电工学原理感想范文

时间:2019-05-12 11:30:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《电工学原理感想范文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《电工学原理感想范文》。

第一篇:电工学原理感想范文

电工学原理综合实验感想

在这个泛着一丝凉意的秋末,带着无限好奇的我们走进了的电工学实验室,开始了期盼已久的电工学综合实验。实验对于一直学理论的我们有着很大的吸引力。

电工学原理综合实验是电工学原理实验的一次综合检验,虽然在之前的三次电工学原理实验中我们在老师的指导之下复现了课堂上老师所讲的理论知识的原理,然后再跟着老师的实验步骤一步步连线啊、排线啊、“在老师检查之后合上电源开关进行试验”啊,但这些过程并不能让我们亲身感受到真正实验的快乐。在电工学原理实验中,如果没有正确连线,特别是在连接的实际电路中发生短路的时候将是非常危险的一件事儿,其中这种情况很重要的一个原因是我们在实验过程中连接电线没有理清思路,而且我发现很多的同学没有一个良好的习惯,而是将实验台上面的电线胡乱的摆在那里,所以我们有的同学在实验过程中往往遇到一根电线“电线”然后又记不得自己的是将这根电线连在了哪里,所以他只能重新连线了。钱3次的实验都是用的老师们精心设计的实验方案我们只要细心基本上都能够较好的完成实验,在整个过程中使我们通过努力能够顺利地解决物理实验呈现的问题,锻炼并考验了我们的实际动手能力,但是这一次的实验是综合性的实验,我们将不会再得到老师们的知道而是在小组内部查阅相关的资料然后讨论制定实验方案,老师也明确说了“这一次是要锻炼我们分析解决问题的综合能力,加深了

电工学原理综合实验感想

我们对有关PLC相关知识的理解,要让我们学到很多东西。”哎,苦逼的电工学原理综合实验。

这一次,我们这组的实验题目是“控制电机往返运转”。为了能够在第二天的练习试验中一句成功,我在前一天的下午便来到实验室“熟悉环境”,看看,他们在实验过程中所发生的问题,当然我本想在当天下午就完成实验就是最好的了,可惜,我从中午等到晚上都没有等到一台电脑—我在实验室整整待了一个下午,什么也没有做!其实说什么没做也太夸张了,在下午的时间里我仔细分析并最终想到了我们所做的实验的思路!

可是事实证明事情并不是我想象的那样简单,第二天,我一早来到了实验室,并成功“占领”了一台实验用的电脑与其他相关实验设备。虽然有前一天“探路”做基础,我很快在电脑上面画出了我们实验用的PLC电路图,但是我们却不知道怎样接PLC装置!情急之下,我向我们尊敬的老师招了招手,小声说:老师,这一点我没有弄明白….呵呵呵,你懂得,我们的实验就这样圆满完成。呢么来我们是希望能够有机会去参加老师们的检验,顺便多加5分,但是运气总是这样悄悄溜走,我们没有在抽签环节中抽中。

电工学原理实验锻炼我们的动手能力,让我们找到学习的快乐。

电工学原理综合实验感想

第二篇:电工学复习题

1一般情况下,元件上电流的方向和极性的匹配 2理想电压源。

3基尔霍夫定律的两种表达式。4含源二端网络功率的输出及输入。5二段网络上支路数节点数及网孔数间的关系。6相量图上的任意两相量所满足的条件。

7一般情况下,电气设备是否全部消耗了电源提供的电能。8电流源与电压源的内外电路是否可以等效的?。9交流电变频时是否影响电机的工作状态? 10变压器的功能有哪些? 11 电表的额定相对误差N。12 触电电流的值有哪些?

13.电路呈现感性或容性电路的条件是什么?

14三相供电系统的各相有功功率与总功率(非有功功率)之间的一般表达式为何?

15正弦表达式与相量表达式的转换关系是什么?

16一个有源二端电阻网络可以用什么定理简化为电压源或电流源模式? 17复功率的数学表达式。

18解决二端网络的一般问题有那些?

19三相对称电源电路有几种接法?其输出视在功率与负载功率关系的数学表达式是什么?

20简化含源电路的最简方法是什么?

21三相对称负载的相电压与线电压有几种关联?各是什么? 22 根据什么条件选择三相异步电动机的启动方式? 23 会分析判断电动机具有哪些保护功能.24 会根据条件计算三相异步电动机的额定转矩等Tn=?,nN=?,25 会计算变压器原副线圈的额定电流及电压调整率。26 会分析判断及计算三相电路的线、相电流。例如 一、判断题: 1电阻元件的特性方程有负号时,表示该方程与欧姆定律相悖。()

2如果某二段网络上的某瞬时功率是负值,则其内必含电源。()

二、填空题

1单相变压器的效率,是指_____。

2在对称三相四线制供电系统中,A线电源线电压为2380sintV, 则相 电压分别为_____、_____

及_____

V。

三、简答题

1试写出无源元件特性方程相量形式的数学表达式。2试写出阻抗角的数学表达式。

四、计算题(略)

1(10分)在三相交流电路中,同时接有两组对称负载,一组是三角形接法,Ra=Rb=Rc=173.2Ω;另一组是星型接法,RA=RB=RC=100Ω,当电源的线电压为380V时求线路的总电流iA和总功率P。(设uAB初相位为零)解:经分析每一相两种接法的线电流同相,故得:(1)IAIIY分)(2)总功率

3UUY1.7323803803.82.26A(5Z173.21.7321003ZYP3IUcos3IYUYcodY1.7323.838011.7322.238013948.96W(P3IAUABcos1.732638013948.96W)(5分)

AiABCRCRaRbRc 如互换电阻计算正确扣1分

RARB

第三篇:电工学教案

第一章 电路的基本概念和定律

实际电路种类繁多,但就其功能来说可概括为两个方面。其一,是进行能量的传输、分配与转换。典型的例子是电力系统中的输电电路。发电厂的发电机组将其他形式的能量(或热能、或水的势能、或原子能等)转换成电能,通过变压器、输电线等输送给各用户负载,那里又把电能转换成机械能(如负载是电能机)、光能(如负载是灯泡)、热能(如负载是电炉等),为人们生产、生活所利用。其二,是实现信息的传递与处理。这方面典型的例子有电话、收音机、电视机电路。接收天线把载有语言、音乐、图像信息的电磁波接收后,通过电路把输入信号(又称激励)变换或处理为人们所需要的输出信号(又称响应),送到扬声器或显像管,再还原为语言、音乐或图像。

(1)理想电路元件是具有某种确定的电磁性能的理想元件:理想电阻元件只消耗电能(既不贮藏电能,也不贮藏磁能);理想电容元件只贮藏电能(既不消耗电能,也不贮藏磁能);理想电感元件只贮藏磁能(既不消耗电能,也不贮藏电能)。理想电路元件是一种理想的模型并具有精确的数学定义,实际中并不存在。但是不能说所定义的理想电路元件模型理论脱离实际,是无用的。这尤如实际中并不存在“质点”但“质点”这种理想模型在物理学科运动学原理分析与研究中举足轻重一样,人们所定义的理想电路元件模型在电路理论问题分析与研究中充当着重要角色。(2)不同的实际电路部件,只要具有相同的主要电磁性能,在一定条件下可用同一个模型表示,如上述的灯泡、电炉、电阻器这些不同的实际电路部件在低频电路里都可用电阻R表示。(3)同一个实际电路部件在不同的应用条件下,它的模型也可以有不同的形式,1.1 欧 姆 定 律

如果电阻值不随其上电压或电流数值变化,称线性电阻。阻值不随时间t变化的线性电阻,称线性时不变电阻。一般实际中使用的诸如碳膜电阻、金属膜电阻、线绕电阻等都可近似看作是这类电阻。

1.3.1 欧姆定律

欧姆定律(Ohm's Law, 简记OL)是电路分析中重要的基本定律之一,它说明流过线性电阻的电流与该电阻两端电压之间的关系,反映了电阻元件的特性。这里我们联系电流、电压参考方向讨论欧姆定律。写该直线的数学解析式,即有

u(t)Ri(t)

此式就是欧姆定律公式。电阻的单位为欧姆(Ω)。

(1)欧姆定律只适用于线性电阻。(2)如果电阻R上的电流电压参考方向非关联,则欧姆定律公式中应冠以负号,即

u(t)Ri(t)或

i(t)Gu(t)

在参数值不等于零、不等于无限大的电阻、电导上,电流与电压是同时存在、同时消失的。或者说,在这样的电阻、电导上,t时刻的电压(或电流)只决定于t时刻的电流(或电压)。这说明电阻、电导上的电压(或电流)不能记忆电阻、电导上的电流(或电压)在“历史”上(t时刻以前)所起过的作用。所以说电阻、电导元件是无记忆性元件,又称即时元件 1.4 理 想 电 源

不管外部电路如何,其两端电压总能保持定值或一定的时间函数的电源定义为理想电压源。

1.5 基尔霍夫定律

1.节点

2.支路 3.回路 4.网孔

1.5.1 基尔霍夫电流定律(KCL)

KCL是描述电路中与节点相连的各支路电流间相互关系的定律。它的基本内容是:对于集总参数电路的任意节点,在任意时刻流出该节点的电流之和等于流入该节点的电流之和。KCL是电荷守恒定律和电流连续性在集总参数电路中任一节点处的具体反映。所谓电荷守恒定律,即是说电荷既不能创造,也不能消灭。基于这条定律,对集总参数电路中某一支路的横截面来说,它“收支”是完全平衡的。即是说,流入横截面多少电荷即刻又从该横截面流出多少电荷,dq/dt在一条支路上应处处相等,这就是电流的连续性。对于集总参数电路中的节点,在任意时刻t, 它“收支”也是完全平衡的,所以KCL是成立的。

关于KCL的应用,应再明确以下几点:

(1)KCL具有普遍意义,它适用于任意时刻、任何激励源(直流、交流或其他任意变动激励源)情况的一切集总参数电路。

(2)应用KCL列写节点或闭曲面电流方程时,首先要设出每一支路电流的参考方向,然后依据参考方向是流入或流出取号(流出者取正号,流入者取负号,或者反之)列写出KCL方程。另外,对连接有较多支路的节点列KCL方程时不要遗漏了某些支路。

1.5.2 基尔霍夫电压定律(KVL)

KVL是描述回路中各支路(或各元件)电压之间关系的。它的基本内容是:对任何集总参数电路,在任意时刻,沿任意闭合路径巡行,各段电路电压的代数和恒等于零。其数学表示式为

m uk(t)0k1

式中uk(t)代表回路中第k个元件上的电压,m为回路中包含元件的个数KVL的实质,反映了集总参数电路遵从能量守恒定律,或者说,它反映了保守场中做功与路径无关的物理本质。从电路中电压变量的定义容易理解KVL的正确性。1.6 电 路 等 效

若B与C具有相同的电压电流关系即相同的VAR,则称B与C是互为等效的。这就是电路等效的一般定义。

电路等效变换的条件是相互代换的两部分电路具有相同的VAR; 电路等效的对象是A(也就是电路未变化的部分)中的电流、电压、功率; 电路等效变换的目的是为简化电路,可

以方便地求出需要求的结果。

应用电源互换等效分析电路问题时还应注意这样几点:

(1)电源互换是电路等效变换的一种方法。

(2)有内阻Rs的实际电源,它的电压源模型与电流源模型之间可以互换等效;理想的电压源与理想的电流源之间不便互换,原因是这两种理想电源定义本身是相互矛盾的,二者不会具有相同的VAR。

(3)电源互换等效的方法可以推广运用,如果理想电压源与外接电阻串联,可把外接电阻看作内阻,即可互换为电流源形式。如果理想电流源与外接电阻并联,可把外接电阻看作内阻,互换为电压源形式。电源互换等效在推广应用中要特别注意等效端子。1.7 受 控 源

所谓受控源,即大小方向受电路中其他地方的电压或电流控制的电源。这种电源有两个控制端钮(又称输入端),两个受控端钮(又称输出端)。就其输出端所呈现的性能看,受控源可分为电压控制电压源与电流控制电压源两类;受控电流源又分为电压控制电流源与电流控制电流源两种。

第二章 电路的基本分析方法

2.1 支 路 电 流 法

在一个支路中的各元件上流经的只能是同一个电流,支路两端电压等于该支路上相串联各元件上电压的代数和,由元件约束关系(VAR)不难得到每个支路上的电流与支路两端电压的关系,即支路的VAR 支路电流法是以完备的支路电流变量为未知量,根据元件的VAR 及 KCL、KVL约束,建立数目足够且相互独立的方程组,解出各支路电流,进而再根据电路有关的基本概念求得人们期望得到的电路中任何处的电压、功率等。2.1.1独立方程的列写

一个有n个节点、b条支路的电路,若以支路电流作未知变量,可按如下方法列写出所需独立方程。

(1)从 n 个节点中任意择其n-1个节点,依KCL列节点电流方程,则 n-1个方程将是相互独立的。这一点是不难理解的,因为任一条支路一定与电路中两个节点相连,它上面的电流总是从一个节点流出,流向另一个节点。如果对所有n 个节点列KCL方程时,规定流出节点的电流取正号,流入节点的电流取负号,每一个支路电流在n个方程中一定出现两次,一次为正号(+ij), 一次为负号(-ij), 若把这n个方程相加,它一定是等于零的恒等式,即

nb(i)k[(ij)(ij)]0k1j1

式中:n表示节点数;(∑i)k 表示第 k 个节点电流代数和;

bn

(i)

表示对 n 个节点电流和再求和;

[( i j)(

表示 b 条支ij)]kj1k1路一次取正号,一次取负号的电流和。

(2)n个节点 b 条支路的电路,用支路电流法分析时需 b 个相互独立的方程,由KCL已经列出了n-1 个相互独立的KCL方程,那么剩下的b-(n-1)个独立方程当然应该由KVL列出。可以证明,由KVL能列写且仅能列写的独立方程数为b-(n-1)个。习惯上把能列写独立方程的回路称为独立回路。独立回路可以这样选取:使所选各回路都包含一条其他回路所没有的新支路。对平面电路,如果它有 n 个节点、b 条支路,也可以证明它的网孔数恰为 b-(n-1)个,按网孔由KVL列出的电压方程相互独立。归纳、明确支路电流法分析电路的步骤。

第一步:设出各支路电流,标明参考方向。任取n-1个节点,依KCL列独立节点电流方程(n 为电路节点数)。

第二步:选取独立回路(平面电路一般选网孔),并选定巡行方向,依KVL列写出所选独立回路电压方程。

第三步:如若电路中含有受控源,还应将控制量用未知电流表示,多加一个辅助方程。

第四步:求解一、二、三步列写的联立方程组,就得到各支路电流。

第五步:如果需要,再根据元件约束关系等计算电路中任何处的电压、功率。

如果电路中的受控源的控制量就是某一支路电流,那么方程组中方程个数可以不增加,由列写出的前 3 个基本方程稍加整理即可求解。如果受控源的控制量是另外的变量,那么需对含受控源电路先按前面讲述的步骤一、二去列写基本方程(列写的过程中把受控源先作为独立源一样看待),然后再加一个控制量用未知电流表示的辅助方程,这一点应特别注意。

2.2 网 孔 分 析 法 2.2.1 网孔电流

欲使方程数目减少,必使求解的未知量数目减少。在一个平面电路里,因为网孔是由若干条支路构成的闭合回路,所以它的网孔个数必定少于支路个数。如果我们设想在电路的每个网孔里有一假想的电流沿着构成该网孔的各支路循环流动,2.2.2 网孔电流法

对平面电路,以假想的网孔电流作未知量,依KVL列出网孔电压方程式(网孔内电阻上电压通过欧姆定律换算为电阻乘电流表示),求解出网孔电流,进而求得各支路电流、电压、功率等,这种求解电路的方法称网孔电流法(简称网孔法)。应用网孔法分析电路的关键是如何简便、正确地列写出网孔电压方程。

(1)网孔法是回路法的特殊情况。网孔只是平面电路的一组独立回路,不过许多实际电路都属于平面电路,选取网孔作独立回路方便易行,所以把这种特殊条件下的回路法归纳为网孔法。

(2)回路法更具有一般性,它不仅适用于分析平面电路,而且也适用于分析非平面电路,在使用中还具有一定的灵活性。

2.3 节 点 电 位 法

2.3.1 节点电位

在电路中,任选一节点作参考点,其余各节点到参考点之间的电压称为相应各节点的电位。如图 2.3-1 电路,选节点 4 作参考点(亦可选其他节点作参考点),设节点1,2,3 的电位分别为 v1, v2, v3。显然,这个电路中任何两点间的电压,任何一支路上的电流,都可应用已知的节点电位求出。例如,支路电流

i1G1(v1v2)i4G4v3

电导 G5 吸收的功率

p5G5(v1v3)2

对电路中任何一个回路列写KVL方程,回路中的节点,其电位一定出现一次正号一次负号 例如图中 A 回路,由KVL 列写方程为

u12u23u310

将上式中各电压写为电位差表示,即有

v1v2v2v3v3v10

节点电位变量是相互独立的变量 2.3.2 节点电位法

以各节点电位为未知量,将各支路电流通过支路VAR 用未知节点电位表示,依KCL 列节点电流方程(简称节点方程),求解出各节点电位变量,进而求得电路中需要求的电流、电压、功率等,这种分析法称为节点电位法。

2.4 小

2.4.1 方程法分析

2.网孔分析法 3.节点电位法

1.支路电流法 2.4.2 方程通式

1.网孔方程通式

R11iAR12iBR13iCus11 R21iAR22iBR23iCus22 R31iAR32iBR33iCus33

2.节点方程通式

G11v1G12v2G13v3is11 G21v1G22v2G23v3is22

GvGvGvi 322333s33311

第三章

常用的电路定理

3.1 叠加定理和齐次定理

3.1.1 叠

加定理

如求电流i1,我们可用网孔法。设网孔电流为iA, iB。由图可知iB=is,对网孔A列出的KVL方程为

(R1R2)iAR2isus

usR2is

iAR1R2R1R2

'如令

is

/(R 1R 1 is

R 1 

R

,则可 u R), i 1“ /(2)将电流i1写为

叠加定理可表述为: 在任何由线性元件、线性受控源及独立源组成的线性电路中,每一支i1i1'i1”路的响应(电压或电流)都可以看成是各个独立电源单独作用时,在该支路中产生响应的代数和

在应用叠加定理时应注意:

(1)叠加定理仅适用于线性电路求解电压和电流响应而不能用来计算功率。

(2)应用叠加定理求电压、电流是代数量的叠加,应特别注意各代数量的符号

(3)当一独立源作用时,其他独立源都应等于零(即独立理想电压源短路,独立理想电流源开路)。

(4)若电路中含有受控源,应用叠加定理时,受控源不要单独作用(这是劝告!若要单独作用只会使问题的分析求解更复杂化),在独立源每次单独作用时受控源要保留其中,其数值随每一独立源单独作用时控制量数值的变化而变化。

(5)叠加的方式是任意的,可以一次使一个独立源单独作用,也可以一次使几个独立源同时作用,方式的选择取决于对分析计算问题简便与否。

3.1.2 齐次定理

齐次定理表述为:当一个激励源(独立电压源或独立电流源)作用于线性电路,其任意支路的响应(电压或电流)与该激励源成正比

us11us,us220,,usmm0 i1k11us

线性电路中,当全部激励源同时增大到(K为任意常数)倍,其电路中任何处的响应(电压或电流)亦增大到K倍。

3.2 置换定理

置换定理(又称替代定理)可表述为:具有唯一解的电路中,若知某支路k的电压为uk,电流为ik,且该支路与电路中其他支路无耦合,则无论该支路是由什么元件组成的,都可用下列任何一个元件去置换: 

(1)电压等于uk的理想电压源; 

(2)电流等于ik的理想电流源; 

(3)阻值为uk/ik的电阻。

3.3 戴维南定理与诺顿定理

3.3.1 戴维南定理

一个含独立源、线性受控源、线性电阻的二端电路N,对其两个端子来说都可等效为一个理想电压源串联内阻的模型。其理想电压源的数值为有源二端电路N的两个端子间的开路电压uoc,串联的内阻为N内部所有独立源等于零(理想电压源短路,理想电流源开路),受控源保留时两端子间的等效电阻Req,常记为R0

3.3.2 诺顿定理

诺顿定理(Norton′s Theorem)可表述为:一个含独立电源、线性受控源和线性电阻的二端电路N,对两个端子来说都可等效为一个理想电流源并联内阻的模型。其理想电流源的数值为有源二端电路N的两个端子短路时其上的电流isc,并联的内阻等于N内部所有独立源为零时电路两端子间的等效电阻,记为R0。

3.4 最大功率传输定理

等效电压源接负载电路

uoci

R0RL uocpLRLi2RL RRL0

为了找pL的极值点,令dpL/dRL=0,即dpL2(RLR0)2RL(RLR0)uoc04 dRL(RLR0)

RLR0pLmax2uoc4R0pLmax12R0isc4

通常,称RL=R0为最大功率匹配条件 3.5 互易定理

互易定理可表述为:对一个仅含线性电阻的二端口,其中,一个端口加激励源,一个端口作响应端口(所求响应在该端口上)。在只有一个激励源的情况下,当激励与响应互换位置时,同一激励所产生的响应相同,这就是互易定理 应用互易定理分析电路时应注意以下几点: 

(1)互易前后应保持网络的拓扑结构及参数不变,仅理想电压源(或理想电流源)搬移,理想电压源所在支路中电阻仍保留在原支路中。

(2)互易前后电压源极性与1 1′、2 2′支路电流的参考方向应保持一致(要关联都关联,要非关联都非关联)。

(3)互易定理只适用于一个独立源作用的线性电阻网络,且一般不能含有受控源。

3.6 小

(1)叠加定理是线性电路叠加特性的概括表征,它的重要性不仅在于可用叠加法分析电路本身,而且在于它为线性电路的定性分析和一些具体计算方法提供了理论依据。叠加定理作为分析方法用于求解电路的基本思想是“化整为零”,即将多个独立源作用的较复杂的电路分解为一个一个(或一组一组)独立源作用的较简单的电路,在各分解图中分别计算,最后代数和相加求出结果。若电路含有受控源,在作分解图时受控源不要单独作用。齐次定理是表征线性电路齐次性(均匀性)的一个重要定理,它常辅助叠加定理、戴维南定理、诺顿定理来分析求解电路问题。

(2)依据等效概念,运用各种等效变换方法,将电路由繁化简,最后能方便地求得结果的分析电路的方法统称为等效法分析。第一章中所讲的电阻、电导串并联等效,独立源串并联等效,电源互换等效,Π-T互换等效;本章中所讲的置换定理,戴维南定理,诺顿定理都是应用等效法分析电路中常使用的等效变换方法。这些方法或定理都是遵从两类约束(即拓扑约束——KCL、KVL约束与元件VAR约束)的前提下针对某类电路归纳总结出的,读者务必理解其内容,注意使用的范围、条件、熟练掌握使用方法和步骤。

(2)依据等效概念,运用各种等效变换方法,将电路由繁化简,最后能方便地求得结果的分析电路的方法统称为等效法分析。第一章中所讲的电阻、电导串并联等效,独立源串并联等效,电源互换等效,Π-T互换等效;本章中所讲的置换定理,戴维南定理,诺顿定理都是应用等效法分析电路中常使用的等效变换方法。这些方法或定理都是遵从两类约束(即拓扑约束——KCL、KVL约束与元件VAR约束)的前提下针对某类电路归纳总结出的,读者务必理解其内容,注意使用的范围、条件、熟练掌握使用方法和步骤。

(3)置换定理(又称替代定理)是集总参数电路中的一个重要定理,它本身就是一种常用的电路等效方法,常辅助其他分析电路法(包括方程法、等效法)来分析求解电路。对有些电路,在关键之处、在最需要的时候,经置换定理化简等效一步,使读者会有“豁然开朗”或“柳暗花明又一村”之感((4)戴维南定理、诺顿定理是等效法分析电路最常用的两个定理。解题过程可分为三个步骤:① 求开路电压或短路电流;② 求等效内阻;③ 画出等效电源接上待求支路,由最简等效电路求得待求量。

(5)最大功率这类问题的求解使用戴维南定理(或诺顿定理)并结合使用最大功率传输定理最为简便。

6)方程法、等效法是电路中相辅相承的两类分析法。

第四章 动态电路的时域分析 4.1 动 态元件

(1)任何时刻,通过电容元件的电流与该时刻的电压变化率成正比。如果电容两端加直流电压,则i=0,电容元件相当于开路。故电容元件有隔断直流的作用。

(2)在实际电路中,通过电容的电流i总是为有限值,这意味着du/dt必须为有限值,也就是说,电容两端电压u必定是时间t的连续函数,而不能跃变。这从数学上可以很好地理解,当函数的导数为有限值时,其函数必定连续。4.2 动态电路的方程

4.2.1 方程的建立

电路中开关的接通、断开或者电路参数的突然变化等统称为“换路” 根据KVL列出电路的回路电压方程为

uR(t)uC(t)us(t)

由于

dudu iCC,uRRiRCC dtdt将它们代入上式,并稍加整理,得

duC11uCusdtRCRC

4.3 一阶电路的零输入响应

我们把这种外加激励为零,仅由动态元件初始储能所产生的电流和电压,称为动态电路的零输入响应

一阶RC电路的零输入响应

4.4 一阶电路的零状态响应

电路的零状态响应定义为:电路的初始储能为零,仅由t≥0外加激励所产生的响应。

一阶RC电路的零状态响应

4.5 一阶电路的完全响应

假若电路的初始状态不为零,同时又有外加激励电源的作用,这时电路的响应称为完全响应。对于线性电路而言,其完全响应等于零输入响应与零状态响应之和,即

y(t)yx(t)yf(t)

4.6 一阶电路的单位阶跃响应

4.6.2 一阶电路的单位阶跃响应

当激励为单位阶跃函数时,电路的零状态响应称为单位阶跃响应。简称阶跃响应,用g(t)表示之。

4.7.1 零输入响应

根据零输入响应的定义,令us=0,同时为了简化讨论中的计算,又不失一般性,令uC(0)=U0,iL(0)=0。

2duCduC2 20uC02dtdt dui(0)u(0)U,CL0C0dtt0C

上式为二阶齐次微分方程,其特征方程为p22p00

1)动态元件的VAR是微分或积分关系,如下表所示

(2)描述动态电路的方程是微分方程。利用KCL, KVL和元件的VAR可列写出待求响应的微分方程。利用换路定律和0+等效电路,可求得电路中各电流、电压的初始值。

(3)零输入响应是激励为零,由电路的初始储能产生的响应,它是齐次微分方程满足初始条件的解。零状态响应是电路的初始状态为零,由激励产生的响应,它是非齐次微分方程满足初始条件的解,包含齐次解和特解两部分。假若电路的初始状态不为零,在外加激励电源作用下,电路的响应为完全响应,它等于零输入响应与零状态响应之和。动态电路的响应也可以分为自由响应与强迫响应。对于稳定电路,在直流电源或正弦电源激励下,强迫响应为稳态响应,它与激励具有相同的函数形式。自由响应即为暂态响应,它随着时间的增加逐渐衰减到零。

零输入响应和自由响应都是满足齐次微分方程的解,它们的形式相同,但常数不同。零输入响应的待定常数仅由输入为零时的初始条件yx(0+)所确定,而自由响应的待定常数由全响应的初始条件y(0+)所确定。

(4)利用三要素公式可以简便地求解一阶电路在直流电源或阶跃信号作用下的电路响应。三要素公式为

t y(t)y()[y(0)y()]e

求三要素的方法为

① 初始值y(0+):利用换路定律和0+等效电路求得。

② 稳态响应y(∞): 在直流电源或阶跃信号作用下,电路达到稳态时,电容看作开路,电感看作短路,此时电路成为电阻电路。利用电阻电路的分析方法,求得稳态响应y(∞)。

③ 时常数τ:RC电路,τ=RC;RL电路,τ=L/R。式中R为断开动态元件后的戴维南等效电路的等效电阻。

5)单位阶跃响应g(t)定义为:在ε(t)作用下电路的零状态响应。

(6)对于二阶电路,只要求了解由于其特征根p1, p2的取值有3种不同的情况,其响应分为过阻尼、临界阻尼和欠阻尼。

第五章 正弦电路的稳态分析

5.1 正弦电压和电流

5.1.1 正弦量的三要素

所谓周期信号,就是每隔一定的时间T,电流或电压的波形重复出现;或者说,每隔一定的时间T,电流或电压完成一个循环。图 5.1-1 给出了几个周期信号的波形,周期信号的数学表示式为

f(t)f(tkT)

式中k为任何整数。周期信号完成一个循环所需要的时间T称为周期,单位为秒

图 5.1-1 周期信号

周期信号在单位时间内完成的循环次数称为频率,用f表示。显然,频率与周期的关系为

1f

T

频率的单位为赫兹(Hz)。我国电力网所供给的交流电的频率是 50 Hz,其周期是0.02s。实验室用的音频信号源的频率大约从20~20×103Hz左右,相应的周期为0.05s~0.05 ms 左右。

5.1.2 相位差

假设两个正弦电压分别为

u1(t)U1mcos(t1)

u2(t)U2mcos(t2)

它们的相位之差称为相位差,用ψ表示,即

(t1)(t2)12

两个同频率的正弦信号的相位差等于它们的初相之差 5.1.3 有效值

正弦信号的有效值定义为:让正弦信号和直流电分别通过两个阻值相等的电阻。如果在相同的时间T内(T可取为正弦信号的周期),两个电阻消耗的能量相等,那么,我们称该直流电的值为正弦信号的有效值。

当直流电流I流过电阻R时,该电阻在时间T内消耗的电能为

WI2RT

当正弦电流i流过电阻R时,在相同的时间T内,电阻消耗的电能为

TTW~p(t)dtRi2(t)dt 00

上式中p(t)表示电阻在任一瞬间消耗的功率,即p(t)=u(t)i(t)=Ri2(t)。根据有效值的定义,有

W~WT

I2RTRi2(t)dt0

故正弦电流的有效值为

1T2 Ii(t)dt0T

正弦电流的有效值是瞬时值的平方在一个周期内的平均值再取平方根,故有效值也称为均方根值。

类似地,可得正弦电压的有效值为

1T2Uu(t)dt 0T5.2 利用相量表示正弦信号

一个复数既能表示成代数型,也能表示成指数型。设A为一复数,a1和a2分别为其实部和虚部,则

Aa1ja2aej

代数型

指数型

式中a称为复数A的模;φ称为复数A的辐角 

复数的图示

5.2.1 利用相量表示正弦信号

假设某正弦电流为

i(t)Imcos(ti)根据欧拉公式

ejcosjsin

可以把复指数函数Im e j(ωt+θi)展开成Imej(ti)Imcos(ti)jImsin(ti)

i(t)Re[Imej(ti)]Imcos(ti)

把式(5.2-3)进一步写成 j(ti)jijti(t)Re[Ie]R[Iee]mem

 Re[Imejt]

式中

Ieji Imm

相量图

Imcos(t1i)

ejt]i(t)Re[Im

(tu)uUmcos(tu)Re[Umej]

ejt]Re[Umejuejt]Re[Um

UejuU Ummmu

5.3 KCL、KVL的相量形式

i0对于任意瞬间,KCL的表达式为

0同理可得KVL的相量形式为

Um

5.4

阻 抗 与 导 纳

5.4.1

阻抗与导纳

端口电压相量与电流相量的比值定义为阻抗,并用Z表示

 UZm Im UZ

I可改写成

ZI Umm ZIU

5.4.2

阻抗和导纳的串、并联

若有n个阻抗相串联,它的等效阻抗为

nn ZZk(RkjXk)k1k1

分压公式为

ZiUUin Zkk1

U 

为n个串联阻抗的总电压相量;

为第i个阻抗上的电压相量 若有n个导纳相并联,它的等效导纳为

nn

YYk(GkjBk)k1k1分流公式为

YiII in Ykk1

Ii为通过任一导纳Yi的电流相量; I为总电流相量i 若两个阻抗Z1和Z2相并联,则等效阻抗为

ZZ1Z2

Z1Z2分流公式为

I1Z2I

Z1Z2

I2ZZZI1125.5 电路基本元件的功率和能量

电阻元件的瞬时功率波形

设电压u(t)为

u(t)Umcos(tu)i(t)u(t)Imcos(tu)

R p(t)u(t)i(t)UmImcos2(tu)12UmIm[1cos2(tu)] 12UI1mm2UmImcos2(tu)] UIUIcos2(tu)瞬时功率在一周期内的平均值,称为平均功率。用P表示,即

P1TT0p(t)dt 11U2 P2Um12mIm2R2ImR或用有效值表示为

U2

PUII2R平均功率也称为有功功率。通常,我们所说的功率都是指平均功率。R指灯泡的平均功率为60 W。

5.6 无功功率和复功率

二端电路N的无功功率Q(或PQ)定义为

例如,60W灯泡是 1QUmImsin(ui)UIsin(ui)2其单位为伏安(V·A)。

分解为两个分量:一设二端电路的端口电压与电流的相量图如图5.6-3 所示。电流相量

I

;另一个与

U

。它们的值分个与电压相量

同相的分量

I 

正交的分量

IUxx别为

IxIcos(ui)

IyIsin(ui)

端口电压、电流相量图

与电压

U二端电路的有功功率看作是由电流

I 

所产生的,即

x

PUIxUIcos(ui)无功功率看作是由电流

I y 与电压

U 

产生的,即

QUIyUIsin(ui)

当二端电路不含独立源时,φZ=θu-θi,(5.6-5)式可写为

QUIsinZ

当电路N是纯电阻时,φZ=0, QR=0;当电路N是电感时,φZ=90°, QL=UI;当电路N是电容时,φZ=-90°,QC=-UI。

工程上为了计算方便,把有功功率作为实部,无功功率作为虚部,组成复功率,用S表示,即

SPjQ

SUIcos(ui)jUIsin(ui)

UI[cos(ui)jsin(ui)]

Sej(ui)

SP2Q2

若二端电路N不含独立源,φZ=θu-θi, 则

SPjQSejZ

5.7 正弦稳态电路中的最大功率传输

功率三角形

由图可知,电路中的电流为

 UUssI ZiZL(RiRL)j(XiXL)

电流的有效值为

Us I(RiRL)2(XiXL)2负载吸收的功率

U52RL2 PLIRL(RiRL)2(XiXL)2

若RL保持不变,只改变XL,当Xi+XL=0 时, PL获得最大值

Us2RL PL2(RR)iL

2dPL2(RiRL)2RL(RiRL)Us04dRL(RiRL)

(RiRL)22RL(RiRL)0

RLRi当负载电阻和电抗均可变时,负载吸收最大功率的条件为

XLXi RRLi

ZLZi*

当负载阻抗等于电源内阻抗的共轭复数时,负载能获得最大功率,称为最大功率匹配或共轭匹配。Us1UsmPLmax 4Ri24Ri

 UUssI ZiRL(RiRL)jXi

UsI

22(RR)XiLi

负载吸收的功率为

Us2RL2 PLIRL22(RR)XiLi

当RL改变,PL获得最大值的条件是dPL2(RiRL)Xi2RL(RiRL)Us dRL[(RiRL)2Xi2]2(RiRL)2Xi22RL(RiRL)0

RLRi2Xi2Zi

当负载阻抗为纯电阻时,负载电阻获得最大功率的条件是负载电阻与电源的内阻抗模相等。

5.8 正弦稳态电路的相量分析法

5.8.1 网孔法

5.8.2 节点法

5.8.3 等效电源定理

5.9

三相电路概述

三相电源

这三个相电压的瞬时表示式为

ua(t)2Upcost

 ub(t)2Upcos(t120)

uc(t)2Upcos(t240)

U0Uap

 UbUp120 UcUp240Up120

5.9.1 三相电源的连接

对称三相电压相量图

三相电源的Y形连接

5.10 小

1.正弦信号的三要素和相量表示

i(t)Imcos(ti)2Icos(ti)

式中振幅Im(有效值I)、角频率ω(频率f)和初相角θi称为正弦信号的三要素。设两个频率相同的正弦电流i1和i2,它们的初相角分别为θ1和θ2,那么这两个电流的相位差等于它们的初相角之差,即

12若ψ>0, 表示i1的相位超前i2;若ψ<0,表示i1的相位滞后i2。正弦电流可以表示为

ejt]Re[2Iejt]iIcos(t)Re[Imim

式中

I m e j i(I

j  i)

称为电流振幅(有效值)相量。相量是一个复I Iem常数,它的模表示了正弦电流的振幅(有效值),辐角表示了正弦电流的初相角。

2. 电路定律的相量形式和相量分析法 KCL和KVL的相量形式分别为

0 I 0U欧姆定律的相量形式为

ZIU

3.正弦稳态电路的功率

任一阻抗Z的有功功率(平均功率)和无功功率分别为

PUIcosZ

QUIsinZ

PSUI视在功率为

复功率为

SPjQSejZ

在电源和内阻抗Zi一定条件下,负载阻抗ZL获得最大功率的条件为

ZLZi*

这称为共轭匹配,此时负载获得的最大功率为

PLRi2Xi2Zi

这称为模匹配,即负载电阻RL等于内阻抗的模|Zi|时,能获得最大功率。计算模匹配情况下

,那么负载电阻消耗的功率为的最大功率,首先应该计算流过负载电阻RL的电流

IR 2PLIRRL第六章

互感与理想变压器

6.1 耦合电感元件

6.2 耦合电感的去耦等效

6.2.1 耦合电感的串联等效



互感线圈顺接串联

6.3 含互感电路的相量法分析

两个回路的互感电路

由KVL得

didi R1i1L11M2usdtdt didi(RLR2)i2L22M10dtdt

jMIU(R1jL1)I12s

jMI(RRjL)I0 12L22

ZI Z11I1122Us ZI0Z21I1222

6.3.1含互感电路的等效法分析

 UsI1 2M2Z11 Z22 2M2 Zf1Z22

 UsI1 Z11Zf1

初级等效电路

设次级回路自阻抗

Z22R22jX2

222222222MMMRMX2222 Zf12j222ZRjXRXRX22222222222222

Rf1jXf1

2M2Rf12R222 R22X22

2M2Xf12X22 2R22X22

从初级端看的输入阻抗

2UM21 ZinZ11Zf1Z11I1Z22

Z21II21 Z22 jMI1I2

Z22, 特别应应当清楚,该等效电路必须在求得了初级电流

I 1的前提下才可应用来求电流

I2注意的是,等效源的极性、大小及相位与耦合电感的同名端、初, 次级电流参考方向有关

次级等效电路

6.4 理 想 变 压 器

6.4.1 理想变压器的三个理想条件

理想变压器多端元件可以看作为互感多端元件在满足下述3个理想条件极限演变而来的。

条件1:耦合系数k=1, 即全耦合。

条件2:自感系数L1,L2无穷大且L1/L2等于常数。

条件3: 无损耗。

理想变压器次级短路相当于初级亦短路;次级开路相当于初级亦开路。(1)理想变压器的3个理想条件: 全耦合、参数无穷大、无损耗。

(2)理想变压器的3个主要性能:变压、变流、变阻抗。

(3)理想变压器的变压、变流关系适用于一切变动电压、电流情况,即便是直流电压、电流,理想变压器也存在上述变换关系。

(4)理想变压器在任意时刻吸收的功率为零,这说明它是不耗能、不贮能、只起能量传输作用的电路元件

第四篇:电工学教案

1.2 教学目的:

1.电路的组成及其作用,电路的三种基本状态。

2.理解电流产生的条件和电流的概念,掌握电流的计算公式。教学重点:

1.电路各部分的作用及电路的三种状态。2.电流的计算公式。教学难点:

对电路的三种状态的理解。教学课时:

2课时 教学课题:

第一章 直流电路

第一节 电路及其基本物理量 教学过程:

(一)导入新课

本学期由我和大家一同学习《电工学》,本门课程只有理论课,期末成绩由笔试成绩和平时成绩两部分组成,笔试占60%,平时占40%。

(二)新课讲授 电路的组成和作用

1、电流流过的路径称为电路,由直流电源供电的电路称为直流电路。电路的组成:电源、负载、中间环路(画图讲解)。

(1)电源:把其他形式的能转化为电能的装置。如:干电池、蓄电池等。(2)负载:把电能转变成其他形式能量的装置,常称为用电器。如电灯等。(3)导线:作用是连接电路,输送电能。

(4)控制装置:控制电路的通断,开关、继电器。

电路最基本的作用:一是进行电能的传输和转换;二是进行信息的传输和处理。电路的三种状态(画图说明)

1.通路(闭路):电路各部分连接成闭合回路,有电流通过。2.开路(断路):电路断开,电路中无电流通过。3.短路(捷路):电源两端的导线直接相连。电流很大,会损坏电源和导线,应尽量避免。电流

1、电流的形成

电荷的定向移动形成电流。在金属导体中,实质上能定向移动的电荷是带负电的自由电子。

2、电流的大小

在单位时间内,通过导体横截面的电荷量越多,就表示流过该导体的电流越强。若在t时间内通过导体横截面的电荷量是Q,则电流I可用下式表示

I式中,I、Q、t的单位分别为A、C、s 电流的大小可用电流表进行测量。测量时应注意:

(1)对交、直流电流应分别使用交流电流表和直流电流表测量。(2)电流表应串接到被测量的电路中。

(3)注意直流电流表的正负极性。直流电流表表壳接线柱上标明的“+”、“-”记号,应和电路的极性相一致,不能接错,否则指针要反转,既影响正常测量,也容易损坏电流表。(4)合理选择电流表的量程

每个电流表都有一定的测量范围,称为电流表的量程。

一般被测电流的数值在电流表量程的一半以上,读数较为准确。因此在测量之前应先估计被测电流大小,以便选择适当量程的电流表。

若无法估计,可先用电流表的最大量程挡测量,当指针偏转不到1/3刻度时,再改用较小挡去测量,直到测得正确数值为止。

3、电流的方向

习惯上规定正电荷移动的方向为电流的方向,因此电流的方向实际上与自由电子和负离子移动的方向相反。

若电流的方向不随时间的变化而变化,则称其为直流电流,简称直流,用符号DC表示。

其中,电流大小和方向都不随时间变化而变化的电流,称为稳恒直流电;电流大小随时间的变化而作周期性变化,但方向不变的称为脉动直流电。

Qt若电流的大小和方向都随时间作相应变化的,称为交流,用符号AC表示。

参考方向:在分析和计算较为复杂的直流电路时,经常会遇到某一电流的实际方向难以确定的问题,这时可先任意假定电流的参考方向,然后根据电流的参考方向列方程求解。

如果计算结果I>0,表明电流的实际方向与参考方向相同。

如果计算结果I<0,表明电流的实际方向与参考方向相反。

如下图所示电路中,电流参考方向已选定,已知I1=1A,I2=–3A,I3=–5A,试指出电流的实际方向。

(三)课堂小结

1.电路的组成及其作用。2.电路的三种工作状态。

3.形成电流的条件。4.电流的大小和方向及参考方向。5.直流电的概念。

(四)课后作业

复习本节课内容

3.4 教学目的:

1.掌握电压、电位及电动势的相关知识。2.了解电压的测量方法。教学重点:

电压、电位、电动势 教学难点:

电压的关联参考方向、电位分析 教学课时:

2课时 教学课题:

第一章 直流电路

第一节 电路及其基本物理量 教学过程:

(一)导入新课

复习:电路的组成及其作用,电路的三种基本状态;电流产生的条件和电流的概念,电流的计算公式。今天来学习电压、电位及电动势的相关知识。

(二)新课讲授

电压、电位和电动势

1、电压

电场力将单位正电荷从a点移到b点所做的功,称为a、b两点间的电压,用Uab表示。电压单位的名称是伏特,简称伏,用V表示。

已知图a中,Uab=-5V;图b中,Uab=-2V;图c中,Uab=-4V。试指出电压的实际方向。

2、电位

电路中某一点与参考点之间的电压即为该点的电位。电路中任意两点之间的电位差就等于这两点之间的电压,即Uab = Ua-Ub,故电压又称电位差。

电路中某点的电位与参考点的选择有关,但两点间的电位差与参考点的选择无关。

下图所示电路中,已知E1 =24V,E2 =12V,电源内阻可忽略不计,R1 = 3Ω,R2=4Ω,R3 =5Ω,分别选D 点和E 点为参考点,试求A、B、D、E 四点的电位及UAB和UED的值。

3、电动势

电源将正电荷从电源负极经电源内部移到正极的能力用电动势表示,电动势的符号为E,单位为V。

电动势的方向规定为在电源内部由负极指向正极。

对于一个电源来说,既有电动势,又有端电压。电动势只存在于电源内部;而端电压则是电源加在外电路两端的电压,其方向由正极指向负极。

4、电压的测量

(1)对交、直流电压应分别采用交流电压表和直流电压表测量。(2)电压表必须并联在被测电路的两端。

(3)直流电压表表壳接线柱上标明的“+” “-”记号,应和被测两点的电位相一致,即“+”端接高电位,“-”端接低电位,不能接错,否则指针要反转,并会损坏电压表(4)合理选择电压表的量程,其方法和电流表相同。

(三)课堂小结

电压、电位、电动势的相关知识

(四)课后作业

第五篇:《电工学》模块教学

单元模块1:直流电路(计10课时)

子模块教学目标

介绍电路的作用;电路模型;电压、电流参考方向;欧姆定律;电源的三种状态;基尔霍夫定律;电位的概念及计算。教学目标

1、了解电路模型;掌握电压和电流参考方向的意义及设定;

2、熟练掌握欧姆定律,理解一致、非一致参考方向与欧姆定律正负号的关系;

3、3、掌握电源三种状态的特点,理解理想电流源、电压源的特点,4、掌握电源与负载的判别方法,了解额定值及实际值的意义;

5、熟练掌握基尔霍夫定律;理解电位的概念并掌握其计算方法。教学重点和难点

重点:电压和电流的参考方向;基尔霍夫定律;电源与负载的判别方法;电路中电位的计算。

难点:电压和电流的参考方向;基尔霍夫电压定律。重点难点突破

1、讲课重点突出,深入浅出,加强启发式、互动式教学,使学生尽快掌握所学内容。

2、精讲多练,通过典型例题、习题,帮助学生理解和掌握分析和计算方法 教学方法

讲授法,演示法,分析法,多做练习题 授课内容及安排

1-1电路及基本物理量 2课时 实验与实训1 练习使用测电笔和万用表

1-2 电阻 1课时 1-3 欧姆定律(重点)2课时 1-4 电工与电功率 1课时 1-5 电阻的串联,并联和混联。2课时 实验与实训;直流电路故障的检查

1-6 基尔霍夫定律(难点)2课时

考核方法及评定方式

总成绩包括:期末考试、平时成绩(上课提问以及考勤)、作业练习题。期末考试占60%、作业占30%、平时成绩占10% 单元模块2:磁路与电磁感应(计8课时)

子模块教学目标

介绍磁路的基本物理量,电流的磁场、磁场对电流的作用,磁感应强度、磁通、磁场强度、磁导率。教学目标

1、掌握电流产生磁场和磁场中通电导体受电磁力作用的知识,2、熟练掌握安培定则和左手定则。

3、掌握楞次定律和法拉第电磁感应定律,并能分析各种常见的电磁感应现象。

4、掌握自感的有关性质,能对自感和互感现象作定性分析。

5、理解磁感应强度、磁通、磁导率、自感系数的意义,并熟记它们的单位和符号。

6、了解磁感应线的特点、磁场对通电线圈的作用,了解互感的有关性质。教学重点和难点

重点:磁场和磁场中通电导体受电磁力作用。楞次定律和法拉第电磁感应定律;

难点:安培定则和左手定则,楞次定律和法拉第电磁感应定律。重点难点突破

1、安排习题课,讲解典型例题,引导学生掌握分析问题、解决问题的方法。

2、利用仿真软件进行模拟仿真,增强学生的感性认识。教学方法

讲授法,演示法,分析法,多做练习题 授课内容及安排

2-1 磁场 1课时 2-2 磁场的重要物理量 1课时 2-3 磁场对电流的作用 2课时 2-4 电磁感应(重点)2课时 2-5 自感 1课时 2-6 互感 1课时

考核方法及评定方式

总成绩包括:期末考试、平时成绩(上课提问以及考勤)、作业练习题。期末考试占60%、作业占30%、平时成绩占10%

单元模块3:单相交流电路(计10课时)子模块教学目标

介绍正弦电压与电流;正弦量的相量表示法;电阻、电感、电容元件的交流电路;电阻、电感与电容元件串联的交流电路;阻抗的串联与并联;串联谐振;功率因数的提高;非正弦周期电压和电流。教学目标

1、理解正弦量的三要素,区分正弦量与相量、最大值与有效值、频率与角频率、超前与滞后的概念;

2、熟练掌握正弦量的几种表示方法;理解单一参数交流电路中电压电流关系及功率关系,3、熟练掌握各种元件的电压电流关系相量式;

4、掌握正弦交流电路的相量计算,熟练运用相量图解题;掌握复阻抗计算;

5、理解串、并谐振的概念;理解功率因数的概念,并熟练掌握功并联电容提高功率因数的计算。教学重点和难点

重点:正弦量的相量表示法;R、L、C串联电路中的各电压电流相量关系,有功功率、无功功率计算,相量图的画法;功率因数的提高的分析计算。难点:RLC串联电路中的各电压电流相量关系;利用相量图解题。重点难点突破

1、安排习题课,讲解典型例题,引导学生掌握分析问题、解决问题的方法。

2、利用仿真软件进行模拟仿真,增强学生的感性认识。

3、利用网络资源向学生提供电子教案,重、难点例题解答等,便于学生复习。

教学方法

讲授法,演示法,分析法,多做练习题 授课内容及安排

3-1 交流电的基本概念 2课时 实验与实训;常用电子仪器的使用

3-2 正旋交流电的相量图表示法 2课时 3-3 纯电阻交流电路 1课时 3-4 纯电感交流电路 1课时 3-5 纯电容交流电路 1课时 3-6 RLC串联电路 1课时 3-7提高功率因数的意义和方法 1课时 3-8 常用照明电器 1课时

考核方法及评定方式

总成绩包括:期末考试、平时成绩(上课提问以及考勤)、作业练习题。期末考试占60%、作业占30%、平时成绩占10%

单元模块4:三相交流电(计6课时)

子模块教学目标

介绍三相对称电动势;负载星形联接和三角形联接;三相功率及其计算。教学目标

1、理解三相对称的概念,掌握三相对称电压、电流的特点;

2、熟练掌握负载星形、三角形联接的三相对称电路中相电压与线电压、相电流与线电流的关系;

3、熟练掌握三相对称电路有功功率计算。

4、了解不对称负载的电路计算,理解中线的作用。教学重点和难点

重点:负载星形、三角形联接的三相对称电路中相电压与线电压、相电流与线电流的关系。三相对称电路有功功率计算。

难点:负载星形、三角形联接的三相对称电路中相电压与线电压、相电流与线电流的关系;三相不对称交流电路的分析。重点难点突破

1、讲课重点突出,深入浅出,加强启发式、互动式教学,使学生尽快掌握所学内容。

2、利用仿真软件进行模拟仿真,增强学生的感性认识。

3、安排习题课,讲解典型例题,引导学生掌握分析问题、解决问题的方法。教学方法

讲授法,演示法,分析法,多做练习题 授课内容及安排

4-1 三相交流电(重点)1课时 4-2 三交负载的连接方法 2课时 实验与实训;三相交流负载的链接

4-3 发电输电和配电常识 1课时 4-4 安全用电常识(重点)2课时

考核方法及评定方式 总成绩包括:期末考试、平时成绩(上课提问以及考勤)、作业练习题。期末考试占60%、作业占30%、平时成绩占10%

单元模块5: 变压器与三相异步电动机(计4课时)

子模块教学目标

介绍变压器基本结构、外特性及损耗、工作原理、铭牌参数的意义;自耦变压器和电流互感器的特点;三相异步电动机的构造、转动原理、铭牌参数。教学目标

1、了解变压器的结构,熟练掌握变压器的工作原理,2、理解三相变压器的接线组别,理解阻抗匹配的概念;

3、熟练掌握原、副边的电压变化、电流变换、阻抗匹配关系;

4、了解三相异步电动机的基本结构;

5、理解三相异步电动机的工作原理;

6、熟练掌握三相异步电动机的额定电流、额定电压、转差率、转矩、功率因数、效率、额定转速、;理解铭牌参数的意义;; 教学重点和难点

重点:变压器工作原理、铭牌参数的意义,单相变压器原副边电流、电压、容量、变比计算方法;三相异步电动机的转动原理。

难点:三相异步电动机的定子绕组的连接方式,三相异步电动机转动原理。重点难点突破

1、讲课重点突出,深入浅出,加强启发式、互动式教学,使学生尽快掌握所学内容。

2、安排习题课,讲解典型例题,引导学生掌握分析问题、解决问题的方法。教学方法

讲授法,演示法,分析法,多做练习题 授课内容及安排

5-1变压器(重点)2课时 5-2三相异步电动机(重点)2课时

考核方法及评定方式

总成绩包括:期末考试、平时成绩(上课提问以及考勤)、作业练习题。期末考试占60%、作业占30%、平时成绩占10%

单元模块6:工作机械的基本电气控制电路(计10课时)

子模块教学目标

介绍常用低压电器的结构和功能;笼型电动机的直接起动与正反转控制电路;行程控制;时间控制。教学目标

1、理解常用低压电器的结构和功能,掌握各种电器的线圈、触点符号,2、理解常闭触点、常开触点、主触点的动作特点;

3、熟练掌握笼型电动机的直接起动与正反转控制电路的各操作动作工程

4、理解继电接触器控制电路的自锁、联锁、点动控制、连续控制概念

5、掌握继电接触器控制电路的过载、短路和失压保护实现元件及动作过程;

6、理解行程控制电路和时间控制电路的控制原理。教学重点和难点

重点:直接起动控制线路及自锁;正反转控制线路及联锁;控制电路中的过载、短路和失压保护。

难点:各种电器的线圈、触点符号;常闭触点、常开触点、主触点的动作特点;控制电路原理图识图与设计。重点难点突破

1、充分利用多媒体课件制作生动、活泼的特点,采用实物照片、FLASH 动画等多种形式,使学生熟悉常用电器及控制电路。

2、加强实验教学环节,在电工实验中实现每位同学一套实验设备,在教师指导下,独立设计完成实验内容,充分发挥学生的主观能动性。教学方法

讲授法,演示法,分析法,多做练习题 授课内容及安排

6-1常用低压电器 2课时 6-2电气控制系统图中基本环节的 1课时 6-3三相异步电动机的直接起动控制电路 2课时 6-4三点异步电动机的正反转控制 电路 1课时 6-5工作的台的限位和自动往返控制电路 1课时 6-6三相异步电动机的制动控制电路 2课时 6-7控制电路常见故障及简易处理方法 1课时

考核方法及评定方式

总成绩包括:期末考试、平时成绩(上课提问以及考勤)、作业练习题。期末考试占60%、作业占30%、平时成绩占10%

单元模块7:常用电子元器件及应用电路(计10课时)

子模块教学目标

介绍了常用电子元器件二极管、三极管主要参数、基本类型及其应用电路,集成运算放大器应用、直流稳压电源整流滤波电路、晶闸管基本特性和数字电路基础知识。

教学目标

1、了解二极管的结构、符号、特性和主要参数,能用万用表判别二极管的极性和好坏。

2、了解三极管的结构、符号、特性和主要参数及三极管电流放大作用,会用万用表判别三极管的类型、引脚及三极管的好坏

3、了解集成运放的电路结构、集成运放的符号及特性

4、能识读集成稳压电源电路图,能列举出集成稳压电源的实际应用;了解开关稳压电源的主要特点

5、了解晶闸管单相可控整流电路的原理

6、了解数字电子技术基础,掌握基本门电路。

7、了解555集成定时器的应用 教学重点和难点

重点:PN结的单向导电性、二极管整流、三极管电流放大作用、二极管三极管好坏的鉴定。滤波整流电路应用,晶闸管的工作特性,基本数字电路、门电路。难点:二极管三极管好坏的鉴定,滤波整流电路,门电路。重点难点突破

1、加强实验教学环节,在电工实验中实现每位同学一套实验设备。

2、在教师指导下,利用万用表测量和示波器演示波形图,独立设计完成实验内容,充分发挥学生的主观能动性 教学方法

讲授法,演示法,分析法,多做练习题 授课内容及安排

7-1二极管(重点)2课时 7-2 三极管(重点)2课时 7-3 集成运标放大器 1课时 7-4 直流稳电源(重点)1课时 7-5 晶闸管 2课时 7-6 数字集成电路 1课时 7-7 555时基电路 1课时

考核方法及评定方式

总成绩包括:期末考试、平时成绩(上课提问以及考勤)、作业练习题。期末考试占60%、作业占30%、平时成绩占10%

下载电工学原理感想范文word格式文档
下载电工学原理感想范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    电工学心得体会

    电工学心得体会 对于元器件,重点放在特性、参数、技术指标和正确使用方法,不要过分追究其内部机理。讨论器件的目的在于应用。 学会用工程观点分析问题,就是根据实际情况,对器......

    煤矿电工学

    《煤矿电工学》考试题 理论部分(100分) 一、名词解释(20分,每小题4分) 1、一类负荷:凡因突然中断供电造成人身伤亡事故或重大设备损坏,给国民经济造成重大损失,在政治上产生不良影......

    化学原理课后感想

    化学原理课后感想 PB10206277 江秋 暑假下学期里我选修了“化学原理二”这门课,第一次看到这门课的名字时大家还以为是请研究员们来重新讲一遍化学原理这门课,让大家更好的掌......

    化工原理学习感想

    体会与感想 在此次的创新设计项目中,虽然仅仅是这几天的时间让我们来将我们所学的知识运用到实际生活中,但从这里我们对知识的运用得意了解。这也体现出一个团队的努力是无穷......

    化工原理实验感想

    化工原理实验心得体会 经过这一学期的化工原理实验课程的学习,我认识到化工原理实验这一独特的实验课程是用以工程中的实际问题为解决对象,通过小型装置模拟的方法所进行的实......

    通信原理实验感想

    通信原理实验感想 郝昆 1243064 首先对这学期做的通信原理实验做一个总结。这学期我们做了模拟锁相环实验、CMI码型变换实验、验证抽样定理实验、2ASK系统调制与解调实验......

    化工原理实验感想(原创)

    化工原理实验感想 化工原理对化工专业的学生来说是一门极其重要的课,在将来的工作中扮演着不可或缺的角色,所以我们十分重视,也学到了很多东西。同样的,化工原理实验是对课程的......

    公共建筑设计原理感想

    公共建筑设计原理之感想 摘要:我们在现实生活中一般总是面对着三种建筑现象:真实的、图像的和意像的,建筑空 间的认识对我们在建筑设计中,建筑设计涉及到许多方面,可以说建筑设计......