2,5,8,11,14,()A.15
B.16
C.17
D.18 [答案]C
[解析]数列特征明显单调且倍数关系不明显,优先采用逐差法。
差值数列是常数列。如图所示,因此,选C。
【真题精析】
例
1、(2006·国考A类)102,96,108,84,132,()A.36
B.64
C.70
D.72 [答案]A
[解析]数列特征明显不单调,但相邻两项差值的绝对值呈递增趋势,尝试采用逐差法。
差值数列是公比为-2的等比数列。如图所示,因此,选A。
【真题精析】
例1.(2009·江西)160,80,40,20,()A.
B.1
C.10
D.5 [答案]C
[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。
商值数列是常数列。如图所示,因此,选C
【真题精析】
例1、2,5,13,35,97,()
A.214
B.275
C.312
D.336 [答案]B
[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。
商值数列是数值为2的常数列,余数数列是J2-I:h为3的等比数列。如图所示,因此,选B。
【真题精析】
例
1、(2009·福建)7,21,14,21,63,(),63 A.35
B.42
C.40
D.56 [答案]B
[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。
商值数列是以
为周期的周期数列。如图所示,因此,选B。
【真题精析】
例1. 8,8,12,24,60,()A.90
B.120
C.180
D.240 [答案]C
[解析]逐商法,做商后商值数列是公差为0.5的等差数列。
【真题精析】
例1.-3,3,0,3,3,()A.6
B.7
C.8
D.9 [答案]A
[解析]数列特征:(1)单调关系不明显;(2)倍数关系不明显;(3)数字差别幅度不大。优先采用加和法。
【真题精析】
例
1、(2008·湖北B类)2,3,5,10,20,()A.30
B.35
C 40
D.45 [答案]C
[解析]数列特征明显单调且倍数关系不明显,优先做差后得到结果选项中不存在;则考虑数列特征:(1)倍数关系不明显;(2)数字差别幅度不大,采用加和法。
还是无明显规律。再仔细观察发现,2+3=5,2+3+5=10,2+3+5+10=20。因此原数列未知项为2+3+5+10+20=40。此数列为全项和数列,其规律为:前面所有项相加得后一项。如图所示,因此,选C。
【真题精析】
例1、1,2,2,4,8,32,()
A.64
B.128
C.160
D.256 [答案]D
[解析]数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。优先采用累积法。
【真题精析】
例1、1,1,2,2,4,16,()A.32
B.64
C.128
D.256 [答案]C
[解析]数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。积后无明显规律,尝试三项求积。
即从第四项起,每一项都是前面三项的乘积。因此,选C。
【真题精析】
例
1、(2008·河北)1,2,2,4,16,()
A.64
B.128
C.160
D.256 [答案]D
[解析]数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。优先采用累积法。
做积后无明显规律。仔细观察发现,1×2=2,1×2×2=4,1×2×2×4=16,1×2×2×4×16=(256)。此数列是全项积数列,从第三项起,每一项都是前面所有项的乘积。因此,选D。
【真题精析】
例1.(2007·国考)0,2,10,30,()A.68
B.74
C.60
D.70 [答案]A
[解析]数列项数较少,做一次差后无明显规律,不能继续做差,因此考虑使用因数分解将原数列化为如下形式:
分别观察由0,1,2,3和1,2,5,10组成的数列,前者是公差为1的等差数列,后者做一次差后得到奇数数列,推断其第五项分别为4和17,故所填数字应为4X17=68,答案为A。
【真题精析】
例1.1,2,5,10,17,()
A.24
B.25
C.26
D.27 [答案]C
[解析]此题的突破口建立在“数字敏感”的基础之上。由数字5,10,17,联想到5=4+1,10=9+1, 17=16+1,故可以判定此数列由多次方数构造而成。
平方数列的底数是自然数列。如上所示,因此,选C。
【真题精析】
例1.(2009·天津)187,259,448,583,754,()A.847
B.862
C.915 D.944 [答案]B
[解析]原数列单调关系明显,倍数关系不明显,优先使用逐差法无明显规律;观察数列特征:多位数连续出现,幅度变化无明显规律,考虑位数拆分。对原数列各数位进行求和:1+8+7=16,2+5+9=16,4+4+8=16,5+8+3=16,7+5+4=16,(8+6+2=16),原数列中所有项各位数字相加之和为16。因此,选B。
【真题精析】例1.[答案]A
[解析]数列中大部分为非最简分数,优先考虑将其约分变为最简分数。
得到常数列。如上所示,因此,选A。
【真题精析】例
1、[答案]A
[解析]数列中有两项的分母相同,且为另外两项的倍数。因此,先进行通分将各项的分母统一为12。
得到的分子数列为质数列。如上所示,因此,选A。
【真题精析】 例
1、[答案]B
[解析]数列特征不明显,由
联想到中间的2可化成。此时,各项的分子分
母表现出一定的单调性,因此考虑将反约分化为。根据该思路,将原数列进行变形。
分子数列、分母数列都是自然数列。如上所示,因此,选B。
【真题精析】
例
1、[答案]C
[解析]分别分析各项的整数部分与分数部分。
整数部分为平方数列,分数部分是公比为81+1=82,因此,选C。的等比数列,如上所示,故未知项为
【真题精析】
例
1、[答案]C
[解析]数列的二、三、六项分别出现,因此考虑将一、四项拆分出带有根号的式子。
【真题精析】
例1.(2010·江西)3,3,4,5,7,7,11,9,(),()A.13,11
B.16,12
C.18,11
D.17,13 [答案]C
[解析]数列较长,数字变化幅度不大,并且有两个未知项,优先进行交叉分组。
【真题精析】
例
1、(2007·河北)1,2,2,6,3,15,3,21,4,()A.46
B.20
C.12 [答案]D
[解析]数列不具有单调性,变化幅度不大且数列较长,优先使用多元素分组法。由于相邻两项之间具有明显的倍数关系,故考虑两两分组。得到质数列。如图所示,因此,选D。
【真题精析】
例1、8,6,10,11,12,7,(),24,28
A.15
B.14
C.9
D.18 [答案]B
[解析]数列单调关系和倍数关系均不明显,变化幅度不大,项数较多,优先采用多元素分组法。交叉及分段分组都没有明显的规律,尝试采用对称分组法。
对称分组后组内求和,得到公差为6的等差数列。如图所示,因此,选B。
【真题精析】
例1、1,2,3,7,16,()
A.66
B.65
C.64
D.63 [答案]B
[解析]基于“数形敏感”,由数列的三、四、五项可以得出
。经过验证有:
2,故该数列的通项为
因此,所填数字为
,答案为B。
【真题精析】
例1、2,12,36,80,()A.100
B.125
C.150
D.175 [答案]C
[解析]基于“数字敏感”,数列的第四项80可以拆分成,第三项可以拆分成36=,基于“数列敏感”,可以推测数列是由平方数列和立方数列相加得到,经过验证有2=1+1。因此,所求数字为,故数列的通项公式为
150,答案选C。
【真题精析】
例1、6,12,36,102,(),3 A.24
B.71
C.38
D.175 [答案]A
[解析]数列各项都可以被3整除。
数字推理“秒杀”技巧
【真题精析】
例1.(2003·山东)2,10,30,68,130,()
A.169
B.222
C.181
D.231 [答案]B
[秒杀技巧]数列各项均为偶数,观察选项,三奇一偶。因此,选B。[解析]原数列各项减自身项数是立方数列。
【真题精析】
例1.(2007·福建)3,7,15,31,()A.23
B.62
C.63
D.64 [答案]C
[秒杀技巧]观察原数列,各项均为奇数,排除B、D。数列单调递增,排除A。因此,选C。[解析]数列通项为,故所填数字为2×31+1=63。
【真题精析】
例1.(2008·浙江)675,225,90,45,30,30,()
A.27
B.38
C.60
D.124 [答案]C
[秒杀技巧]数列各项均能被15整除,分析选项,只有C符合。
[解析]相邻两项做商(前项除以后项)得到:3,2.5,2,1.5,1,(o.5),所填数字为60。
【真题精析】
例
1、(2008·辽宁)15,5,3,5/3,()
[答案]A
[秒杀技巧] 观察选项,分母5出现2次,故分母选为5;分子9出现2次,故分子选为9。因此,选A。
[解析] 原数列通项公式为
片段阅读秒杀技巧
【核心知识】
不同的题型解法各不相同。若想达到快速解题的目的,考生需要先根据设问方式的不同判断题型(题型分类具体内容参阅本章第三节),迅速建立解题思路,然后带着问题有的放矢地快速阅读题干,在阅读过程中有意识地寻找答案或与答案相关的关键词、句。根据不同题型的不同特点,按照规律分析四个选项。考生只有熟练掌握了题型分类技巧,才能合理运用其他秒杀技巧。
以下是四类题型的选项特点:
主旨概括题选项切忌以偏概全
言语理解秒杀题选项切忌就事论事
词语理解题选项切忌张冠李戴
细节筛析题选项切忌偷梁换柱
【真题精析】
例1.(2008.广西)大脑从根本上讲是一个电学器官,能将电信号从一个神经细胞传给另一个细胞。当一个TMS线圈在头皮附近启动时,一个迅速变化的强磁场就会不受阻碍地穿过皮肤和头骨。虽然这个磁场磁通量达到1.5特斯拉,是地磁场的几万倍,但每次脉冲却不超过1毫秒。在大脑中,磁场碰到静止的神经细胞时能在细胞上产生一个电流。电能在铜线圈中转化为磁能,而磁能又在大脑的神经元中转变为电流。
下面哪一项最能概括上文的意思: A.大脑是个“电力器官” B.脉冲磁场对大脑神经线路的作用 C.人缓解压力、增进认识、克服疲劳的方法 D.大脑神经线路和治疗方法 [答案]A [秒杀技巧]由设问可知此题是主旨概括题。速读文段后分析四个选项,C、D两项在文中根本未提及,属于无中生有,排除。在A、B两项中,A项是概说性的文字,而B项是描述性文字。快速判断正确答案选A。
[解析]文段主旨句是“大脑从根本上讲是一个电学器官,能将电信号从一个神经细胞传给另一个细胞”,后面主要讲大脑中的电流如何产生的全过程。概括而言,文段说明大脑类似一个电力系统,所以正确选项选A。B项片面,C、D两项无中生有,均排除。
在选项中,弱化词语往往是正确的,而对于确定性极强的语言表述及过于绝对的词语我们则要慎重起见,因为它们很可能是干扰项。
代表词语:①确定词:全部、所有、都、大于、完全、一定„„
②弱化词:某些、有些、有的、或许、可能、大概„„
【真题精析】
例1.(2008.贵州)在战争问题上,日本政府一直采取蒙混过关的态度,不去正视历史,还声称日本没有像希特勒那样的战争狂人,企图将某个民族像犹太人那样灭绝掉。在面对二战造成的灾难时,也往往一味强调日本受到的伤害,俨然以二战的受害者自居,尤其是一些右翼政客,置周边国家人民的强烈反对于不顾,屡次三番地去靖国神社参拜;相反,却对被侵略国家人民遭受的创伤轻描淡写,根本就不提对战争罪行谢罪之事,这段话表明:
A.日本人侵略成性,是彻头彻尾的法西斯
B.日本坚持扩张之路,至今仍未放弃这样的军国主义道路,有朝一日仍将完成征服周边国家的计划
C.日本已彻底转右,否认和歪曲历史,是为新的扩张找借口 D.日本政府某些政客丧失了良知,缺乏与周边国家友好的诚意 [答案]D [秒杀技巧]A项“彻头彻尾”、B项“至今仍未’“‘有朝一日仍将完成征服”、C项“彻底”等字眼都属于或包含确定词;D项“某些”属于弱化词,因此选D。
[解析]文段属总一分结构,论点是日本政府“不去正视历史”。文中列举日本政府的二战受害者情结、屡次参拜靖国神社、不提谢罪等事实都是论据,说明日本部分政客仍不正视历史,对待周边国家缺乏诚意,所以正确答案选D。A、C两项中,“彻头彻尾”“彻底”等语言表述过于绝对,排除。B项文段并未提及,属于无中生有,故排除。
无:指阅读材料中没有提及此项内容,选项中却凭空出现。
【真题精析】 例1.(2008.陕西)网络是大家熟知的东西,它为我国建设高效、透明、务实、廉洁的政府提供了物质技术条件,大大节约了行政成本,同时在一定程度上克服了信息传播的不对称性。我国各级政府积极利用网络技术,及时、准确发布政务信息以便于公众知情、参与和监督政府。
这段话意在强调:
A.我国政府积极利用各种条件,贯彻落实对人民负责的原则 B.我国政府积极创造各种条件,从经济活动中解放出来
C.网络技术的广泛利用,减轻了政府负担,但削弱了国家宏观调控能力 D网络技术的广泛运用,提高了政府工作效率,其目的是吸引世界的目光 [答案]A [秒杀技巧]B、C、D三项表述中的关键信息分别为“经济活动”“削弱了国家宏观调控能力”“目的是吸引世界的目光”,都未在原文中体现,属于无中生有,直接秒杀。
[解析]本段文字首先谈论了网络为政府的有效执政提供了积极的物质技术条件,接着介绍我国政府积极利用网络发布政务信息,更好地为人民服务。文段最后一句是观点句,选项A恰是对观点句的同义替换。B、C、D三项属于无中生有。
【真题精析】
例1.(2008.河北)不能说你在一个领域干得好,就借此可以进入其他领域。每个学科每个领域都有它的积累。尊严和门槛儿就是一种特权,是对公平的一种践踏。另外,高校对教授的聘用和职称的评定,有着严格、规范的程序,聘请明星任教授如果不能按照程序进行,对其他教授来说就是不公平,损害了程序的公平和正义。
这段话的主要观点是:
A.明星担任教授是对学术尊严的亵渎
B.不按照评聘职称的程序聘请明星任教授是对学术公平的一种践踏 C.学术界有学术界的尊严
D.聘请明星任教授损害了评聘职称程序的公平和正义 [答案]B [秒杀技巧]A、C两项偏离材料,D项混淆了材料范围。
[解析]文中第一句话表明态度,说明任何人不能够随意地进入另一个自己不熟悉的领域,接着进一步阐释不按程序就随意聘用明星做教授,对其他教授是不公平的,所以正确答案选B。整个材料是围绕跨领域发展问题阐释的,跟学术界的尊严无关,故排除A、C两项。D项混淆了材料范围,没有加上材料中的限定条件,表述过于绝对,排除。
【真题精析】
例1.(2008.河北)与自然科学对传统的超越是对传统的不断证伪不同,人文科学对传统的超越不是对传统的证伪并弃置的过程,而是表现为对传统的不断兼容。因此,尽管在人文科学的发展中的每一次创新都以突破传统为前提,但传统总是具有某种恒定的价值,成为后人进行研究和创新的参照,甚至在某些方面是后人无法企及的典范。
上面这段话表明:
A.人文科学的发展是在对传统不断证伪的过程中寻求超越的 B.人文科学与自然科学有着不同的发展模式 C.人文科学发展中的创新都是以继承传统为前提的 D.传统的东西都是后人难以望其项背的 [答案]B [秒杀技巧]A、C两项与原文内容相反;根据选项从弱排除D项,所以本题选B。[解析]文段对比了自然科学与人文科学的发展模式,重点指出了二者的不同之处,即自然科学着眼于对传统的推翻与超越,人文科学表现为对传统的包容。正确答案为B。材料中在对传统不断证伪的过程中寻求超越的主语是“自然科学”,而非“人文科学”,排除A项。C项应该是“突破传统”而非“继承传统”;D项表述过于绝对,排除。
【真题精析】
1.(2008.贵州)人大代表在选举的基础上产生。根据《选举法》规定,中华人民共和国年满十八周岁的公民,不分种族、民族、性别、职业、家庭出身、宗教信仰、教育程度、财产状况和居住期限,都有选举权和被选举权。但是依照法律被剥夺政治权利的人没有选举权和被选举权。
这段话主要支持了这样一个论点,即: A.人大代表的产生方式是选举
B.选举法规定了年满十八周岁的中华人民共和国公民享有选举权 C.选举权的形式不受任何非法限制和剥夺 D.选举权的行使受到政治法律等方面的限制 [答案]D
[秒杀技巧]A、C两项属于真假混淆;B项属范围混淆,排除,所以本题选D。
[解析]文中先给出一个定义,再由“但是”给出这个定义的限制,即什么人没有选举权,因此选D。A、C两项是利用文段中出现的个别字句偷换概念,文段谈的是选举权而非人大代表产生的方式和选举的形式,排除A、C两项。B项没有提到限制前提,故排除。
【真题精析】
例1.(2003.国考)中国妇女发展基金会将委托专业金融机构对中国女足发展基金进行管理和运作,其收益部分用于资助中国女子足球队改善生活和训练条件,开展交流与合作,培养选拔后备力量。
下列表述,符合文意的是:
A.中国女足发展基金,将解决中国女足所面临的问题 B.广泛开展交往合作,是培养和选拔女足后备力量的保证 C.中国女足的活动,由受委托的专业金融机构管理和运作 D.中国女足发展基金,已确定了管理机制和运作规则 [答案]A [秒杀技巧]文段中的“将”字说明其时态为将来时,D项“已”为过去时,时态不符,直接秒杀;B项以偏概全,C项偷换概念,所以正确答案为A项。
[解析]文段介绍了中国妇女基金将用于解决女足生活、训练、选拔后备等一系列问题,故正确答案选A。“将”字明确指出其时态为将来时,而D项的表述时态“已”为过去时,不符合文段时态,故排除。C项属于偷换概念,原文指的是委托金融机构对“中国妇女发展基金”进行管理和运作,而C项将其偷换成了委托金融机构对“中国女足”进行管理而后运转,所以排除。B项属偷换逻辑,由原文“改善生活和训练条件,开展交流与合作,培养选拔后备力量”可知,三者之间属并列关系,而B项将其偷换成了条件关系。
【真题精析】
例1.(2008.国考)旅行是什么?德波顿并不想急于提供答案;旅行为了什么?德波顿似乎也不热心去考求。但释卷之后,相信每个读者都会得到一种答案——这答案,既是思辨的,也是感性的;既酣畅淋漓,又难以言说。因为它更像是一种情绪,令人沉醉而不自知。
这段文字表达的是:
A.德波顿给了读者宝贵的精神享受 B.读者读后会得到模糊不清的答案 C.读者领略到了德波顿的淡然无为 D.德波顿没有解答读者提出的问题 [答案]A
[秒杀技巧]阅读文段可知,作者对德波顿的态度是褒扬的,所有选项中只有A项是褒义的,故选A。
[解析]由文中“思辨”“酣畅淋漓”“令人沉醉而不自知”可明显看出,作者对德波顿所持的态度是褒扬的,故正确选项也应是带有褒扬的色彩。纵观四个选项,只有A中的“宝贵的精神享受”最符合这一点,所以可以迅速确定本题正确答案为A。
【真题精析】
例1.(2009.内蒙古)东印度公司的发展在荷兰带起一批富裕的资产阶级,充足的资本使得像填海造田这样的昂贵工程得以开展,大量良田随之出现,投资人获得巨大利益。当整个欧洲的艺术潮流还是以皇家和贵族为主导时,荷兰则是资产阶级主导着艺术和文化。传世的许多17世纪荷兰绘画并非像常规那样为王室或教堂绘制,而是为了在市场上自由买卖而作,荷兰的中产阶级第一次带起大规模购买艺术品的潮流。
这段话意在说明:
A.17世纪荷兰艺术发展的独特背景 B.17世纪的荷兰引领着欧洲的潮流 C.资产阶级在荷兰社会中所处的支配地位 D.东印度公司对荷兰经济所起的重要作用 [答案]A
[秒杀技巧]文段整体语境都是围绕“艺术”来展开论述的。只有A项提到了“艺术”,可直接秒杀选出。
[解析]文段介绍了在17世纪荷兰资产阶级兴起的时代背景影响下,艺术所呈现出的独特性。所以正确答案选A。根据文段中的“艺术潮流”“艺术和文化”“绘画”“艺术品”等词语可知,文段主要围绕荷兰的“艺术”展开,而B、C、D三项都没有谈到“艺术”这个主题词,故排除。
遇到词语理解这一类题型,最好的方法是通过上下文推断。一般情况下,正确答案就在该词语的附近。以下三条技巧可帮助我们解决这类问题:
观察上下文中有没有词语或指代词的另一种说法,即找同义词。有时下文会对这一词语做解释,或者提供一些暗示。
观察词语在文中与哪些词搭配使用,再根据词语的相关知识进行合理的推断。
观察同一词语或指代词是否在上下文的其他地方出现,把两处的语境相比较,也能推断出词义。【真题精析】
例1.(2006.国考A类)我们不能简单地认为词典的编纂者不对,他们对词汇的用法做出改动不会是随意的,想必经过了认真的研究推敲。不过,词典编纂者不能忽视一个基本事实以及由此衍生的基本要求:语言文字是广大人民群众共同使用的,具有极为广泛的社会性,因此语言文字的规范工作不能在象牙塔里进行,而一定要走群众路线。
这段话中的“基本要求”指的是: A.词典编纂者不能对词汇的用法随意改动 B.词典编纂者应该熟悉词典编纂的具体过程 C.语言文字的规范工作要为广大人民群众服务 D.语言文字的规范工作应由广大人民群众来决定 [答案]C
[秒杀技巧]按照指代就近,“基本要求”指代紧接的下文内容,故选C。
[解析]“基本要求”是指紧接在后面的内容“语言文字是广大人民群众共同使用的,具有极为广泛的社会性”,即为语言文字规范要为广大人民群众服务,故本题选C。A、B两项内容正确,但不是“基本要求”,故排除。D项表述错误,排除。
【真题精析】
例1.(2008.江西)传统农业生产方式需要使农产品获得历史附加值,甚至可以同时成为旅游观景点,完整保留中国几千年的农业生产文化;在这个区域内,包括农民的住宅、道路、水电、外在景观都要统一设计,以保证传统的外貌景观,但是,在农民的家庭内部,同样可以享受现代化的种种便利。
这段文字的主要观点是:
A.要把传统农业生产区打造成旅游观光景点 B.农业生产要体现传统,农民生活必须现代 C.传统农业需要完整保留中国农业生产文化 D.传统农业需要统一设计,讲求传统的外观 [答案]C
[秒杀技巧]碰到B项“要„„必须”这样带有绝对性的推论要慎重,在此应排除。[解析]“传统农业生产方式需要使农产品获得历史附加值,甚至可以同时成为旅游观景点,完整保留中国几千年的农业生产文化”是主旨句,后面讲述怎样保留传统农业生产文化的种科具体措施,所以C项为正确答案。A、D两项是传统农业文化的一种体现。B项中出现了推论慎选关键词“农民生活必须„„”,故排除。
资料分析秒杀技巧
例:2008年,某省规模以上工业企业中,轻工业实现增加值5451.5亿元,增长13.2%,重工业实现增加值11256.3亿元,增长14.1%,则该省规模以上工业企业实现增加值
16718.8亿元,增长13.2%<
例1:2008年,某省规模以上工业企业中,实现增加值16718.8亿元,同比增长13.8%,其中轻工业实现增加值5451.5亿元,增长13.2%,则重工业实现增加值11256.3亿元,增长
例2:2008年,某省规模以上工业企业中,实现增加值16718.8亿元,同比增长13.8%,其中,重工业实现增加值11256.3亿元,增长14.1%,轻工业实现增加值5451.5亿元,则增长
【真题精析】
例1.2009年北京应届真题
2007年我国对韩国货物进出口总额约比上年增长:
A.15.6%
B.19.1%
C.26.1%
D.44.2% [答案]B [解析]根据题意,2007年我国对韩国进出口总额为561+1038=1599亿美元,2006年为
亿美元,则前者比后者增长
20%,因此,选B。
【真题精析】
例1.2008年黑龙江真题
据统计,2007年1~8月份黑龙江省对俄贸易进出口实现69.8亿美元,增长72.3%,高于全国对俄进出口增幅31.1个百分点,占黑龙江省对外贸易进出口总值的63.1%,占全国对俄贸易进出口总值的23.2%。其中对俄出口52.5亿美元,增长95.1%,高于全国对俄出口增速13.9个百疑点,占黑龙江省对外贸易出口总值的69%,占全国对俄贸易出口总值的30.9%;对俄进口17.3亿美元,增长27.1%,高于全国对俄进口增速17.个百分点,占黑龙江省对外贸易进口总值的50%;占全国对俄贸易进口总值的13.3%。
根据统计资料,2006年1~8月份黑龙江对俄出口总值是:
A.13.6亿美元
B.26.9亿美元
C.40.5亿美元
D.52.5亿美元
[答案]B [解析]根据“对俄出口52.5亿美元,增长95.1%”可知,2006年1~8月份黑龙江 对俄出口总值为
亿美元。因此,选B。
【真题精析】 例1.2008年各项余额增加值最大的是:
A.企事业存款
B.城乡居民储蓄存款
C.短期贷款
D.中长期贷款
[答案]B [解析]2008年,企事业存款余额增加值
亿元;城乡居民储
蓄存款余额
亿元;短期贷款余额
亿元;中长期贷款余额
亿元。故城乡居民储蓄存款余额增加值最大。因此,选B。
【真题精析】
例 1.2009年1~5月,软件产业完成业务收入3291亿元,同比增长23.3%,增速比去年同期下降6个百分点。其中5月当月增长22.4%,与4月持平,但比3月下降8.2个百分点。软件服务化趋势明显,软件技术服务增长28%,向比上升了1.8个百分点,其中软件外包服务收入增速高达85%,同比上升了40个百分点。
与2008年1~5月份相比,2009年1~5月份软件技术服务收入占当年软件产业完成收入的比重: A.上升
B.下降
C.持平
D.无法判断 [答案]A [解析]2008年1~5月份,软件技术服务收入
亿元,当年软件总收入为
亿元,前者占后者的比重为
低于2009年1~5月份的20%,故选A。
【真题精析】
例1.2009年北京社会真题
2007年9月民航旅客周转量在当年1~9月民航旅客周转量中所占比例约为:
A.11.4%
B.11.9%
C.60%
D. 88.1% [答案]B [解析]2007年9月民航旅客周转量年1~9月民航旅客周转量为比重为
11.9%。因此,选B。
亿人公里,当
亿人公里,前者占后者的
【真题精析】
例1.2008年黑龙江真题
今年8月,开始于2003年的农村信用社改革第一阶段工作任务基本完成。截至今年6月末,全国农村合作金融机构(舍农村信用社、农村合作银行和农村商业银行)各项贷款余额30841亿元,比改革前的2002年末增长121%;各项存款余额43394亿元,比改革前增长1i8%。今年上半年实现利润219亿元。全国农村合作金融机构四级分类口径的不良贷款2972亿元,不良率9.6%,分别比改革前降低了2175亿元和27.33个百分点。2002年年末全国农村信用合作金融机构各项存款余额与贷款余额相比较:
A.多12553亿元
B.少12553亿元
C.多5950.3亿元
D.少5950.3亿元
[答案]C [解析]2002年末,全国农村合作金融机构各项存款余额为元,贷款余额为项最接近,因此选择C。
亿
亿元,两者之差为20000-14000=6000亿元,与C
【真题精析】
例1、2008年,浙江省生产总值为21486.92亿元,比上年增长10.1%。其中第一产业增加值1095.43亿元,第二产业增加值11580.33亿元,第三产业增加值8811.16亿元,分别增长3.9 %、9.4%和11.8%。人均GDP为142,214元(按年平均汇率折算为6078美元),增长8.6%。
以下关于2008年浙江省三产业增加值占生产总值的比重描述正确的是:
[答案]B [解析]根据题意,第一产业增加值占生产总值的比重为二产业增加值的比重为,因此,选B。,第,第三产业增加值的比重为
【真题精析】
例
1、根据表格,下列说法不正确的是:
A.假设以当前的发展速度,在2010年,该省规模以上的国有企业实现增加值将达到
第三篇:公务员考试行测解题技巧大总结
给人改变未来的力量
考生们都知道,做行测没有技巧是不行的,那么短的时间内把每一道完完整整进行思考很难行得通,掌握一定技巧就很关键,中公网校重庆公务员考试网专家总结了行测试卷中可能用到的所有技巧,期望为考生备考提速。
数学运算:
1.分析选项整体性,三奇一偶选其偶,三偶一奇选其奇。
2.选项有升降,最大最小不必看,答案多为中间项;答案排序处在中间的两个中的一个往往是正确的选项。
3.选项中如果有明显的整百整千的数字,先代入验证,多为正解。
4.看到题目中存在比例关系,在选项中选择满足该比例中数字整除特性的选项为正解。5.一个复杂的数学计算问题,答案中尾数不同,直接应用尾数法解题即可。6.极值问题中,问最小在选项中多为第二小的,问最大在选项中多为第二大的(先代入验证)。
选词填空:
1.注意找语境中与所填写词语相呼应的词、短语或句子。2.重点落在语境与所选词语的逻辑关系上,而不是选项的词语上。3.选项中近义词辨析方向是从范围不同角度辨析的,选择范围大的。4.从语意轻重角度辨析的,选项要么选最重的,要么选最轻的。5.成语辨析题选择晦涩难懂的成语。片段阅读:
1.选项要选积极向上的。2.选项是文中原话不选。3.选项如违反客观常识不选。4.选项如违反国家大政方针不选。
5.启示、告诉、道理材料的片段阅读,不选文字内容层面的选项。
6.启示、告诉、道理材料的片段阅读,选择激励人的选项或在精神上有触动的选项。7.提问方式是选标题的,选择短小精悍的选项。
8.提问方式是“错误的”“不正确的”,要通读材料在选择选项,不能断章取义。逻辑推理:
1.数字比例与题干接近的选项要注意。
公考咨询交流、公考资讯早知道、公考资料获取,尽在中公网
给人改变未来的力量
2.定义判断题注意提问方式是属于还是不属于。3.定义判断若出现多定义,不提问的定义不用看。
4.削弱型和加强型推理题题干中未提信息若出现一般为无关选项。5.评价型推理题正确答案一般兼顾双方。6.结论型推理题正确答案一般为语气较弱的选项。7.排除弱化项、主观项、论题偏离项,剩下往往是答案。图形推理
1.图形本身变化不大考虑对称、旋转、平移、翻转等。2.图形本身变化较大考虑元素数量、叠加等。
3.若图形复杂多变且出现怪图,重点考虑共性,如共同元素数量、位置关系等。4.空间型图形推理注意合理利用橡皮、小刀等工具模拟题干。数列问题:
1.全奇必是奇:数列给出的项如果全是奇数,答案必是奇数;全偶必是偶:数列给出的项如果全是偶数,答案必是偶数。
2.奇偶奇偶间隔走:数列给出的项如果是奇数和偶数间隔,答案必须符合此规律。3.从怪原则:选项中有0、1等多数为正确选项。
4.题目中全部都是整数,选项中出现分数或小数多为正确答案;同理题干全部都是小数或分数,选项中出现整数多为正确答案。
5.看出整体有单调性,如果题目为单调递增,选项中只有一个是大于题干中最后一个数字的,那么一般是正确答案。
6.分数数列中,分母多为质数,分数多需要分子,分母拆分找规律。
凡标注来源“中公教育山东分校(http://sd.offcn.com/山东公务员考试 山东人事考试信息网)”的所有相关资料,转载请保留版权注明。
公考咨询交流、公考资讯早知道、公考资料获取,尽在中公网
第四篇:2018国家公务员考试行测类比推理题解题技巧
2018国家公务员考试行测类比推理题解题技巧
在本文中我们要学习下一个论证方式——类比推理。首先要熟悉什么叫做类比推理,顾名思义,类比就是有比较和对比,推理就是有推导,类比推理就是有比较的推导。题干中通常出现有两个人或两个事物间的比较,中公教育专家通过对比发现二者有很多相同或相似属性,已知事物A还具有另一种属性,可以推知事物B也具有该属性。这就是类比推理的过程。
我们来看一道例题:张三和李四两个人,都是男性,18岁,身高188cm,都留个小平头,已知张三考上了北大,所以可以推知,李四也能考上北大。题干中出现了张三和李四两人的四个共同点,即性别、身高、年龄、发型,通过他们的相似度很高,得出结论,李四和张三一样,都能考上北大。这就是典型的类比推理的论证方式。对于该类题型我们该如何加强或削弱呢?很简单,从两者的相似度入手,如果有一个选项告诉我们,张三一天吃10个鸡蛋,李四一天只吃1个鸡蛋,能不能削弱?我们思考一下,虽然说吃几个鸡蛋和结论中的能否考上北大并无直接关系,但起码这是两者的一个不同点,只要是不同点,就能证明他俩没有那么像,也就对相似度进行了削弱,既然题干是通过相似度来论证的,那么削弱了相似度也就降低了结论成立的可能性,所以类比推理的削弱方式就是,找两者的相同点,当然,如果有一个选项说,张三是学霸,而李四是学渣,明显就比刚才吃几个鸡蛋的选项削弱力度要大,因为学霸和学渣是对于学习能力的一种评价,而结论考不考得上北大正是由学习能力决定的,所以,两者与本质相关的不同点是最强的削弱方式,同理,加强的方式与之相对,就是找两者的相同点,其中与本质相关的相同点加强力度最大。掌握了类比推理论证方式的削弱和加强方式之后,我们来具体应用两道题目。
例1:生活在沙漠中的啮齿类动物,由于常年面对缺水干旱、强光照以及天敌、昼夜温差较大等问题,大都体型较小且具备即时钻地能力。因此,不到千里外的戈壁滩上,跟它近亲的另一种啮齿动物也应该具有上述体征和能力。
下列选项如果为真,哪一个能够支持上述结论?
A.戈壁滩相较于沙漠,表层质地更加坚硬
B.戈壁滩上的啮齿类动物个头普遍更大
C.戈壁滩上捕食者构成跟沙漠里相似
D.戈壁滩上常年暴风肆虐,飞沙走石,自然条件更为恶劣
在这道题中,有两种动物的类比,提问是支持上述结论的是,那么就是想让沙漠和戈壁滩的结果一致,那就是找相同,只要我们共同点越多,我们得到一致的可能性就越大,选项只有C是相同的,其他都是不同。所以正确答案是C。
例2:地球和月球相比,有许多共同属性,如它们都属太阳系星体,都是球形的,都有自转和公转等。既然地球上有生物存在,因此,月球上也很可能有生物存在。
以下哪项如果为真,则最能削弱上述推论的可靠性? A.地球和月球大小不同
B.月球上同一地点温度变化极大,白天可以上升到 100℃,晚上又降至零下 160℃ C.月球距地球很远,不可能有生物存在 D.地球和月球生成时间不同
题干通过月球和地球的比较,我们找出很多共同点——球形、自传、公转,现在地球有生物,推导出月球也有生物,那提问的是削弱,也就是找出二者的不同,可是仔细观察一下选项,四个选项都是不同,那怎么办呢,这就需要我们尽心区别,找削弱力度最强的那个,与题目的结论本质相关的,即与生物存在相关的,应该选择B,其他的大小、举例、时间都和生物存在的相关联系较弱。
行测每日一练:
1.气候变暖将使我国主要作物品种的布局发生变化,并影响到种植制度,种植界限北移西延的风险加大。据估算,到2030年,我国种植业产量在总体上因全球变暖可能会减少5%到10%左右,其中小麦、水稻和玉米三大作物均以减产为主。此外,全球变暖有利于农业病虫的越冬和繁殖,导致更严重的农业病虫与杂草危害。
这段文字意在说明:
A.我国应根据气候变暖趋势调整农业生产布局 B.气候变暖将影响我国农业生产布局 C.气候变暖将影响我国农业生产安全 D.气候变暖将有利于农业病虫害的发生
2.我并不想美化网络文学,但认为,如果要理解网络文学,必须先破除一个误区:所谓欲望,就一定是低级欲望;所谓匮乏,就一定是无聊的匮乏。有些欲望和匮乏不仅是正当的,甚至是高尚的——有弱肉强食的现实法则不能包容的欲望,有小康社会的平庸生活不能满足的匮乏。
这段文字意在告诉人们: A.网络文学是不值得提倡的 B.人们应消除对网络文学存在的误解
C.网络文学虽然表达一些低级欲望和无聊匮乏,但我们要给予包容 D.人们呼唤网络文学以满足低级欲望和无聊的匮乏
3.在“自媒体时代”,专业的历史研究无法回应社会急切需求,无法应对迅即出现的许多新问题,这就为另外一种即被称为“草根史学”的非专业研究所替代,由此我们看到与过去一百年历史研究日趋专业化相背离的一个现象,即专业的研究越来越显得非常“不专业”。
与这段文字语意不符的一句是:
A.“草根史学”由于其自由灵活更利于发挥史学的作用 B.“草根史学”由于其非专业性,无法应对迅即出现的新问题 C.在过去的一百年,历史研究越来越脱离社会现实需求
D.在某种意义上,“草根史学”比传统的专业历史研究更“专业”
4.法国一家报社组织了一次有奖智力竞赛,其中有这样一道题目:如果法国最大的博物馆卢浮宫失火了,在只能抢救一幅画的情况下,你会救哪一幅画?在该报收到的成千上万的答案中,贝尔纳以最佳答案获得了该题的奖金。他的答案是:抢救离出口最近的那一幅画。
这段文字传递的信息是: A.成功需要效率 B.时间就是金钱 C.最近的那一幅画最值钱 D.最有可能实现的目标是最佳目标 行测每日一练:
1.【答案】C。中公教育解析:文段首先指出气候变暖将使我国主要作物品种的布局发生变化,并影响到种植制度,种植界限北移西延的风险加大。接着又从粮食减产和病虫害两方面来分析全球变暖对我国农业的危害。A、B、D三项表述均不够全面,不能作为文段主旨。故本题正确答案为C。
2.【答案】B。中公教育解析:文段首先指出要理解网络文学,必须先破除一个误区,接着对这一个误区进行了阐释。因此文段意在告诉我们应消除对网络文学存在的误解,即B项。其他三项均是对文段的错误理解。
3.【答案】B。中公教育解析:由文段中“专业的历史研究无法回应社会急切需求,无法应对迅即出现的许多新问题”可知,“无法应对迅即出现的新问题”的是“专业的历史研究”而非“草根史学”。B项犯了张冠李戴的错误。故本题答案为B。
4.【答案】D。中公教育解析:首先看四个选项,C项就事论事,还停留在题干本身,可直接排除。本题的落脚点在获奖者贝尔纳的最佳答案——抢救离出口最近的那一副画。最佳答案传达的表层意思是:因为离出口最近,所以最有可能达到抢救出来的目标。引申义即D项。A项的效率,B项的时间就是金钱都不是文段最终要传达的信息。
第五篇:公务员考试行测申论万能解题技巧
7月9日下午,全国五一劳动奖章获得者、全国爱民模范、郑州市公安局交巡警支队民警杨华民应安阳市公安局政治部邀请,到安阳市交警支队和安阳公安干校作“爱岗敬业、文明交通”报告。全市广大民警通过认真聆听这位被群众亲切称为郑州“爱较真”交警、“最烦人” 交警的先进事迹,增强了爱岗敬业、文明交通的意识,掌握了相关的交通法规及常识,道德水准进一步提高。
在许多网友眼中,杨华民是个潮人,因为他很早就把博客、微博引入到交通管理、利民便民中去。“刚开始总觉得这都属于年轻人的‘专利’,但后来很快就发现它对我的工作起到了非常大的帮助。”只要有助于工作、有助于服务群众,杨华民都会去尝试、去学习。报告中,杨华民以身边发生的交通事故为例,生动地阐述了交通事故所带来的社会危害性,并以此希望广大民警在日常生活、工作中牢固树立“安全大于天”、“生命高于一切”的理念,充分认识到安全、文明出行的深刻含义。杨华民结合自己多年的交警工作经验,详细介绍了最基本、最常用、最有效的安全出行常识,并深切指出只有每位行人、每辆汽车都养成遵纪守法、文明出行的良好习惯,这样,我们的道路才会真正实现畅通。
杨华民表示,他在处理违章行人和机动车时,并不是只开出罚单了事,而是在开出罚单之际,还要给违章者讲道理,寻本求源,希望违章者从内心深处树立遵守交通法规,安全出行的意识。有人因此说他工作效率低,但他就是一个爱和制度较真的交警。面对纷繁复杂的交管工作,他十几年如一日,凭借着满腔的热情,凭借着对人民群众的高度责任感,依法依章管理,全心全意服务群众,用自己的模范行为,赢得了群众的赞誉,树立了警察的良好形象,体现了平凡之中的伟大追求。
报告中,杨华民勉励与会警察要珍惜家庭、保持健康的身体、拥有良好的心态,只要用心做事、忠诚履职,就一定能把工作做好。