机械设计知识点总结

时间:2019-05-12 11:28:41下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《机械设计知识点总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《机械设计知识点总结》。

第一篇:机械设计知识点总结

1螺纹联接的防松的原因和措施是什么? 答:原因——是螺纹联接在冲击,振动和变载的作用下,预紧力可能在某一瞬间消失,联接有可能松脱,高温的螺纹联接,由于温度变形差异等原因,也可能发生松脱现象,因此在设计时必须考虑防松。措施——利用附加摩擦力防松,如用槽型螺母和开口销,止动垫片等,其他方法防松,如冲点法防松,粘合法防松。2.提高螺栓联接强度的措施

答:(1)降低螺栓总拉伸载荷Fa的变化范围:a,为了减小螺栓刚度,可减螺栓光杆部分直径或采用空心螺杆,也可增加螺杆长度,b,被联接件本身的刚度较大,但被链接间的接合面因需要密封而采用软垫片时将降低其刚度,采用金属薄垫片或采用O形密封圈作为密封元件,则仍可保持被连接件原来的刚度值。(2)改善螺纹牙间的载荷分布,(3)减小应力集中,(4)避免或减小附加应力。3.轮齿的失效形式

答:(1)轮齿折断,一般发生在齿根部分,因为轮齿受力时齿根弯曲应力最大,而且有应力集中,可分为过载折断和疲劳折断。(2)齿面点蚀,(3)齿面胶合(4)齿面磨损(5)齿面塑性变形。4.齿轮传动的润滑。

答:开式齿轮传动通常采用人工定期加油润滑,可采用润滑油或润滑脂,一般闭式齿轮传动的润滑方式根据齿轮的圆周速度V的大小而定,当V<=12时多采用油池润滑,当V>12时,不宜采用油池润滑,这是因为(1)圆周速度过高,齿轮上的油大多被甩出去而达不到啮合区,(2)搅由过于激烈使油的温升增高,降低润滑性能,(3)会搅起箱底沉淀的杂质,加速齿轮的磨损,常采用喷油润滑。

5.为什么蜗杆传动要进行热平衡计算及冷却措施

答: 由于蜗杆传动效率低,发热量大,若不及时散热,会引起箱体内油温升高,润滑失效,导致齿轮磨损加剧,甚至出现胶合,因此对连续工作的闭式蜗杆传动要进行热平衡计算。措施——1),增加散热面积,合理设计箱体结构,铸出或焊上散热片,2)提高表面传热系数,在蜗杆轴上装置风扇,或在箱体油池内装设蛇形冷却水管。6.带传动的有缺点。

答,优点——1)适用于中心距较大的传动,2)带具有良好的挠性,可缓和冲击,吸收振动,3)过载时带与带轮间产生打滑,可防止损坏其他零件,4)结构简单,成本低廉。缺点——1)传动的外廓尺寸较大,2)需要张紧装置,3)由于带的滑动,不能保证固定不变的传动比,4)带的寿命短,5)传动效率较低。与带传动和齿轮传动相比,链传动的优缺点

答: 与带传动相比,链传动没有弹性滑动和打滑,能保持准确的平均传动比,需要的张紧力小,作用在轴上的压力也小,可减小轴承的摩擦损失,结构紧凑,能在温度较高,有油污等恶劣环境条件下工作。与齿轮传动相比,链传动的制造和安装精度要求较低,中心距较大时其传动结构简单。链传动的缺点——瞬时链速和瞬时传动比不是常数,传动平稳性较差,工作中有一定的冲击和噪声。

9.轴的作用,转轴,传动轴以及心轴的区别。

答: 轴是用来支持旋转的机械零件。转轴既传动转矩又承受弯矩。传动轴只传递转矩而不承受弯矩或弯矩很小。心轴则只承受弯矩而部传动转矩。10.轴的结构设计主要要求。

答: 1),轴应便于加工,轴上零件要易于装拆。2),轴和轴上零件要有准确的加工位置,3)各零件要牢固而可靠的相对固定,4)改善受力状况,减小应力集中。11. 形成动压油膜的必要条件。

答: 1)两工作面间必须有楔形形间隙,2)两工作面间必须连续充满润滑油或其他粘性流体,3)两工作面间必须有相对滑动速度,其运动方向必须使润滑油从大截面流进,小截面流出,此外,对于一定的载荷,必须使速度,粘度及间隙等匹配恰当。

13.变应力下,零件疲劳断裂具有的特征。

答: 1)疲劳断裂的最大应力远比静应力下材料的强度极限低,甚至屈服极限低,2)不管脆性材料或塑像材料,疲劳断裂口均表现为无明显塑性变形的脆性突然断裂,3)疲劳断裂是损伤的积累。

14.机械磨损的主要类型——磨粒磨损,粘着磨损,疲劳磨损,腐蚀磨损。

15. 垫圈的作用——增加被联接件的支撑面积以减小接触处的压强和避免拧紧螺母时擦伤被联接件的表面。16.滚动螺旋的优缺点。

答: 优点——1)磨损很小,还可以用调整方法消除间隙并产生一定预变形来增加刚度,因此其传动精度很高,2)不具有自锁性,可以变直线运动为旋转运动。缺点——1)结构复杂,制造困难,2)有些机构中为了防止逆转而需另加自锁机构。齿轮传动的功率损耗包括——啮合中的摩擦损耗,搅动润滑油的油阻损耗,轴承中的摩擦损耗。

20.轴瓦材料的性能——1)摩擦系数小,2)导热性好,热膨胀系数小,3)耐磨,耐蚀,抗胶合能力强,4)要有足够的机械强度和可塑性。

21提高螺纹连接强度的措施

a降低影响螺栓疲劳强度的应力幅b改善螺纹牙上载荷分布不均的现象c减小应力集中的影响d采用合理的制造工艺方法 22提高轴的强度的常用措施

a合理布置轴上零件以减小轴的载荷b改进轴上零件的结构以减小轴的载荷c改进轴的结构已减小轴的载荷d改进轴的表面质量以提高轴的疲劳强度

3滚动轴承正常的失效形式是内外圈滚道或滚动体上的点蚀破坏

46308—内径为40mm的深沟球轴承尺寸系列03,0级公差,0组游隙

7211c—内径为55mm的角接触球轴承,尺寸系列02,接触角15°,0级公差,0组游隙

N408p5—内径为40mm的外圈无挡边圆柱滚子轴承,尺寸系列04,5级公差,0组游隙

5为了把润滑油导入整个摩擦面间,轴瓦或轴颈上开油孔或油槽 轴承材料性能应着重满足以下主要要求 a良好的减摩性,耐磨性和抗咬粘性b良好的摩擦顺应性,嵌入性和磨合性c足够的强度和抗腐蚀能力d良好的导热性,工艺性和经济性等

7轴承材料分三大类:a金属材料b多孔质金属材料c非金属材料

8滑动轴承的失效形式

a摩力磨损b刮伤c咬粘d疲劳剥落e腐蚀

9模数越大,齿轮的弯曲疲劳强度越高 小齿轮直径越大,齿轮的齿面接触疲劳强度越高

43.带轮的结构形式:轮缘,轮辐,轮毂组成

九:V带轮的轮槽 与选用的V带的型号相对应 V带绕在带轮上以后发生弯曲变形,使V带工作面的夹角发生变化,为了使V带的工作面与带轮的轮槽工作面紧密贴合,将V带轮轮槽的工作面的夹角做成小于40°

V带安装到轮槽中以后,一般不应超出带轮外圆,也不应与轮槽底部接触,为此规定轮槽基准直径到带轮外圆和底部的最小高度hamin和hfmin 2.摩擦分为干摩擦,边界摩擦,流体摩擦,混合摩擦 3.磨损:运动副之间的摩擦导致零件表面材料丧失或者迁移 分为三阶段:磨合阶段,稳定磨损阶段,剧烈磨损阶段

设计和使用机器时:力求缩短磨合期,延长稳定磨损期,推迟剧烈磨损期的到来

磨损按磨损机理分类:粘附磨损,磨粒磨损,疲劳磨损,冲蚀磨损,腐蚀磨损,微动磨损

4.润滑剂的作用:降低摩擦,减轻磨损,保护零件不遭锈蚀,散热降温,缓冲吸振,密封能力

分为四个类型:气体,液体,半固体,固体

性能指标:1粘度(动力粘度:流体中任意点处的切应力均与该处流体的速度梯度成正比

运动粘度:动力粘度与同温度下的液体的密度之比值)2润滑性3极压性4闪点:遇火焰能发出闪光的最低温度5凝点:不能再自由流动的最高温度6氧化稳定性 二:螺纹:外螺纹和内螺纹,共同组成螺旋副 常用螺纹:连接螺纹及传动螺纹连接螺纹1)普通螺纹2)非螺纹密封的管螺纹3)用螺纹密封的管螺纹4)米制螺纹 传动螺纹1)矩形螺纹2)梯形螺纹3)锯齿形螺纹

螺纹连接的仿松实质 防止螺旋副在受载时发生相对转动。措施按工作原理分为摩擦防松,机械防松,破坏螺旋副运动关系防松 摩擦防松机械防松破坏螺旋副运动关系防松

螺纹连接的预紧:预紧力目的在于: 增强连接的可靠性和紧密性,以防止受载后被连接件间出现隙缝或者相对滑移

五:键

键连接的主要类型:平键连接,半圆键连接,楔键连接和切向键连接

根据用途不同平键可分为:普通平键,薄型平键(静连接),导向平键和滑键(动连接)按构造分:圆头(A型),平头(B型),单圆头(C型)

六:平键连接失效形式:工作面被压溃 对于导向平键或者滑键连接失效形式工作面的过度磨损

七:带传动是一种挠性传动,基本组成零件为带轮和传动带

按工作原理不同分为:摩擦型(又按横截面面积形状不同分为平带传动,圆带传动,V带传动,多楔带传动)和啮合型带传动

V带传动材料:包括顶胶,抗拉体,底胶和包布 链传动的缺点:只能实现平行轴间链轮的同向传动,运转时不能保持恒定的瞬时传动比,磨损后易发生跳齿,工作时有噪声,不宜用在载荷变化很大,高速,急速反向的传动中。十:链传动的失效形式①链的疲劳破坏 成为决定链传动承载能力的主要因素②链条铰链的磨损 结果使得链节距增大,链条总长度增加,从而使链的松边垂度发生变化,同时增大了运动的不均匀性和动荷载,引起跳齿。③链条铰链的胶合 一定程度上限制了链传动的极限转速

十一:齿轮传动

主要特点:①效率高②结构紧凑③工作可靠寿命长④传动比稳定

十五:滑动轴承 分为整体式径向滑动轴承,对开式径向滑动轴承(承受径向力),止推滑动轴承(承受轴向力)① 滑动轴承的失效形式 磨粒磨损,刮伤,咬粘(胶合),疲劳剥落,腐蚀

② 轴承材料

材料应该满足的要求 ⑴良好的减摩性,耐磨性和抗咬粘性⑵良好的摩擦顺应性,嵌入性和磨合性⑶足够的强度和抗腐蚀能力⑷良好的导热性,工艺性,经济性等

③常用的轴承材料⑴轴承合金(通称巴氏合金或白合金)⑵铜合金⑶铝基轴承合金⑷灰铸铁及耐磨铸铁⑸多孔质金属材料⑹非金属材料

④油孔及油槽 作用:为了将润滑油导入整个摩擦面间,轴瓦或轴颈上需开设油孔或油槽,对于液体动压径向轴承,有轴向油槽和周向油槽两种形式

⑤润滑油及其选择

润滑油是滑动轴承中应用最广的润滑剂,液体动压轴承通常采用润滑油作润滑剂

原则上讲当转速高,压力小,应选择粘度较低的油,反之当转速高压力大应选粘度较高的油

润滑油粘度随温度升高而降低,故在较高温度下工作的轴承所用油粘度应该比通常的高一些。

215.滚动轴承的实效形式正常实效是:内外圈滚道或滚动体上的点蚀破坏

1普通平键截面尺寸按 轴的直径来选择,键长按 轮毂的长度而定

2随着表面粗糙度的增加,零件的实际接触面积

减少,高副元件表面接产生的应力是切应力

3螺纹连接防松的实质是防止螺旋副间的相对转动 4内联板与套筒,外联板与销轴过盈 滚子和套筒,套筒和销轴间隙

5对齿轮材料性能的基本要求齿面硬 齿芯韧

6带传动的传动比不宜过大,过大则

包角减小 出现打滑,减小有效拉力

7承载能力最高是直齿圆柱传动,最低是斜齿

8限制蜗杆的直径系数q是为了限制齿数 蜗杆传动的滑动速度越大,所选润滑油的粘度值就越小

9液体摩擦动压滑动的轴瓦上的油孔,油沟位置应开在中部周向

11在承受横向载荷或者旋转力矩的普通紧螺栓连接中,螺杆受扭转切应力和拉应力

12蜗杆传动中 蜗杆头数越少效率越低自锁性越好常用头数1246 1.由于零件尺寸及几何形状变化,加工质量及强化因素等影响,使得零件的疲劳极限要小于材料的疲劳极限。r=c时,o与m的连线;σm=c时,90度;σmin=c时,45度。、简述不同齿轮传动的主要失效形式及其设计计算准则 答:闭式软齿面齿轮传动主要失效形式为齿面点蚀,先按齿面接触疲劳强度设计,然后进行齿根弯曲疲劳强度校核;闭式硬齿面齿轮传动,主要失效形式是弯曲疲劳折断,先按齿根弯曲疲劳强度设计,然后进行齿面接触疲劳强度校核;闭式高速重载齿轮传动,主要失效形式是胶合,除满足齿面接触强度和齿根弯曲强度外,还应按抗胶合能力进行计算;开式齿轮传动主要失效形式是磨损,只要按弯曲疲劳强度设计,并用增大模数方法来考虑磨损的影响;短期过载或冲击时,主要失效形式是过载折断或齿面塑形变形,按静强度计算。

1.液体动压轴承与静压轴承在形式压力油膜的机理上有什么不同

答:液体动压轴承利用轴颈与轴承表面间形成收敛油楔,依靠两表面间一定的相对滑动速度使一定黏度的润滑油充满楔形空间,形成流体压力与轴承载荷平衡,以得到液体润滑。

液体静压轴承是利用油泵将具有一定压力的液体送入支承处,使摩擦表面间强迫形成一层液态膜将表面完全分开,并能承受一定的载荷。

2.某一普通V带传动装置工作时有两种输入转速:300r/min和600r/min,若传递的功率不变,试转速设计?为什么?

答:由于输出的功率P=Fv不变,所以需要带传动提供的有效拉力F1和F2也不相等。V带传动应按大的有效效应拉力进行设计,即按低速时的参数设计带传动。因为按低俗运行参数设计,带传动能提供的有效拉力较大,可以满足高速时对有效拉力的要求。但若按高速运行参数设计,带传动提供的有效拉力较小,不能满足低速时较大的拉力要求,运行时,可能会因有效拉力不足而打滑,还会因带中应力超过许用应力而使带的寿命下降。

3.滚动轴承的基本额定寿命与基本额定动载荷

答:基本额定寿命:一组在相同条件下运转的近于相同的轴承,将其可靠度为90%时的寿命作为标准寿命。即按一组轴承中10%的轴承发生点蚀破坏,而90%的轴承不发生点蚀破坏前的转数或工作小时数作为轴承的寿命,并把这各寿命叫做基本额定寿命。

基本额定动载荷:使轴承的基本额定寿命恰好为106r时,轴承所能承受的载荷。

4.带传动的弹性滑动与打滑?两者有何区别?

答:传动带在受到拉力作用时会发生弹性变形。在小带轮上,带的拉力从紧边拉力F1逐渐降低到松边拉力F2,带的弹性变形量逐渐减少,因此带相对于小带轮向后退缩,使得带的速度低于小带轮的线速度v1;在大带轮上,带的拉力从松边拉力F2逐渐上升为紧边拉力F1,带的弹性变形量逐渐增加,带相对于大带轮向前伸长,使得带的速度高于大带轮的线速度v2.这种带的弹性变形而引起的带与带轮间的微量滑动,称为带传动的弹性滑动。在带传动的速度不变的条件下,随着带传动所传递的功率逐渐增加,带和带轮间的总摩擦力也随之增加,弹性滑动所发生的弧度的长度也相应扩大。当总摩擦力增加到临界值时,弹性滑动的区域也就扩大到了整个接触弧。此时,如果增加带传动的功率,则带与带轮间就会发生显著的相对滑动,即整体打滑。

(建议理解后,用自己的话答)

5.用同一材料制成的机械零件和标准试件的疲劳极限

通常是不相同的,试说明导致不相同的主要原因 答:主要因素:应力集中、零件尺寸大小、零件表面品质及环境状况

6.链传动的多边效应? 答:链传动的瞬时传动比为i1R2cosR。链传动21cos的传动比变化与链条绕在链轮上的多边形特征有关,故将以上现象称为链传动的多边形效应。

7.带传动为什么要限制其最小中心距和最大传动比? 答:中心距过小,单位时间内链条的绕转次数增多,链条曲伸次数和应力循环次数增多,因而加剧了链的磨损和疲劳。同时,由于中心距小,链条在小链轮上的包角变小,每个轮齿所受的载荷增大,且易出现跳齿和脱齿现象。传动比过大链条在小链轮上的包角就会过小,参与啮合的齿数减少,每个轮齿承受的载荷增大,加速轮齿的磨损,且易出现跳齿和脱链现象。

8.闭式蜗杆传动为什么要进行热平衡计算?可采用哪

些措施来改善条件?

答:蜗杆传动由于效率低,所以工作时发热量大。在闭式传动中,如果产生的热量不能及时散逸,将因油温不断升高而使润滑油稀释,从而增大摩擦损失,甚至发生胶合。所以,必须根据单位时间内的发热量Φ1等于同时间内的散热量Φ2的条件进行热平衡计算,以保证油温稳定地处于规定的范围内。

措施:加散热片以增大散热面积、在蜗杆轴端加装风扇以加速空气的流通。

9.带传动、链传动和齿轮传动各有什么优缺点? 带传动:(优)结构简单、传动平稳、价格低廉和缓冲吸振等特点; 链传动:(优)主要用在要去工作可靠,两轴相距较远,低速重载,工作环境恶劣,以及其他不宜采用齿轮传动的场合(缺)只能实现平行轴间链轮的同向传动;运转是不能保证恒定的瞬时传动比;磨损后易发生跳齿;工作时有噪声;不宜用在载荷变化很大、高速和急速反向的传动中。齿轮传动:(优)效率高、结构紧凑、工作可靠、传动比稳定(缺)齿轮的制造及安装精度要求高,价格较贵,且不宜用于传动距离过大的场合。10.齿轮传动设计时,为什么小齿轮的齿面硬度和齿宽要比大齿轮大一些?

答:当小齿轮与大齿轮的齿面具有较大的硬度差(如小齿轮面为淬火并磨制,大齿轮齿面为常化或调质),且速度又较高时,较硬的小齿轮面对较软的大齿轮齿面会起较显著的冷作硬化效应,从而提高了大齿轮齿面的疲劳极限,因此,当配对的两齿轮齿面具有较大的硬度差时,大齿轮的接触疲劳许用应力可提高约20%,但应注意硬度高的齿面,粗糙度值也要相应的减小。圆柱齿宽的实用齿宽,在按b=Φdd1计算后再做适当调整,而且常将小齿轮的齿宽在圆整值的基础上人为地加宽5~10mm,以防止大小齿轮因装配误差产生轴向错位时导致啮合齿宽减小额增大轮齿单位齿宽的工作载荷。11.普通平键主要失效形式是什么? 答:工作面被压溃

12.用受力变形图说明受轴向工作载荷F的普通紧螺栓联接其螺栓的总载荷F2,预紧力F0,被联接件的残余预紧力F1与工作载荷F之间的关系。(螺栓刚度为Ch,被联接件刚度为Cm)答:见P83 图5-25(c)13.当设计链传动时,选择齿数Z1和节距P应考虑哪些问题?

答:对于z1而言。

小链轮齿数z1少,将减小外廓尺寸,但齿数过少,会增加运动的不均匀性和动载荷;链条在进入和退出啮合时,链节间的相对转角增大;链传动的圆周力增大,从整体上加速铰链和链轮的磨损。可见,小链轮的齿数z1不宜过少。链轮的最少齿数Zmin=9。一般z1≧17,对于高速传动或承受冲击载荷的链传动,z1不少于25,且链轮齿应淬硬。

小链轮的齿数z1也不宜取太大。在传动比给定时,z1大,大链轮齿数z2也相应增大,其结果不仅增大了传动的总体尺寸,而且还容易发生跳链和脱链,从另一方面限制了链条的使用寿命。

对于P而言

节距p越大,承载能力就越高,但总体尺寸增大,多边形效应显著,振动、冲击和噪声也严重。为

使结构紧凑和延长寿命,应尽量选取较小的节距的单排链。速度高,功率大时,宜选用小节距的多排链。如果从经济上考虑,当中心距小、传动比大时,应选小节距的多排链,中心距大,传动比小时,应选大节距的单排链。14.设计齿轮时,在什么情况下必须将齿轮与轴设计成一

体,做成齿轮轴

答:对于直径很小的钢制齿轮,当为圆柱齿轮时,若齿根圆到键槽底部的距离e<2mt(mt为端面模数);当为锥齿轮是,按齿轮小端尺寸计算而得的e<1.6mt时,均应将齿轮和轴做成一体,叫做齿轮轴。

15.在某段轴颈采用两个平键时一般将键槽沿周向相隔

180º布置,采用楔键时却相隔90º~120º布置,这是为什么?

考虑键的合理布置,详见P108(建议理解后,用自己的话答)

16.为什么开式齿轮传动一般不会出现点蚀现象

答:开式齿轮润滑条件恶劣,齿间会进入磨料性物质,在齿轮出现点蚀现象前,齿面就被磨损报废。17.带传动中,为什么带速不易过高或过低?

答:当带传动的功率一定时,提高带速,可以降低带传动的有效拉力,相应地减少带的根数或者V带的横截面积,总体上减少带传动的尺寸;但是,提高带速,也提高了V带的离心应力,增加了单位时间内带的循环次数,不利于提高带传动的疲劳强度和寿命。降低带速则有相反的利弊。

18.形成稳定动压油膜的必要条件(流体动力润滑的必要

条件)答:(1)相对滑动的两表面间必须形成收敛的楔形间隙;(2)被油膜分开的两表面必须有足够的相对滑动速度(亦即表面滑动表面带油时要有足够的油层最大速度),其运动方向必须使润滑油由大口流进,从小口流出。(3)润滑油必须有一定的黏度,供油要充分。

19.简述螺纹联接的基本类型主要有哪四种?

螺栓联接、螺钉联接、双头螺柱联接、紧定螺钉联接。20.提高螺栓联接强度的措施有哪些? 降低螺栓总拉伸载荷的变化范围;改善螺纹牙间的载荷分布;减小应力集中; 避免或减小附加应力

21.闭式蜗杆传动的功率损耗主要包括哪三部分? 闭式蜗杆传动的功率损耗包括三部分:轮齿啮合的功率损耗,轴承中摩擦损耗和搅动箱体内润滑油的油阻损耗。22.链传动的主要失效形式有哪些?

链板疲劳破坏;滚子套筒的冲击疲劳破坏;销轴与套筒的胶合;链条铰链磨损;过载拉断。23.滚动轴承的基本类型有哪些? 调心球轴承、调心滚子轴承、圆锥滚子轴承、推力球轴承、深沟球轴承、角接触球轴承、推力圆柱滚子轴承、圆柱滚子轴承、滚针轴承等。

第二篇:机械设计基础知识点总结

绪论:机械:机器与机构的总称。机器:机器是执行机械运动的装置,用来变换或传递能量、物料、信息。机构:是具有确定相对运动的构件的组合。用来传递运动和力的有一个构件为机架的用构件能够相对运动的连接方式组成的构件系统统称为机构。构件:机构中的(最小)运动单元一个或若干个零件刚性联接而成。是运动的单元,它可以是单一的整体,也可以是由几个零件组成的刚性结构。零件:制造的单元。分为:

1、通用零件,2、专用零件。一:自由度:构件所具有的独立运动的数目称为构件的自由度。运动副:使两构件直接接触并能产生一定相对运动的可动联接。高副:两构件通过点或线接触组成的运动副称为高副。低副:两构件通过面接触而构成的运动副。根据两构件间的相对运动形式,可分为转动副和移动副。F = 3n-2PL-PH机构的原动件(主动件)数目必须等于机构的自由度。复合铰链:虚约束:重复而不起独立限制作用的约束称为虚约束。计算机构的自由度时,虚约束应除去不计。局部自由度: 与输出件运动无关的自由度,计算机构自由度时可删除。

二:连杆机构:由若干构件通过低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。铰链四杆机构:具有转换运动功能而构件数目最少的平面连杆机构。整转副:存在条件:最短杆与最长杆长度之和小于或等于其余两杆长度之和。构成:整转副是由最短杆及其邻边构成。类型判定:(1)如果:lmin+lmax≤其它两杆长度之和,曲柄轮的失效形式主要是齿面磨损;采用弯曲疲劳强度进行设计,并适当加大齿厚(加大模数)以延长其使用寿命。开式齿轮不进行齿面接触疲劳强度计算。

1、机械零件常用材料:普通碳素结构钢(Q屈服强度)优

质碳素结构钢(20平均碳的质量分数为万分之20)、合金结构钢(20Mn2锰的平均质量分数约为2%)、铸钢(ZG230-450屈服点不小于230,抗拉强度不小于450)、铸铁(HT200灰铸铁抗拉强度)

2、常用的热处理方法:退火(随炉缓冷)、正火(在空气中

冷却)、淬火(在水或油中迅速冷却)、回火(吧淬火后的零件再次加热到低于临界温度的一定温度,保温一段时间后在空气中冷却)、调质(淬火+高温回火的过程)、化学热处理(渗碳、渗氮、碳氮共渗)

3、机械零件的结构工艺性:便于零件毛坯的制造、便于零

件的机械加工、便于零件的装卸和可靠定位

4、机械零件常见的失效形式:因强度不足而断裂;过大的弹性变形或塑性变形;摩擦表面的过度磨损、打滑或过热;连接松动;容器、管道等的泄露;运动精度达不到设计要求

5、应力的分类:分为静应力和变应力。最基本的变应力为

稳定循环变应力,稳定循环变应力有非对称循环变应力、脉动循环变应力和对称循环变应力三种

6、疲劳破坏及其特点:变应力作用下的破坏称为疲劳破坏。

从而提高一对齿轮传动的总体强度

26、齿轮的失效形式:齿轮折断、齿面点蚀、齿面胶合、齿

面磨损;开式齿轮主要失效形式为齿轮磨损和轮齿折断;闭式齿轮主要是齿面点蚀和轮齿折断;蜗杆传动的失效形式为轮齿的胶合、点蚀和磨损

27、齿轮设计准则:对于一般使用的齿轮传动,通常只按保

证齿面接触疲劳强度及保证齿根弯曲疲劳强度 进行计算

28、参数选择:①齿数:保持分度圆直径不变,增加齿数能

增大重合度,改善传动的平稳性,节省制造费用,故在满足齿根弯曲疲劳强度的条件下,齿数多一些好;闭式z=20~40开式z=17~20;②齿宽系数:大齿轮齿宽b2=b;小齿轮b1=b2+(2~10)mm;③齿数比:直齿u≤5;斜齿u≤6~7;开式齿轮或手动齿轮u可取到8~12

29、直齿轮传动平稳性差,冲击和噪声大;斜齿轮传动平稳,冲击和噪声小,适合于高速传动

30、轮系的功用:获得大的传动比(减速器);实现变速、变

向传动(汽车变速箱);实现运动的合成与分解(差速器、汽车后桥);实现结构紧凑的大功率传动(发动机主减速器、行星减速器)

31、带传动优缺点:①优点:具有良好的弹性,能缓冲吸振,尤其是V带没有接头,传动较平稳,噪声小;过载时带在带轮上打滑,可以防止其他器件损坏;结构简单,制为最短杆;曲柄摇杆机构:以最短杆的相邻构件为机架。双曲柄机构:以最短杆为机架。双摇杆机构:以最短杆的对边为机架。(2)如果: lmin+lmax>其它两杆长度之和;不满足曲柄存在的条件,则不论选哪个构件为机架,都为双摇杆机构。急回运动:有不少的平面机构,当主动曲柄做等速转动时,做往复运动的从动件摇杆,在前进行程运行速度较慢,而回程运动速度要快,机构的这种性质就是所谓的机构的“急回运动”特性。

压力角:作用于C点的力P与C点绝对速度方向所夹的锐角α。传动角:压力角的余角γ,死点:无论我们在原动件上施加多大的力都不能使机构运动,这种位置我们称为死点γ=0。解决办法:(1)在机构中安装大质量的飞轮,利用其惯性闯过转折点;(2)利用多组机构来消除运动不确定现象。即连杆BC与摇杆CD所夹锐角。

三:凸轮: 一个具有曲线轮廓或凹槽的构件。从动件: 被凸轮直接推动的构件。机架: 固定不动的构件(导路)。凸轮类型:(1)盘形回转凸轮(2)移动凸轮(3)圆柱回转凸轮 从动件类型:(1)尖顶从动件(2)滚子从动件(3)平底从动件(1)直动从动件(2)摆动从动件

1基圆:以凸轮最小向径为半径作的圆,用rmin表示。2推程:从动件远离中心位置的过程。推程运动角δt;3远休止:从动件在远离中心位置停留不动。远休止角δs;4回程:从动件由远离中心位置向中心位置运动的过程。回程运动角δh;5近休止:从动件靠近中心位置停留不动。近休止角δsˊ;6行程:从动件在推程或回程中移动的距离,用 h 表示。7从动件位移线图:从动件位移S2与凸轮转角δ1之间的关系曲线称为从动件位移线图。1.等速运动规律:

1、特点:设计简单、匀速进给。始点、末点有刚性冲击。适于低速、轻载、从动杆质量不大,以及要求匀速的情况。

2、等加速等减速运动规律: 推程等加速段运动方程: 推程等减速段运动方程:

柔性冲击:加速度发生有限值的突变(适用于中速场合)

3、简谐运动规律:

柔性冲击

四:根切根念:用范成法加工齿轮时,有时会发现刀具的顶部切入了轮齿的根部,而把齿根切去了一部分,破坏了渐开线齿廓,如图这种现象称为根切。

根切形成的原因:标准齿轮:刀具的齿顶线超过了极限啮合点N。

标准齿轮:指m、α、ha*、c* 均取标准值,具有标准的齿顶高和齿根高,且分度圆齿厚s等于齿槽宽e的齿轮。成型法: 范成法:

九:失效:机械零件由于某种原因不能正常工作时,称为失效。类型:(1)断裂。在机械载荷或应力作用下(有时还兼有各种热、腐蚀等因素作用),使物体分成几个部分的现象(2)变形。由于作用零件上的应力超过了材料的屈服极限,使零件本身发生的变形。弹性变形、塑性变形(3)零件的表面破坏。腐蚀、磨损、接触疲劳(点蚀)。(4)破化正常工作条件而引起的失效。强度:零件的应力不超过允许的限度

1、名义载荷:在理想的平稳工作条件下作用在零件上的载荷。

2、载荷系数K:综合考虑零件在实际工作中承受的各种附加载荷所引入的系数。

3、计算载荷:载荷系数与名义载荷的乘积。

刚度:在载荷作用下,零件产生的弹性变形量,小于或等于机器工作性能所允许的极限值。设计要求:具有预定功能的要求、具有经济性要求采用先进设计理论和方法,运用先进工具。合理选用零件材料、降低材料费用。设计中,尽量使重量系数下降。用最少零件组成部件或机械,尽量采用价廉的标准件。提高机器效率,降低能耗。尽量降低包装、运输费用。安装、拆卸方便

十一:失效形式:轮齿折断:一般发生在轮齿根部,指齿的大部分或整个齿的断落,是轮齿中最危险的失效形式。齿面失效:齿面疲劳点蚀和表层剥落

齿面磨损、齿面胶合、齿面塑性变形。

传动过程中,主要失效形式:通常对润滑良好的闭式齿轮传动主要发生齿面点蚀,齿根弯曲疲劳折断。特殊情况,如严重的冲击或有相当大的短期过载时,须注意轮齿发生过载折断和齿面塑性变形的可能性。高速重载而润滑条件受限制情况下,齿面胶合又可能成为主要失效原因。开式齿轮传动的主要失效形式是磨粒磨损

设计准则:对于闭式软齿面齿轮(HBS≤350):齿轮的失效形式以疲劳点蚀为主。先按齿面接触疲劳强度公式进行计算,再用齿根弯曲疲劳强度公式进行校核。2对于闭式硬齿面齿轮:齿轮的失效形式为轮齿折断;先按齿根弯曲疲劳强度作为设计公式,再用齿面接触疲劳强度进行校核。3开式齿轮传动:齿特点:在某类变应力多次作用后突然断裂;断裂时变应力的最大应力远小于材料的屈服极限;即使是塑性材料,断裂时也无明显的塑性变形。确定疲劳极限时,应考虑应力的大小、循环次数和循环特征

7、接触疲劳破坏的特点:零件在接触应力的反复作用下,首先在表面或表层产生初始疲劳裂纹,然后再滚动接触过程中,由于润滑油被基金裂纹内而造成高压,使裂纹扩展,最后使表层金属呈小片状剥落下来,在零件表面形成一个个小坑,即疲劳点蚀。疲劳点蚀危害:减小了接触面积,损坏了零件的光滑表面,使其承载能力降低,并引起振动和噪声。疲劳点蚀使齿轮。滚动轴承等零件的主要失效形式

8、引入虚约束的原因:为了改善构件的受力情况(多个行

星轮)、增强机构的刚度(轴与轴承)、保证机械运转性能

9、螺纹的种类:普通螺纹、管螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹

10、自锁条件:λ≤ψ即螺旋升角小于等于当量摩擦角

11、螺旋机构传动与连接:普通螺纹由于牙斜角β大,自锁

性好,故常用于连接;矩形螺纹梯形螺纹锯齿形螺纹因β小,传动效率高,故常用于传动

12、螺旋副的效率:η=有效功/输入功=tanλ/tan(λ+ψv)

一般螺旋升角不宜大于40°。在d2和P一定的情况下,锁着螺纹线数n的增加,λ将增大,传动效率也相应增大。因此,要提高传动效率,可采用多线螺旋传动

13、螺旋机构的类型及应用:①变回转运动为直线运动,传

力螺旋(千斤顶、压力机、台虎钳)、传导螺旋(车窗进给螺旋机构)、调整螺旋(测微计、分度机构、调整机构、道具进给量的微调机构)②变直线运动为回转运动

14、螺旋机构的特点:具有大的减速比;具有大的里的增益;

反行程可以自锁;传动平稳,噪声小,工作可靠;各种不同螺旋机构的机械效率差别很大(具有自锁能力的的螺旋副效率低于50%)

15、连杆机构广泛应用的原因:能实现多种运动形式的转换;

连杆机构中各运动副均为低副,压强小、磨损轻、便于润滑、寿命长;其接触表面是圆柱面或平面,制造比较简易,易于获得较高的制造精度

16、曲柄存在条件:①最短杆长度+最长杆长度≤其他两杆之

和②最短杆为连架杆或机架。

17、凸轮运动规律及冲击特性:①等速:刚性冲击、低速轻

载②等加速等减速:柔性冲击、中速轻载③余弦加速度:柔性冲击、中速中载④正弦加速度:无冲击、高速轻载

18、凸轮机构压力角与基圆半径关系:r0=v2/(ωtanα)-s,其中r0为基圆半径,s为推杆位移量

19、滚子半径选择:ρa=ρ-r,当ρ=r时,在凸轮实际轮廓

上出现尖点,即变尖现象,尖点很容易被磨损;当ρ<r时,实际廓线发生相交,交叉线的上面部分在实际加工中被切掉,使得推杆在这一部分的运动规律无法实现,即运动失真;所以应保证ρ>r,通常取r≤0.8ρ,一般可增大基圆半径以使ρ增大

20、齿轮传动的优缺点:①优点:适用的圆周速度和功率范

围广;传动比精确;机械效率高;工作可靠;寿命长;可实现平行轴、相交轴交错轴之间的传动;结构紧凑;②缺点:要求有较高的制造和安装精度,成本较高;不适宜于远距离的两轴之间的传动

21、齿轮啮合条件:必须保证处于啮合线上的各对齿轮都能

正确的进入啮合状态,m1=m2=m;α1=α2=α即模数和压力角都相等;斜齿轮还要求两轮螺旋角必须大小相等,旋向相反;锥齿轮还要求两轮的锥距相等;涡轮蜗杆要求蜗杆的导程角与涡轮的螺旋角大小相等,旋向相同

22、轮齿的连续传动条件:重合度ε=B1B2/ρb>1(实际啮

合线段B1B2的长度大于轮齿的法向齿距)1

23、齿廓啮合基本定律:作平面啮合的一对齿廓,它们的瞬

时接触点的公法线,必于两齿轮的连心线交于相应的节点C,该节点将齿轮的连心线所分的两个线段的与齿轮的角速成反比。

24、根切:①产生原因:用齿条型刀具(或齿轮型刀具)加

工齿轮时。若被加工齿轮的齿数过少,道具的齿顶线就会超过轮坯的啮合极限点,这时会出现刀刃把齿轮根部的渐开线齿廓切去一部分的现象,即根切;②后果:使得齿轮根部被削弱,齿轮的抗弯能力降低,重合度减小;③解决方法:正变位齿轮

25、正变位齿轮优点:可以加工出齿数小于Zmin而不发生根

切的齿轮,使齿轮传动结构尺寸减小;选择适当变位量来满足实际中心距得的要求;提高小齿轮的抗弯能力,造和维护方便,成本低;适用于中心距较大的传动;②缺点:工作中有弹性滑动,使传动效率降低,不能准确的保持主动轴和从动轴的转速比关系;传动的外廓尺寸较大;由于需要张紧,使轴上受力较大;带传动可能因摩擦起电,产生火花,故不能用于易燃易爆的场合

32、影响带传动承载能力的因素:初拉力Fo包角a 摩擦系

数f 带的单位长度质量q 速度v

33、带传动的主要失效形式:打滑和疲劳破坏;设计准则:

在不打滑的前提下,具有一 定的疲劳强度和寿命。

34、弹性滑动与打滑:打滑:由于超载所引起的带在带轮上的全面滑动,可以避免;弹性滑动:由于带的弹性变形而引起的带在带轮上的滑动,不可避免

35、螺纹连接的基本类型:螺栓连接(普通螺栓连接、铰制

孔用螺栓连接)、双头螺柱连接、螺钉连接、紧螺钉连接

36、螺纹连接的防松:摩擦防松(弹簧垫圈、双螺母、椭圆

口自锁螺母、横向切口螺母)、机械防松(开口销与槽形螺母、止动垫圈、圆螺母止动垫圈、串连钢丝)、永久防松(冲点法、端焊法、黏结法)

37、提高螺栓连接强度的方法:避免产生附加弯曲应力;减

少应力集中

38、键连接类型:平键连接(侧面)、半圆键连接(侧面)、楔键连接(上下面)、花键连接(侧面)

39、平键的剖面尺寸确定:键的截面尺寸b×h(键宽×键高)

以及键长L

40、联轴器与离合器区别:连这都是用来连接两轴(或轴与

轴上的回转零件),使它们一起旋转并传递扭矩的器件,用联轴器连接的两根轴,只有在停止运转后用拆卸的方法才能将他们分离;离合器则可在工作过程中根据工作需要不必停转随时将两轴接合或分离

41、联轴器分类:刚性联轴器(无补偿能力)和挠性联轴器

(有补偿能力)

42、联轴器类型的选择:对于低速、刚性大的短轴可选用刚

性联轴器;对于低速、刚性小的长轴可选用无弹性元件的挠性联轴器;对传递转矩较大的重型机械可选用齿式联轴器;对于高速、有振动和冲击的机械可选用有弹性元件的挠性联轴器;对于轴线位置有较大变动的两轴,则应选用十字轴万向联轴器

43、轴承摩擦状态:干摩擦状态、边界摩擦状态、液体摩擦

状态、混合摩擦状态;边界和混合摩擦统称为非液体摩擦

44、验算轴承压强p:控制其单位面积的压力,防止轴瓦的过度磨损;演算pv:控制单位时间内单位面积的摩擦功耗fpv,防止轴承工作时产生过多的热量而导致摩擦面的胶合破坏;演算v:当压力比较小时,p和pv的演算均合格的轴承,由于滑动速度过高,也会发生因磨损过快而报废,因此需要保证v≤[v]

45、非液体摩擦滑动轴承的主要失效形式为磨损和胶合

46、轴的分类:心轴(转动心轴、固定心轴;只承受弯矩不

承受扭矩)、转轴(即承受弯矩又承受扭矩)、传动轴(主要承受扭矩,不承受或承受很小弯矩)

47、轴的计算注意:①轴上有键槽时,放大轴径:一个键槽

3°--5°;两个键槽7°--10°②式中弯曲应力为对称循环变应力,当扭转切应力为静应力时,取α=0.3;当扭转切应力为脉动循环变应力时,取α=0.6;若扭转切应力为对称循环变应力时,取α=1(α为折合系数)

48、轴结构设计一般原则:轴的受力合理,有利于满足轴的强度条件;轴和轴上的零件要可靠的固定在准确的工作位置上;轴应便于加工;轴上的零件要便于拆装和调整;尽量减少应力集中等

49、滚动轴承类型选择影响因素:转速高低、受轴向力还是

径向力、载荷大小、安装尺寸的要求等

50、机械速度波动:①原因:原动机的驱动力和工作机的阻

抗力都是变化的,若两者不能时时相适应,就会引起机械速度的波动。当驱动功大于阻抗功时,机器出现盈功,机器的动能增加,角速度增大,反之相反。②危害:速度波动会导致在运动副中产生附加动压力,并引起机械振动,降低机械的寿命,影响机械效率和工作质量;③调节方法:周期性:在机械中加上一个转动惯量较大的回转件飞轮;非周期性:采用调速器来调节

第三篇:机械设计知识点(经典)总结..

机械设计知识点总结

(一)1.螺纹联接的防松的原因和措施是什么?

答:原因——是螺纹联接在冲击,振动和变载的作用下,预紧力可能在某一瞬间消失,联接有可能松脱,高温的螺纹联接,由于温度变形差异等原因,也可能发生松脱现象,因此在设计时必须考虑防松。措施——利用附加摩擦力防松,如用槽型螺母和开口销,止动垫片等,其他方法防松,如冲点法防松,粘合法防松。

2.提高螺栓联接强度的措施

答:(1)降低螺栓总拉伸载荷Fa的变化范围:a,为了减小螺栓刚度,可减螺栓光杆部分直径或采用空心螺杆,也可增加螺杆长度,b,被联接件本身的刚度较大,但被链接间的接合面因需要密封而采用软垫片时将降低其刚度,采用金属薄垫片或采用O形密封圈作为密封元件,则仍可保持被连接件原来的刚度值。(2)改善螺纹牙间的载荷分布,(3)减小应力集中,(4)避免或减小附加应力。

3.轮齿的失效形式

答:(1)轮齿折断,一般发生在齿根部分,因为轮齿受力时齿根弯曲应力最大,而且有应力集中,可分为过载折断和疲劳折断。(2)齿面点蚀,(3)齿面胶合,(4)齿面磨损,(5)齿面塑性变形。

4.齿轮传动的润滑。

答:开式齿轮传动通常采用人工定期加油润滑,可采用润滑油或润滑脂,一般闭式齿轮传动的润滑方式根据齿轮的圆周速度V的大小而定,当V<=12时多采用油池润滑,当V>12时,不宜采用油池润滑,这是因为(1)圆周速度过高,齿轮上的油大多被甩出去而达不到啮合区,(2)搅由过于激烈使油的温升增高,降低润滑性能,(3)会搅起箱底沉淀的杂质,加速齿轮的磨损,常采用喷油润滑。

5.为什么蜗杆传动要进行热平衡计算及冷却措施

答:由于蜗杆传动效率低,发热量大,若不及时散热,会引起箱体内油温升高,润滑失效,导致齿轮磨损加剧,甚至出现胶合,因此对连续工作的闭式蜗杆传动要进行热平衡计算。措施——1),增加散热面积,合理设计箱体结构,铸出或焊上散热片,2)提高表面传热系数,在蜗杆轴上装置风扇,或在箱体油池内装设蛇形冷却水管。

6.带传动的有缺点。

答,优点——1)适用于中心距较大的传动,2)带具有良好的挠性,可缓和冲击,吸收振动,3)过载时带与带轮间产生打滑,可防止损坏其他零件,4)结构简单,成本低廉。缺点——1)传动的外廓尺寸较大,2)需要张紧装置,3)由于带的滑动,不能保证固定不变的传动比,4)带的寿命短,5)传动效率较低。

7.弹性滑动和打滑的定义。

答:弹性滑动是指由于材料的弹性变形而产生的滑动。打滑是指由于过载引起的全面滑动。弹性滑动是由拉力差引起的,只要传递圆周力,出现紧边和松边,就一定会发生弹性滑动,所以弹性滑动是不可避免的,进而V2总是大于V1。

8.与带传动和齿轮传动相比,链传动的优缺点

答:与带传动相比,链传动没有弹性滑动和打滑,能保持准确的平均传动比,需要的张紧力小,作用在轴上的压力也小,可减小轴承的摩擦损失,结构紧凑,能在温度较高,有油污等恶劣环境条件下工作。与齿轮传动相比,链传动的制造和安装精度要求较低,中心距较大时其传动结构简单。链传动的缺点——瞬时链速和瞬时传动比不是常数,传动平稳性较差,工作中有一定的冲击和噪声。

9.轴的作用,转轴,传动轴以及心轴的区别。

答:轴是用来支持旋转的机械零件。转轴既传动转矩又承受弯矩。传动轴只传递转矩而不承受弯矩或弯矩很小。心轴则只承受弯矩而部传动转矩。

10.轴的结构设计主要要求。

答: 1),轴应便于加工,轴上零件要易于装拆。2),轴和轴上零件要有准确的加工位置,3)各零件要牢固而可靠的相对固定,4)改善受力状况,减小应力集中。

11.形成动压油膜的必要条件。

答: 1)两工作面间必须有楔形形间隙,2)两工作面间必须连续充满润滑油或其他粘性流体,3)两工作面间必须有相对滑动速度,其运动方向必须使润滑油从大截面流进,小截面流出,此外,对于一定的载荷,必须使速度,粘度及间隙等匹配恰当。

12.联轴器和离合器的联系和区别。

答:两者都主要用于轴与轴之间的链接,使他们一起回转并传递转矩,用联轴器联接的两根轴,只有在机器停车后,经过拆卸后才可以把它们分离。而用离合器联接的两根轴,在机器工作中即能方便的使它们分离或接合。

13.变应力下,零件疲劳断裂具有的特征。

答: 1)疲劳断裂的最大应力远比静应力下材料的强度极限低,甚至屈服极限低,2)不管脆性材料或塑像材料,疲劳断裂口均表现为无明显塑性变形的脆性突然断裂,3)疲劳断裂是损伤的积累。

14.机械磨损的主要类型——磨粒磨损,粘着磨损,疲劳磨损,腐蚀磨损。

15.垫圈的作用——增加被联接件的支撑面积以减小接触处的压强和避免拧紧螺母时擦伤被联接件的表面。

16.滚动螺旋的优缺点。

答:优点——1)磨损很小,还可以用调整方法消除间隙并产生一定预变形来增加刚度,因此其传动精度很高,2)不具有自锁性,可以变直线运动为旋转运动。3)

缺点——1)结构复杂,制造困难,2)有些机构中为了防止逆转而需另加自锁机构。

17.齿轮传动中,误差对传动的影响。

答: 1)影响传递运动的准确性,2)瞬时传动比不能保持恒定不变,影响传动的平稳性,3)影响载荷分布的均匀性。

18.齿轮传动的功率损耗包括——啮合中的摩擦损耗,搅动润滑油的油阻损耗,轴承中的摩擦损耗。

19.单圆弧齿轮的优缺点——优点:1)齿面接触强度高,2)齿廓形状对润滑有利,效率较高,3)齿面容易饱和,4)无根切,齿面数可较少。缺点:1—)中心距及切齿深度的精度要求较高,这两者的误差使传动的承载能力显著降低,2)噪声较大,在高速传动中其应用受到限制,3)通常轮齿弯曲强度较低,4)切削同一模数的凸圆弧齿廓和凹圆弧齿廓要用部同的滚刀。

20.轴瓦材料的性能——1)摩擦系数小,2)导热性好,热膨胀系数小,3)耐磨,耐蚀,抗胶合能力强,4)要有足够的机械强度和可塑性。

21.1提高螺纹连接强度的措施

22.a降低影响螺栓疲劳强度的应力幅b改善螺纹牙上载荷分布不均的现象c减小应力集中的影响d采用合理的制造工艺方法

23.2提高轴的强度的常用措施

24.a合理布置轴上零件以减小轴的载荷b改进轴上零件的结构以减小轴的载荷c改进轴的结构已减小轴的载荷d改进轴的表面质量以提高轴的疲劳强度

25.3滚动轴承正常的失效形式是内外圈滚道或滚动体上的点蚀破坏

26. 6308—内径为40mm的深沟球轴承尺寸系列03,0级公差,0组游隙

27.7211c—内径为55mm的角接触球轴承,尺寸系列02,接触角15°,0级公差,0组游隙

28.N408p5—内径为40mm的外圈无挡边圆柱滚子轴承,尺寸系列04,5级公差,0组游隙

29.5为了把润滑油导入整个摩擦面间,轴瓦或轴颈上开油孔或油槽

30.轴承材料性能应着重满足以下主要要求

31.a良好的减摩性,耐磨性和抗咬粘性b良好的摩擦顺应性,嵌入性和磨合性c足够的强度和抗腐蚀能力d良好的导热性,工艺性和经济性等

32.7轴承材料分三大类:a金属材料b多孔质金属材料c非金属材料

33.轴承合金(巴氏合金)锡Sn铅Pb铜Cu睇Sb

34.8滑动轴承的失效形式

35.a摩力磨损b刮伤c咬粘d疲劳剥落e腐蚀

36.9模数越大,齿轮的弯曲疲劳强度越高小齿轮直径越大,齿轮的齿面接触疲劳强度越高

37.10带传动的参数选择

38.①中心距a 中心距大,可以增加带轮的包角α,减少单位时间内带的循环次数,有利于提高带的寿命。但是中心距过大,会加剧带的波动,降低传动的平稳性,同时增大了带传动的整体尺寸,中心距小则有相反的利弊,一般初选中心距0.7(d1+d2)≦a0≦2(d1+d2)mm

39.②传动比i 传动比大,会减小带轮的包角。当带轮的包角减小到一定程度,带轮就会打滑,从而无法传递规定的功率,因此一般传动比i≦7 推荐i=2~

540.

③带轮的基准直径

41.在带传动需要传递的功率给定下,减小带轮的直径,会增大带传动的有效拉力,从而导致V带的根数增加,这样不仅增大了带轮的宽度而且增大了荷载在V带之间分配的不均匀性另外直径的减小增加了带的弯曲应力,为了避免应力过大,小带轮的基准直径不宜过小,一般保证基准直径≧最小基准直径

42.④带速v 当带传动功率一定时,提高带速v可以降低带传动的有效拉力,相应的减少带的根数或者带的横截面积,总体上减少带传动的尺寸,但是提高带速,也提高了V带的离心应力增加了单位时间内带的循环次数,不利于提高带传动的疲劳强度和寿命,降低怠速则有相反的利弊,由此带速不宜过高或过低一般v=5~25m/s 最高带速<30 m/S

43.带轮的结构形式:轮缘,轮辐,轮毂组成44.

九:V带轮的轮槽 与选用的V带的型号相对应 V带绕在带轮上以后发生弯曲变形,45.

使V带工作面的夹角发生变化,为了使V带的工作面与带轮的轮槽工作面紧密贴合,将V带轮轮槽的工作面的夹角做成小于40°

46.V带安装到轮槽中以后,一般不应超出带轮外圆,也不应与轮槽底部接触,为此规定轮槽基准直径到带轮外圆和底部的最小高度hamin和hfmin

47.轮槽工作表面的粗糙度为1.6或3.

248.

11.带传动应与电动机相连,设置在高速级上,因为除极高速的情况外,皮带的基本额定功率都是随速度的增加而增加的。高速下带传动可以充分发挥其工作能力,减少其总体损失。链传动应置于低速级,因为链传动速度很高时,链所承受的惯性力和动载荷就越大,所承受的冲击力就越大,导致链传动以不同形式失效。

49.12.增大相对间隙。

减小轴颈和轴承孔表面粗糙度值。(h小于许用h)

50.增大宽颈比,目的是增加轴承宽度以减小p和pv值。

重选(p)和(pv)较大的轴瓦材料。

51.加大存油容积,以保证能有较长时间使回油油温降低到所要求的入口温度。

加大间隙,并适当的降低轴瓦及轴颈的表面粗糙度。

52.53.

11.形成动压油膜的必要条件。

54.答: 1)两工作面间必须有楔形形间隙,2)两工作面间必须连续充满润滑油或其他粘性流体,3)两工作面间必须有相对滑动速度,其运动方向必须使润滑油从大截面流进,小截面流出,此外,对于一定的载荷,必须使速度,粘度及间隙等匹配恰当。

55.12.联轴器和离合器的联系和区别。

56.答:两者都主要用于轴与轴之间的链接,使他们一起回转并传递转矩,用联轴器联接的两根轴,只有在机器停车后,经过拆卸后才可以把它们分离。而用离合器联接的两根轴,在机器工作中即能方便的使它们分离或接合。

57.13.变应力下,零件疲劳断裂具有的特征。

58.答: 1)疲劳断裂的最大应力远比静应力下材料的强度极限低,甚至屈服极限低,2)不管脆性材料或塑像材料,疲劳断裂口均表现为无明显塑性变形的脆性突然断裂,3)疲劳断裂是损伤的积累。

59.14.机械磨损的主要类型——磨粒磨损,粘着磨损,疲劳磨损,腐蚀磨损。

60.15.垫圈的作用——增加被联接件的支撑面积以减小接触处的压强和避免拧紧螺母时擦伤被联接件的表面。

61.16.滚动螺旋的优缺点。

62.答:优点——1)磨损很小,还可以用调整方法消除间隙并产生一定预变形来增加刚度,因此其传动精度很高,2)不具有自锁性,可以变直线运动为旋转运动。3)

缺点——1)结构复杂,制造困难,2)有些机构中为了防止逆转而需另加自锁机构。

63.17.齿轮传动中,误差对传动的影响。

64.答: 1)影响传递运动的准确性,2)瞬时传动比不能保持恒定不变,影响传动的平稳性,3)影响载荷分布的均匀性。

65.18.齿轮传动的功率损耗包括——啮合中的摩擦损耗,搅动润滑油的油阻损耗,轴承中的摩擦损耗。

66.19.单圆弧齿轮的优缺点——优点:1)齿面接触强度高,2)齿廓形状对润滑有利,效率较高,3)齿面容易饱和,4)无根切,齿面数可较少。缺点:1—)中心距及切齿深度的精度要求较高,这两者的误差使传动的承载能力显著降低,2)噪声较大,在高速传动中其应用受到限制,3)通常轮齿弯曲强度较低,4)切削同一模数的凸圆弧齿廓和凹圆弧齿廓要用部同的滚刀。

67.20.轴瓦材料的性能——1)摩擦系数小,2)导热性好,热膨胀系数小,3)耐磨,耐蚀,抗胶合能力强,4)要有足够的机械强度和可塑性。

68.1.由于零件尺寸及几何形状变化,加工质量及强化因素等影响,使得零件的疲劳极限要小于材料的疲劳极限。r=c时,o与m的连线;σm=c时,90度;σmin=c时,45度。

69.

2.摩擦分为干摩擦,边界摩擦,流体摩擦,混合摩擦

70.

3.磨损:运动副之间的摩擦导致零件表面材料丧失或者迁移 分为三阶段:磨合阶段,稳定磨损阶段,剧烈磨损阶段 设计和使用机器时:力求缩短磨合期,延长稳定磨损期,推迟剧烈磨损期的到来

71.

磨损按磨损机理分类:粘附磨损,磨粒磨损,疲劳磨损,冲蚀磨损,腐蚀磨损,微动磨损

72.

4.润滑剂的作用:降低摩擦,减轻磨损,保护零件不遭锈蚀,散热降温,缓冲吸振,密封能力

73.

分为四个类型:气体,液体,半固体,固体 有机油矿物油 化学合成油

74.

性能指标:1粘度(动力粘度:流体中任意点处的切应力均与该处流体的速度梯度成正比 运动粘度:动力粘度与同温度下的液体的密度之比值)2润滑性3极压性4闪点:遇火焰能发出闪光的最低温度5凝点:不能再自由流动的最高温度6氧化稳定性

75.

二:螺纹:外螺纹和内螺纹,共同组成螺旋副 常用螺纹:连接螺纹及传动螺纹连接螺纹1)普通螺纹2)非螺纹密封的管螺纹3)用螺纹密封的管螺纹4)米制螺纹传动螺纹1)矩形螺纹2)梯形螺纹3)锯齿形螺纹

76.

螺纹的参数:大径:螺纹的最大直径(公称直径)2小径d1:螺纹的最小直径3中径d2:近似平均直径d2=1/2(d+d1)4线数n:螺纹的螺旋线数目 沿一根螺旋线形成的螺纹为单线螺纹 常用的连接螺纹要求自锁性故多用单线螺纹;传动螺纹要求传动效率高,故用双线或者三线螺纹,为了便于制造n小于等于4 5螺距p 6导程s=np 7螺纹升角 =arctan(np/πd2)

8牙型角 9接触高度h

77.

螺纹连接的仿松实质防止螺旋副在受载时发生相对转动。措施按工作原理分为摩擦防松,机械防松,破坏螺旋副运动关系防松摩擦防松(对顶螺母、弹簧垫圈、自锁螺母)机械防松(开口销与六角开槽螺母、止动垫圈、串联钢丝)破坏螺旋副运动关系防松(铆合、冲点、涂胶粘剂)

78.

螺纹连接的预紧:预紧力目的在于:增强连接的可靠性和紧密性,以防止受载后被连接件间出现隙缝或者相对滑移

79.

三:螺栓强度计算

80.

螺栓的总拉力F2=残余预紧力F1+工作拉力F

81.

预紧力F0=F1+F*Cm/(Cm+Cb)F2=F0+F*Cb/(Cm+Cb)Cm Cb分别表示被连接件和螺栓的刚度 Cb/(Cm+Cb)螺栓的相对刚度 皮革垫圈0.7 铜皮石棉垫圈0.8 橡胶垫圈0.9

82.

得到F2之后进行强度计算

83.

σ=1.3F2/(π/4*d1*d1)≦[σ]

84.

螺纹连接件的材料:数字粗略表示螺母保证最小应力σmin的1/100,选用时需注意所用落幕的性能等级应不低于与其相配螺栓的性能等级

85.

4螺纹连接件的许用应力[σ]=σs/S σs-材料的屈服极限或者强度极限 S-安全系数

86.

四:提高螺纹连接强度的措施

87.

1降低影响螺栓疲劳强度的应力幅

88.

Cb/(Cm+Cb)应尽量小些①为了减小螺栓的刚度Cb可适当增加螺栓的长度②为了增大被连接件的刚度,可以不用垫片或者采用刚度较大的垫片

89.

2改善螺纹牙上载荷分布不均的现象①常采用悬置螺母,减小螺栓旋合段本来受力较大的几圈螺纹牙的受力面积或采用钢丝螺套

90.

3减小应力集中的影响①可以采用较大的圆角和卸载结构或将螺纹收尾改为退刀槽

91.

4采用合理的制造工艺方法①采用冷镦螺栓头部和滚压螺纹的工艺方法可以显著提高螺栓的疲劳强度,这是因为不仅可以降低集中应力,而且不切断材料纤维,金属流线的走向合理及冷作硬化效果使表面有残余应力,此外采用氮化,氰化,喷丸等处理

92.

五:键

93.

键连接的主要类型:平键连接,半圆键连接,楔键连接和切向键连接

94.

根据用途不同平键可分为:普通平键,薄型平键(静连接),导向平键和滑键(动连接)按构造分:圆头(A型),平头(B型),单圆头(C型)

95.

键的选择原则:类型选择和尺寸选择两方面 类型选择应根据键连接的结构特点,使用要求和工作条件选择 尺寸选择应按照符合标准规格和强度要求来取定,键的尺寸为截面尺寸(键宽b*键高h)与长度L,截面尺寸b*h由轴的直径d由标准中选定,键的长度L一般可按轮毂的长度而定,即键长L≦轮毂长度,而导向平键则按轮毂的长度及滑动距离而定一般轮毂长度L’≈(1.5-2)*d

96.

六:平键连接强度计算 失效形式:工作面被压溃 对于导向平键或者滑键连接失效形式工作面的过度磨损

97.

普通平键强度计算σp=2*T*1000/(kld)≦[σ]

98.

导向平键或者滑键强度计算 p=2*T*1000/(kld)≦[p]

99.

T-传递的扭矩T=F*y≈F*d/2 n*m

100.

k-键与键槽轮毂的接触高度 k=0.5h 此处h为键高 mm

101.

l-键的工作长度mm 圆头平键l=L﹣b平头平键l=L L为键的公称长度 b为键宽 mm

102.

[σ] [p]-分别键轴轮毂三者中最弱材料的许用应力 Mpa

103.

花键分外花键和内花键组成,花键是平键连接在数目上的发展

104.

与平键相比的优势①受力均匀②轴和毂的强度削弱较少③齿数多接触面积大,承受荷载大④轴上零件和轴的对中性较好⑤导向性好⑥可用磨削方法提高精度和连接质量 缺点:应力集中仍存在,加工成本高,花键连接适用于定心精度高,荷载大或经常滑移的链接按齿形不同分为矩形花键和渐开线花键

105.

七:带传动是一种挠性传动,基本组成零件为带轮和传动带

106.

按工作原理不同分为:摩擦型(又按横截面面积形状不同分为平带传动,圆带传动,V带传动,多楔带传动)和啮合型带传动

107.

V带传动材料:包括顶胶,抗拉体,底胶和包布

108.

根据抗拉体不同分为帘布芯V带和绳芯V带

109.

带传动受力分析:紧边拉力F1,松边拉力F2,不工作时初拉力F0 F1+F2=2F0

110.

传动带工作面上总摩擦力Ff=F1-F2

111.

带的有效拉力Fe=Ff=F1-F2

112.

有效拉力Fe与带传动传递功率P关系 P=Fe*v/1000 单位kw N m/s

113.

得到F1=F0+Fe/2

114.

F2=F0-Fe/2

115.

带传动初拉力F0>正常工作时的最小初拉力(F0)min

116.

为了保证带传动的正常工作首先需要满足传递功率要求至少具有的总摩擦力和与之对应的最小初拉力

117.

带的弹性滑动和打滑

118.

八:带传动的参数选择

119.

①中心距a 中心距大,可以增加带轮的包角α,减少单位时间内带的循环次数,有利于提高带的寿命。但是中心距过大,会加剧带的波动,降低传动的平稳性,同时增大了带传动的整体尺寸,中心距小则有相反的利弊,一般初选中心距0.7(d1+d2)≦a0≦2(d1+d2)mm

120.

②传动比i 传动比大,会减小带轮的包角。当带轮的包角减小到一定程度,带轮就会打滑,从而无法传递规定的功率,因此一般传动比i≦7 推荐i=2~5

121.

③带轮的基准直径

122.

在带传动需要传递的功率给定下,减小带轮的直径,会增大带传动的有效拉力,从而导致V带的根数增加,这样不仅增大了带轮的宽度而且增大了荷载在V带之间分配的不均匀性另外直径的减小增加了带的弯曲应力,为了避免应力过大,小带轮的基准直径不宜过小,一般保证基准直径≧最小基准直径

123.

④带速v 当带传动功率一定时,提高带速v可以降低带传动的有效拉力,相应的减少带的根数或者带的横截面积,总体上减少带传动的尺寸,但是提高带速,也提高了V带的离心应力增加了单位时间内带的循环次数,不利于提高带传动的疲劳强度和寿命,降低怠速则有相反的利弊,由此带速不宜过高或过低一般v=5~25m/s 最高带速<30 m/S

124.

带轮的结构形式:轮缘,轮辐,轮毂组成125.

九:V带轮的轮槽 与选用的V带的型号相对应 V带绕在带轮上以后发生弯曲变形,使V带工作面的夹角发生变化,为了使V带的工作面与带轮的轮槽工作面紧密贴合,将V带轮轮槽的工作面的夹角做成小于40°

126.

V带安装到轮槽中以后,一般不应超出带轮外圆,也不应与轮槽底部接触,为此规定轮槽基准直径到带轮外圆和底部的最小高度hamin和hfmin

127.

轮槽工作表面的粗糙度为1.6或3.2

128.

九章:链传动挠性传动由链条和链轮组成通过链轮轮齿和链条链节的啮合来传递动力

129.

①与摩擦型带传动相比,无弹性滑动和打滑现象,准确的平均传动比,传递效率高,径向压力小,整体尺寸小,结构紧凑,同时能在潮湿和高温条件下工作

130.

②与齿轮传动相比 链传动的制造和安装精度要求较低,成本低,在远距离传动时,其结构比齿轮传动要轻便的多

131.

链传动的缺点:只能实现平行轴间链轮的同向传动,运转时不能保持恒定的瞬时传动比,磨损后易发生跳齿,工作时有噪声,不宜用在载荷变化很大,高速,急速反向的传动中。

132.

链条按用途不同分为传动链,输送链,起重链。又可分为滚子链,齿形链(无声链)等

133.

链的传动速度平均速度v=z1n1p/(60*1000)=z2n2p/(60*1000)

134.

z1 z2--表示主从动轮的齿数

第四篇:测量学机械设计知识点

1.构件是指组成机械的各个相对运动的单元。2.构件间直接接触的,可以产生相对运动的活动连接称为运动副。3.平面运动副按照不同的接触情况,一般分为低副和高副。4.两构件通过面接触而形成的运动副称为低副。5.平面机构中低副有转动副和移动副两种。6.两构件通过点或线接触而形成的运动副称为高副,高副可提供1个约束,保留2个自由度。7.机构具有确定运动时所必须给出的独立运动参数的数目称为该机构的自由度,用F表示。8.机构具有确定运动的条件:机构原动件的个数应等于该机构的自由度F。9.自由度F=3n-2Pl-Ph(n为活动构件数目,Pl为低副的数目,Ph为高副的数目。)

10.两个以上的构件在同一轴线上用转动副连接时,就形成了复合铰链。若有m个构件用复合铰链连接时,其构成了m-1个转动副。

11.机构中不影响整个机构运动传递关系的属于个别构件所具有的自由度称为局部自由度。

12.机构中与其他约束想重复,对机构运动不起独立限制作用的约束称为虚约束。

13.铰链四杆机构中曲柄存在的条件:(1)连架杆或机架是最短杆;(2)最短杆与最长杆长度之和应小于或等于其他两杆长度之和(杆长条件)。此时,曲柄存在。

14.齿轮机构主要用于传递任意两轴之间的运动和动力。常见的是渐开线齿轮传动机构。

15.齿廓啮合基本定律:a.为了使两齿轮的传动比为一常数,齿廓的形状必须能实现不论齿廓在任何位臵接触,过接触点所作的两齿廓的公法线必须与连心线交于一定点P。b.两齿轮的传动比i12与这个固定点分两轮连心线O1O2的两线段长O1P、O2P成反比。16.渐开线齿轮正确啮合的条件是:两轮的模数和压力角必须分别相等。m1 = m2 = mα1 = α2 =α =20°

17.齿轮传动的主要失效形式:(1)齿轮折断(2)齿面点蚀(3)齿面磨损(4)齿面胶合(5)齿面塑性变形。

18.齿根弯曲疲劳强度计算时针对齿根疲劳折断而进行的。

19.斜齿圆柱齿轮的正确啮合条件:(1)互相啮合两齿轮的模数和压力角也分别相等,即

20.mn1=mn2=mn;αn1= αn2= αn(2)两外啮合齿轮的螺旋角也必须相匹配,即 β1= ±β2

(β前的+号用于内啮合,表示旋向相同,-号用于外啮合,表示旋向相反)。

21.为了减少滚刀型号,便于刀具的标准化,将蜗杆分度圆直径d1定为标准值。

22.热平衡计算的原因:蜗轮蜗杆传动由于效率低,其功率损耗将使减速器发热和温度升高,从而引起蜗轮蜗杆齿面的磨损和胶合。23.采取如下冷却散热措施:(1)增加散热面积(2)提高散热系数,如蜗杆轴端装设风扇,加速空气流通、装设蛇形冷却水管、采用压力喷油循环冷却润滑。

24.紧边拉力的增量等于松边拉力的减少量,即 F1-F0=F0-F2F1†F2 =2F0

25.有效拉力=紧边-松边F=Ff=F1-F2传动的功率p=FV

26.影响极限有效拉力Fmax的因素有:(1)初拉力F0(2)包角α(3)摩擦系数f。

27.弹性滑动的原因:a.带本身是弹性体b.两边存在拉力差。

28.弹性滑动是弹性体本身的固有属性,无法避免。

29.弹性滑动的存在,导致从动轮的圆周速度v2小于主动轮的圆周速度v1,产生了速度变化。30.带传动一旦发生打滑,将加剧带的磨损,甚至使传动失效。

31.带的主要失效形式是疲劳破坏和打滑。疲劳破坏如脱层、撕裂、拉断。

32.选小带轮基准直径dd1时,为使带传动结构紧凑,应使小带轮基准直径dd1取得小些。若dd1过小,则会使带的弯曲应力过大而导致带的寿命降低,因此,小带轮基准直径dd1应大于或等于表中所列的最小基准直径dmax。即dd1<=dd1。

33.为使链传动磨损均匀,一般要求链轮齿数与链节互为质数,由于链节数常选取偶数,所以链轮齿数优先选取互为质数的奇数。

34.螺纹连接的基本类型:螺栓连接、双头螺柱连接、螺钉连接和紧定螺钉连接。

35.平键连接特点:两侧面是工作面, 对中性好,装拆方便。楔键连接特点:键的上下表面是工作面,对中性差;有单向固定轴上零件的作用。

36.按照轴承受载荷的情况可分为三种:转轴,传动轴,心轴。按照轴线几何形状分类,轴可分为直

轴,曲轴和挠性轴。

37.轴的材料主要采用碳素钢和合金钢。常用的碳素钢有35、40、45、50号钢,其中最常用的是45号钢。38.采用合金钢代替碳素钢,只能提高轴的强度和耐磨性,并不能提高轴的刚度,轴的刚度主要取决

于轴的截面尺寸,可采用提高轴的截面面积的方法提

高轴的刚度。

39.径向滑动轴承的结构形式:(1)整体式径向

滑动轴承;优点:结构简单,成本低廉。缺点:间

隙无法调整。(2)对开式径向滑动轴承(也称剖分式径向滑动轴承);优点:装拆方便,间隙可调。(3)斜剖分径向滑动轴承(4)调心式径向滑动轴承(5)调隙式径向滑动轴承。

40.径向滑动轴承的设计:a.校核轴承平均压力

p:目的是防止在载荷作用下润滑油被完全挤出,以

保证一定的润滑而不致造成过度磨损b.校核轴

承的pv值:的目的是防止润滑油黏度随温升而下

降,致使轴承发生胶合 c.校核轴颈圆周速度v:由

于轴颈圆周速度过高而使轴承局部过度磨损或胶合41.形成流体动压润滑的必要条件是:(1)相对滑动的两表面间必须形成收敛的楔形间隙。(2)被油膜分开的两表面必须有足够的相对滑动速度,其运

动方向必须使润滑油由大口流进,从小口流出。(3)

润滑油必须有一定的黏度,供油要充分。

42.常用滚动轴承的类型代号:1:调心球轴承

2:调心滚子轴承3:圆锥滚子轴承5:推力球轴承

6:深沟球轴承7:角接触球轴承N:圆柱滚子轴承 43.滚动轴承的代号由前臵代号,基本代号和后臵代号三部分组成。44.滚动轴承的失效形式有:疲劳点蚀、塑性变

形、磨损。

轴系支撑结构设计中常用的固定方法有两种:(1)

两端固定支撑;适用于跨度较小和温升不高的轴。(2)一端固定,一端游动支撑;适用

轴的跨度较大,工作温度较高的场合。

1、测量工作的两个原则:先控制后碎部,从整体到局部和步步有检核。

2、无论是控制测量,碎部测量还是施工放样,其实

质都是确定地面点的位置,也就是先测定三

个元素—水平角β、水平距离l和高差h,所

以说,高程测量、距离测量和水平角测量是测量工作的基本工作,观测、计算和绘图是测量工作的基本技能。

3、水准仪的正确操作程序是:仪器安置,粗略整平、瞄准、精确整平和读数。

4、当钢尺的名义长度小于实际长度时,测量实物时量短了。

5、水准路线主要包括:闭合水准路线、附合水准路

线和支水准路线三种。

6、观测水平角时,对中的目:把仪器中心安置在测站点O的铅垂线上。整平的目:使仪器竖轴竖直,水平度盘水平。对中标志:使垂线尖

精确对准O点,整平标志:直到水准管在两个位置气泡都居中为止。

7、测量误差主要来自三个方面:外界条件、仪器条件和观测者的自身条件。

8、系统误差一般具有累积性。

9、导线布设形式主要有三种:闭合导线、附合导线

和支导线。

10、当用右角计算时,改正数与ƒβ同号;当用左角计算时,改正数与ƒβ反号。

10、地物符号一般分为比例符号、非比例符号和线状

符号三种。

11、地形图的基本应用有:

1、在地形图上量取点的坐标和确定点的高程

2、求图上直线的长度、坡度和坐标方位角

3、按设计坡度在地

形图上选定最短路线

4、根据地形图作剖面

5、根据地形图计算平整场地的土方量

6、确定汇水面积

7、图形面积的量算。

12、测设的基本工作是:测设已知的水平距离、水平角度和高程。

13、矿井联系测量又分矿井平面联系测量和矿井高程联系测量。

14、一井定向工作分为投点和连接。

15、减小投点误差的措施:

1、为了减小风流的影响,定向时最好暂时关闭风机

2、采用直径小,抗拉强度高的钢丝

3、适当增加垂球的质量并将之浸入液体中

4、采取防水措施减少滴水的影响

5、尽可能增大两根钢丝间的距离c。

16、井下水准测量与地面水准测量相比有何异同:相同点:

1、测量原理相同

2、使用仪器相同

3、数据处理相同。不同点:

1、工作环境不同

2、作业方法不同

3、数据记录不同。

17、巷道的贯通主要有水平巷道、倾斜巷道和竖直巷道的贯通三种。名词解释:

1、水平角:是指空间两直线的夹角在水平面上的垂直投影。

2、竖直角:就是同一竖直面内视线与水平线间的夹角。

3、等高线:就是地面上高程相等的各相邻点所连成的闭合曲线,也就是水平面(水准面)与地面相截所形成的闭合曲线。

4、巷道中线:为了指示巷道在水平面内的方向,需要标定巷道的几何中心线在水平面上投影的方向即位中线方向。

5、巷道腰线:为了指示巷道掘进的坡度而在巷道两帮上给出的方向线。

6、矿井联系测量:把井上、井下坐标系统统一起来所进行的测量工作就称为矿井联系测量。

7、贯通测量:为了相向掘进巷道或由一个方向按设计掘进巷道与另一个巷道相遇而进行的测量工作称之为贯通测量。45.

第五篇:机械设计制造自考考试知识点总结(最终版)

机械设计自考考试

1.①.以提高质量、降低成本为标志的生产模式出现的年代是70年代的“精益生产”模式,50年代为“规模效益”模式,即少品种、大批量生产模式,80年代较多的采用数控机床、机器人、柔性制造单元和系统等高技术的集成机械制造装备,90年代以来,机械制造装备普遍具有自动化、柔性化、精密化的特点,一适应多品种、小批量和经常更新产品的需要。②机床在不运动或空载低速运动时的精度是几何精度。③刨床的主运动参数是每分钟的往复次数④标准公比有1.06,1.12,1.26,1.41,1.58,1.78,2。⑤金属切削机床的总体设计是机床设计的关键环节,对机床的技术性能和经济性能指标起着决定性作用。⑥主轴组件的抗振性主要取决于前轴承。⑦轴承精度应采用p2、p4、p5级。⑧导轨按运动性质可分为主运动导轨、进给运动导轨和移置导轨。⑨导轨间隙的调整有:辅助导轨副间隙调整;矩形导轨和燕尾形导轨的间隙调整。⑩用于粗加工主轴上的齿轮,应尽可能设置在前端第一排,以减少主轴的扭转变形;精加工主轴上的齿轮,应设置在第三排,以减少主轴端的弯曲变形。

⑾机床夹具的基本组成有:定位元件及定位装置;夹紧元件及夹紧装置;导向元件;对刀元件及定向元件;夹具体;其他元件及装置。⑿金属切削加工时,工件在机床上的安装方式一般有找正安装和采用机床夹具安装两种,成批、大量生产常采用机床夹具安装。

2.①大批量生产,工序分散,工艺范围窄,加工效率高用专用机床和组合机床;单件、小批量生产,工序集中,工艺范围广,用普通机床和万能机床;多品种、小批量,工艺范围更广,加工精度和效率高用数控机床和柔性制造单元和柔性制造系统。②机床设计大致包括总体设计、技术设计、零件设计及资料编写、样机试制和试验鉴定四个阶段。③主要技术参数包括尺寸参数、运动参数和动力参数。尺寸参数主要是对机床加工性能影响较大的一些尺寸;运动参数是指机床主轴转速或主运动速度,移动部件的速度等;动力参数包括电动机功率、伺服电动机的功率或转矩,步进电动机的转矩等

④机床运动的分配应掌握四个原则:将运动分配给质量小的零部件;运动分配应有利于提高工件的加工精度;运动分配应有利于提高运动部件的刚度;运动分配应视工件形状而定。

⑤主轴组件由主轴及其支承轴承、传动件、定位元件等组成。

⑥通用多轴箱的总图由主视图、展示图、装配图和技术要求等四个部分组成。⑦拉刀从工件上把拉削余量材料切下来的顺序称为拉削方式,用于表示拉削方式的图形即为拉削图形。拉削方式可分为分层式分块式、组合式。分层式拉削又分为成形式及渐成式两种。

3①机械制造装备的组成包括总体设计、技术设计、零件设计及资料编写、样机试制试验鉴定四个阶段②金属切削机床所担负的工作量约占机器制造总工作量的40%--50%。

③机床的精度包括几何精度、传动精度、运动精度和定位精度。几何精度是指机床在不运动或空载低速运动时的精度;传动精度是指内联系传动链两末端执行件相对运动的精度,它取决于传动零件的制造精度和传动系统的设计合理性;运动精度是指机床在额定负载下运动时主要零部件的几何位置精度;定位精度是指机床工作零部件运动终了时所达到的位置的准确性和机床调整精度。④提高动刚度的措施有提高抗振性能;减少热变形;降低噪声。

⑤机床设计时应满足的基本要求:满足机床的使用要求,有足够的变速范围和转

速级数。直线运动机床,应具有足够的双行程数范围和变速级数。合理地满足机

床的自动化和生产率的要求。有良好的人机关系;满足机床传递动力的要求,传

动系统应能传递足够的功率和转矩;满足机床的工作性能要求,传动系统应有足

够的刚度、精度、抗振性能和较小的热变形;满足经济性要求。⑥转速图包括一

点三线,一点是转速图,三线是主轴转速线、传动轴线、传动线。⑦滚珠丝杠副

分为内循环及外循环两类。⑧加工精度的影响:工件的加工精度要求,往往影响

组合机床的配置形式和结构方案。如,加工精度要求高时,应采用固定夹具的单

工位组合机床;加工精度要求较低时,可采用移动夹具的多工位组合机床。⑨成形车刀的类型有:平体形、;棱形、圆形。⑩成形车刀磨钝后需要重磨,一般只

磨前刀面。⑾圆孔拉刀由工作部分和非工作部分构成。工作部分分为切削齿和校

准齿;非工作部分有头部、颈部、过渡锥部、前导部、后导部、尾部。⑿根据工

件加工表面的位置要求,有时需要将工件的六个自由度完全限制,称为完全定位;

有时需要限制的自由度少于六个,称为不完全定位;根据加工表面的位置尺寸要

求,需要限制的自由度没有被完全限制,或某自由度被两个或两个以上的约束重

复限制,称之为非正常情况,前者又称为欠定位,它不能保证位置精度,是绝对

不允许的。后者称为过定位,加工中一般是不允许的,它不能保证正确的位置精

度,但在特殊情况下,如果应用得当,过定位不仅是允许的,而且会成为对加工

有利的因素。

⒀定位误差的产生?实际上的工件的定位基准和定位元件均有制造误差,因而工

件在夹具中的实际位置将在一定的范围内变动,即存在一定的定位公差。⒁常用的增力机构有:杠杆、斜面、螺旋、铰链及其组合。常用的自锁机构有螺旋、斜

面及偏心机构等。

4①在机床主运动系统设计中,有哪些扩大变速范围的方法?增加变速组的传动

系统;单回曲机构;对称双公比传动系统;双速电动机传动系统。

②何谓生产率计算卡?生产率计算卡是反映所设计机床的工作循环过程、动作时

间、切削用量、生产率、负荷率的技术文件。通过生产率计算卡可以分析所拟定的方案是否满足用户对生产率及负荷率的要求

③什么是“前多后少”?为什么要“前多后少”?前多就是前面传动件多一些,后少就是后面传动件少一些。传动件越靠近电动机,其转速就越高,在电动机功

率一定的情况下,所需传递的转矩就越小,传动件和传动轴的几何尺寸就越小。

因此,从传动顺序来讲,应尽量使前面的传动件多一些,即前多后少的原则。

④主轴组件的基本要求是什么?主轴组件应满足其相应的旋转精度、静刚度、动

刚度、温升与变形、精度保持性

⑤简述六点定位原理。六点定位原理是采用六个按一定规则布置的约束点,限制

工件的六个自由度,使工件实现完全定位。这里要清楚每个点都必须起到限制一

个自由度的作用,而绝不能用一个以上的点来限制同一个自由度。因此,这六个

点绝不能随意布置。

⑥简述组合夹具的特点?这类夹具是由预先制造好的标准元件和部件,按照工序

加工的要求组合装配起来的,使用完后可拆卸存放,其元件和部件可以重复使用。

它适用于新产品试制或小批量生产。目前,组合夹具的元件都已经标准化了,但

尺寸过小或过大的工件还没用相应的组合夹具标准件。位置精度要求过高的工件

也不宜采用组合夹具。

⑦夹具装配图上需要标注哪些尺寸?夹具外形的最大轮廓尺寸;定位副的配合公

差带及定位支承间的位置精度;引导副的配合公差带、引导元件间位置精度及其

一个引导元件对定位元件的位置精度;夹具(指定位元件)对机床装夹面(即夹

具安装面)的相互位置公差;其他结合副的公差带及相互位置精度⑧夹紧力作用

方向确定的原则是什么?尽可能使夹紧点和支承点对应,使夹紧力作用在支承

上,这样会减少加紧变形,凡有定位支承的地方,对应处都应选择为夹紧点并施

以适应的夹紧力,以免在加工过程中工件离开元件;夹紧点选择应尽量靠近加工

表面,且选择在不致引起过大夹紧变形的位置

⑨试述如何减少机床的振动、减少齿轮的噪声值?机床是由许多零部件装配成的复杂振动系统,各部分的不同方向的静刚度不可能相同,因而机床有多个固有频

率。固有频率较低的振动易与激振力的频率接近从而形成共振。应针对机床性能

影响较大的固有频率低的几种振型,制定提高动刚度的措施。对来自机床外部的振源,最可靠、最有效的方法就是隔离振源。应尽量使主运动电动机与主机分离,并且采用带传动驱动机床的主运动,避免了电动机振动的传递。对无法隔离的振

源,应该:选择合理的传动形式,尽量减短传动链,减少传动件个数,即即减少

振动源的数量;提高传动链各传动轴组件,尤其是主轴组件的刚度,提高其固有

角频率;大传动件应作动平衡或设置阻尼机构;箱体外表面涂刷高阻尼图层;提

高各部件组合面的表情精度,增强结合面的局部刚度。减少齿轮噪声的措施有缩

短传动链,减少传动件个数;采用小模数、硬齿面齿轮,降低传动件的线速度;

提高齿轮的精度;采用增加齿数、减少压力角或采用圆柱螺旋齿轮,增加齿轮啮

合的重合度,机床齿轮的重合度应不小于1.3;提高传动件的阻尼比,增加支承

组件的刚度。

⑩机械制造装备的组成包括加工设备、工艺装备、工件输送装备和辅助装备。加

工设备主要指金属切削机床、特种加工机床;工艺装备是机械加工中所使用的刀

具、模具、机床夹具、量具、工具的总称;工件输送装备主要指坯料、半成品或

成品在车间内工作点间的转移输送装备,以及机床的上下料装备;辅助装备包括

清洗剂、排屑装备和计量装备等。

⑾进给传动系统应满足的条件有:有较高的静刚度;具有良好的快速响应器,抗

振性能好,噪音低,有良好的爬行性能,切削稳定性好;进给系统有较高的传动

精度和定位精度;能满足工艺需求,有足够的变速范围;结构简单,制造工艺性

好,调整维修方便,操纵轻便灵活;制造成本低,有较好的经济性。⑿提高传动

精度的措施有:尽量缩短传动链;使尽量多的传动线路线采用先缓后急的降速传

动,且末端传动组件(包括轴承)要有较高的制造精度、支承刚度,必要时采用

校正机构,这样可缩小前面传动件的传动误差,且末端组件不产生或少产生传动

误差;升速传动,尤其是传动比大的升速传动,传动件的制造精度应高一些,传

动轴组件应有较高的支承刚度。减小误差源的误差值,避免误差在传动中扩大;

传动链应有较高的刚度,减少受载后的弯曲变形。⒀三种驱动方式各自的特点?

Ⅰ.主轴上的传动方式,主要有带传动和齿轮传动。带传动是靠摩擦力传递动力,结构简单,中心距调整方便;能抑制振动,噪声低,工作平稳,特别适用于高速

主轴。Ⅱ.齿轮能传递较大的转矩,结构紧凑,尤其适合于变速传动。线速度小

于15m/s时,采用6级精度的齿轮,线速度大于15m/s时,则采用5级精度的齿

轮。Ⅲ.电动机直接驱动主轴,也是精密机床、高速加工中心和数控车床常用的一种驱动形式。⒁提高主轴部件性能的措施有:提高旋转精度;提高刚度;提高

动刚度。⒂支承件应满足的基本要求有:支承件应有足够的静刚度和较高的固有

频率;良好的动态特性;支承件应结构合理,成形后进行时效处理,充分消除内

应力,形状稳定,热变形小,变热变形后对加工精度的影响较小;支承件应排屑

畅通,工艺性好,易于制造,成本低,吊运安装方便。⒃常用的双螺母消除轴向

间隙的结构形式有以下三种:垫片调隙式;螺纹调隙式;齿差调隙式。⒄拟定多

轴箱传动系统的基本方法是:先把主轴分为几组,在每组主轴轴心组成的多边形

外接圆圆心上设置传动轴;然后在传动轴轴心组成的多边形的外接圆圆心上设置

中心传动轴;把最后的中心传动轴与动力箱的驱动轴联接起来。⒅孔加工复合刀

具的特点有:生产效率高;加工精度高;加工成本低;加工范围广。⒆夹紧机

构设计时,一般应满足的主要原则有:夹紧时不能破坏工件在定位元件上所获得的位置;夹紧力应保证工件位置在整个加工过程中不变或不产生不允许的振动;

使工件不产生过大的变形和表面损伤;夹紧机构必须可靠;夹紧机构操作必须安

全、省力、方便,符合工人操作的习惯;夹紧机构的复杂程度、自动化程度必须

与生产纲领和工厂的条件相适应。上述前三条要求是为了保证加工质量和安全生

产的,必须无条件予以满足,它是衡量夹紧装置好坏的最根本准则。

⒇机床专用夹具的设计步骤大致如下:收集并研究与设计有关的各种原始资料;

合理地确定夹具的类型及其总体布局,绘出夹具结构草图;绘制夹具总装配图;

绘制夹具元件的零件图;整理并修正机床夹具设计说明书。

5.①试述如何实现组合机床多轴箱箱内齿轮的润滑,设计多轴箱时为何需要配

置一个手柄轴?手柄轴的设计应满足什么要求?用润滑油泵从油池中吸油,由管

道输送分油器,一部分输送到箱体顶面的淋油盘,喷淋箱体中间的传动齿轮。另

一部分由油管穿入到前盖和后盖中,浇注箱内前、后盖上的传动齿轮;为了组合机床多轴箱上多个刀具主轴能正确而稳定地切削,需要在多轴箱中设置手柄轴。

用于主轴对刀,调整或修配时检查每个主轴的运动精度;为了人工搬动手柄省力

轻便,手柄轴转速尽量设计的高一些。同时手柄轴位置应靠近工人操作位置,其

周围应有较大的空间,使于扳手旋转操作,即保证回转时手柄不碰主轴。

②什么是“三图一卡”,分别简述其各个的作用?三图一卡指被加工零件工序图、加工示意图、机床联系尺寸图以及生产率计算卡。被加工零件工序图是根据选定的工艺方案,表明零件形状、尺寸、硬度以及在所设计的组合机床上完成的工艺

内容和所采用的定位基准、夹压点的图样。它是组合机床设计的主要依据,也是

制造、验收和调整机床的重要技术条件;加工示意图是被加工零件工艺方案在图

样上的反映,表示被加工零件在机床上的加工过程,刀具的布置以及工件、夹具、刀具的相对位置关系,机床的工作行程及工作循环等。加工示意图是刀具、夹具、多轴箱、电气和液压系统设计选择动力部件的主要依据,是整台组合机床布局形

式的原始要求,也是调整机床和刀具所必须的重要技术文件;机床联系尺寸图是

用来表示机床的配置形式、机床个部件之间相对位置关系和运动关系的总体布局

图。它是进行多轴箱、夹具等专用部件的重要依据;生产率计算卡是反映所设计

机床的工作循环过程、动作时间、切削用量、生产率、负荷率等的技术文件。通

过生产率计算卡,可以分析所拟定的方案是否满足用户对生产率及负荷率的要

求。

③试述机床主轴转速一般成等比数列分布的理由?设计简单,使用方便,最大相

对转速损失率相等。如果机床的主轴转速数列是等比的,公比为Ψ,且转速级数

Z为非质数,则这个数列可以分解成几个等比数列的乘积看,使传动设计简单化。

如果加工某一工件需要的最佳切削速度为v,相应的转速为n。一般情况下,n

不可能正好在某一转速线上,而是在两转速线n j与n j+1之间,采用较高转速n j+1会提高切削速度,降低刀具使用寿命。为保证刀具的使用寿命,应选择较低的转速n j,这时转速的损失为n-n j,相对转速损失率为A=(n-n j)/n*100%,最大相对转速损失率为n趋近于n j+1时的A值,即A max=1-n j/n j+1=(1-1/Ψ)*100%最大相对转速损失率A max只与公比Ψ有关,是恒定值,它影响机床的劳动生产率,特别是加工时间长的大型重型机床。因此是机床设计的重要指标之一。

④圆孔拉刀粗切齿为什么需要设计分屑槽?校准齿具有什么作用?为什么圆孔拉刀的后角取值很小?圆孔拉刀是内拉刀,当拉削钢件和其它塑料材料时,切屑呈带状,为了更顺利地从工件加工孔中排屑,需要将较宽切屑分割成窄宽度,以便于卷曲和容纳在容屑中,因此需要在圆孔拉刀前后刀齿上交错地磨出分屑槽;在圆孔拉刀中,校准齿一是能起修光、校准作用,二是当切削齿因重磨直径减少时,校准齿还可依次递补成为切削齿;拉刀的切削厚度(齿升量)很小,如按切削原理选择后角的一般原则,必须取较大后角。但是圆孔拉刀一般重磨前刀面,后角取值大了,重磨后刀齿直径会减少很多,这样拉刀的使用寿命会显著缩短,因此孔拉刀切削齿后角不宜选得过大,其校准齿的后角应比切削齿的后角更小。⑤机床应具有的性能指标有工艺范围、加工精度、生产率和自动化、可靠性。机床的工艺范围是指机床适应不同生产要求的能力,它包括可加工的零件类型、形状和尺寸范围,能完成的工序种类等;机床加工精度是指被加工工件表面的形状、位置、尺寸的准确度、表面的粗糙程度;机床东的生产率是指机床在单位时间内所能加工的工件数量、机床的自动化分为大批量生产自动化和单件、小批量生产自动化;机床的可靠性是指机床在整个使用寿命期间内完成规定功能的能力。⑥隔板和加强肋的作用?连接外壁之间的内壁称为隔板,又称为肋板。隔板的作用是将局部载荷传递给其他隔板,从而使整个支承件能比较均匀地承受载荷。因此,支承件不能采用全封闭截面时,应采用隔板等措施加强支承件的刚度。纵向隔板能提高抗弯刚度。横向隔板能提高抗扭刚度。斜向隔板既能提高抗弯刚度,又能提高抗扭刚度;加强肋又称为肋条。一般配置在外壁内侧或内壁上。其主要用途是加强局部刚度和减少薄壁振动。

⑦什么是爬行?爬行的原因?消除爬行的措施?低速运动不均匀现象称为爬行。爬行是一种摩擦自激振动。其主要原因是摩擦面上的动摩擦因数小于静摩擦因数,且动摩擦因数随滑移速度的增加而减少(摩擦阻尼)以及传动系统弹性变形。降低爬行的措施有:减少静动摩擦因数之差;改变动摩擦因数随速度变化的特性;提高传动系统的刚性;尽量减少动导轨及工作台的质量。

下载机械设计知识点总结word格式文档
下载机械设计知识点总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    机械设计总结

    两个星期的机械设计课程设计即将落下帷幕,我们经常这样形容自己的一天的课设生活:每天去C13栋一进一出,一天就没了!当别人在校园里尽情玩耍时,我们在A栋计算和画图;当别人在食堂吃......

    机械设计总结

    机械设计基础总结 绪论: 1构件:组成机械的各运动单元体。它可以是单一的整体,也可以是由几个零件 组成的刚性结构。 2机器:是执行机械运动的装置,用来变换或传递能量、物料、信息......

    机械设计实习总结

    实习总结 时间如梭,转眼间三个月的实习期快要结束了,在这里是我迈出校门进入社会的第一个工作,是我十几年在校学习结束后真正步入社会的第一个人生大学,很荣兴也很兴奋,在新的十......

    机械设计课程设计总结

    经过近一周的奋战,机械设计课程设计终于完成了。看着自己的“巨作”,打心底里佩服自己,虽然还有好多不足之处。从当初看着书本后面例题图纸那种茫然,到自己小试牛刀,再到最后圆满......

    《机械设计课程设计》总结

    机电11301《机械设计基础课程设计》总结 一、 课程设计目的 《机械设计基础课程设计》是《机械设计基础》课程的的最后一个重要教学环节,也是学生第一次较全面的设计能力训练......

    机械设计课程设计总结

    机械设计课程设计总结为期两周的机械设计课程设计已经结束了,首次指导课程设计有收获也有缺憾。 此次课程设计的任务是设计一输送带的减速装置,包括一级带传动和展开式二级圆......

    机械设计基础总结

    第一章平面机构自由度和速度分析 1、两构件直接接触并能产生一定相对运动的连接成为运动副。运动副分为低副和高副。两构件通过面接触组成的运动副称为低副。低副又分为转动......

    机械设计实习总结

    机械设计实习总结 机械设计实习总结1 一、实习目的毕业实习是机械设计制造及其自动化专业教学计划所设的重要实践性教学环节,是学生理论联系实际的课堂,本专业毕业实习一共2学......