对数学阅读与数学文化的学习体会

时间:2019-05-12 12:13:08下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《对数学阅读与数学文化的学习体会》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《对数学阅读与数学文化的学习体会》。

第一篇:对数学阅读与数学文化的学习体会

数学阅读与数学文化

学习

会 对数学阅读与数学文化的学习体会

数学是一门学科,也是一种文化,更是一种语言。数学阅读过程同其他学科的阅读过程一样,但由于数学阅读包含了文字、数学符号、公式、图表等,所以说数学语言存在着符号化、逻辑化、严谨性和抽象性等特点。数学作为一种文化现象,早已是人们的常识。而在一学期的数学文化学习中,更使我深深的认识到了数学的重要性和通过其所获取的感知。对于个人的发展来说,数学不仅仅是一门工具,还是具有内在价值的精神产物和文明成果,在一个人运用数学进行思维的过程中,所锻炼的不仅仅是我们的思维方法,更重要的是,我们的许多观念也会发生变化,产生新的认识,从而更大和更深刻的领悟人类的自由。

数学阅读有助于数学语言表达能力、交流能力的培养。如果学生仅靠课堂上听老师的讲授是难以丰富和完善自己的数学语言系统,只有通过自己亲自阅读,才能与教材语言交流,才能规范自己的数学语言,锻炼数学语言的理解力和表达力,提高数学语言水平,从而提高数学语言交流的能力。数学教材编写时应充分考虑学生特点等因素,应该能使学生灵活使用教材进行再创造等。而我们的老师不能很好的利用教材,仅把教材当作习题集,一个例题仅三言两语即可,这正是学生创造能力被扼杀的主要原因。教材作为学习材料的来源,而不能仅作为教师自己讲课材料的来源。未来社会高度发展,瞬息万变,这决定了未来人不仅要有扎实宽厚的基础知识功底,更需要我们有较强的自学功底来适应社会,终身学习,以便随时调整自己来适应社会发展的变化。

数学阅读应讲求策略。我们都知道,兴趣是学习的内在动力,是开发智力的钥匙,有了兴趣,学生才能产生强烈的求知欲,才能主动进行学习,在数学教学中,教师必须根据教材特点、学生的年龄特点和个性特征等,创设问题情境,激发阅读兴趣,加强指导,使学生掌握阅读方法。其实,数学阅读是一个积极思考的过程,教师根据不同的阅读任务和性质,合理安排阅读时间,向学生提出阅读要求,让学生带着问题边读边思考,使阅读更有效。

通过数学文化课的学习,我了解到了数学与人类社会发展的关系;体会到了数学的科学价值;同时它也使我们能够开阔视野,加强对数学的宏观认识和整体把握;能够很好的受到优秀文化的熏陶,领会数学的理性精神,从而提高自身的文化修养。首先,通过数学文化的学习能够很好的拓展了我的数学知识。在平时

的学习中,所掌握的仅仅是一些知识要点和相应的定理公理,数学的知识领域层面了解的很少。可是,在这门课程的学习过程中使我知道了以前未曾了解的知识。数学的历史使我能够更加广泛感悟数学精神和在其背后一些鲜为人知的发展历程;数学家们的故事使我铭记了他们在自己喜欢的领域获取的成就和那光环背后的艰辛;数学的历史性难题使我能够感受到了不懈的探索精神;其次,使我懂得了数学的另一片美丽的领域。数学的美不在于它的计算,而在于人们不断进步的心。从第一节课起我就感觉老师讲课很有魅力,讲的内容更具魅力。

不论是老师还是学生,数学阅读除了需要掌握一定的方法外,还需要具有阅读能力。因此,数学阅读任务不单是让学生去读,弄懂概念,学会做题,更重要的是让学生在阅读后,反思阅读材料的知识结构,领会教材内容所阐述的数学观点、思想方法,通过自我反思,自我监控、自我评价进行知识的重组和再创造,最后内化为自己的,达到触类旁通的地步。

2017年11月

第二篇:数学学习体会

《小学数学课程标准理念与目标》学习体会

这次培训学习,通过观看视频,最令我感受最深的是南开大学著名数学教授顾沛老师讲的《小学数学课程标准理念与目标》,让我受益匪浅,让我对小学数学课程标准理念与目标,有了更深刻的了解,也有更新的感受:下面我简单谈谈本次培训学习的体会与收获。

一、新课程目标鲜明了以下几点:

1、获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。

2、体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。

3、了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。

二、新的课程标准的变化。

1、新的课程标准完全改变了以往课标“知识——能力——情感”的梯级认知目标体系,而是以情感、态度、价值观目标为首,兼顾能力目标、知识目标。更加关注学生学习的过程和方法,尤其是伴随这一过程而产生的积极情感体验和正确的价值观。因此教师在使用新课程标准的过程中,主要也应关注,如何利用各门学科所特有的优势促进每一个学生的健康发展,而不是仅仅关心学生对某个结论是否记住,记得是否准确?不是仅仅关心学生对某项技能是否形成,并且运用起来是否得心应手?

2、新版课程标准指出:学生是学习和发展的主体,数学课程必须根据学生身心发展和数学学习的特点。教师课堂上的所有教学都应坚持以生为本,全面提高学生的数学素养。

3、孩子是学习的主人,教学时还应顺应孩子的天性,爱护儿童的好奇心、求知欲,鼓励孩子自主阅读、自由表达;尊重孩子的创造,充分激发他们的问题意识和进取精神。同时要关注孩子的个体差异和不同的学习需求。教师对于教学方法的选择,评价方式的设计,都应坚持以生为本。

三、教学反思。

反思自己的课堂,我认识到自己的生本意识还有待加强,有时对于教学的预设过多,导致对学生的牵引教多。今后的教学中我将更加关注学生,把时间充分的交给孩子们自己去读、去学习、去感悟,这样的教学,才是学生真正需要的,才是真正有实效的。

通过学习,我发现要将课标的方方面面落到实处,我们教师除了更新观念,切切实实抓好教学,更重要的是教师要时时加强学习,理念与实践齐头并进,必须建立和实践终身学习思想,才能实现自我完善与自我发展。

四、努力方向。

在以后的教学中,我会时时反思我的课堂,不断提升、充实自己,将课标中的理念运用到自己的课堂之上,使自己的教学更有实效。

2013年5月24日

第三篇:数学文化与数学教学

数学文化与数学教学

介绍了数学文化的内涵,分析了数学文化的价值,提出在数学教学中要引入数学文化,提高数学素,并对如何在数学文化背景下进行数学教学进行了有益探索。

数学文化 数学素养 数学娱乐 数学教学

一、数学文化的内涵

“文化”一词在《辞海》中的解释是:人类在社会历史发展过程中所创造的物质财富和精神财富的总和。“数学作为一门学科,它应该是精神生活的产物,因此数学属于文化的范畴。数学作为一种文化,除了具有文化的某些普通特征外,还有其独有的特征,这是其区别于其他文化形态的主要方面。数学文化包括数学的思想精神、方法、观点、语言以及它们的形成和发展过程,同时它还包含数学家、数学史、数学美、数学教育、数学发展中的人文成分以及数学与社会的联系、数学与各种文化的关系,等等。”从而极大地丰富了人类文化,同时也推动了人类文化的发展,因此数学是人类文化有机的和最重要的组成部分。

“数学文化”一词在1980年由美国学者怀尔德(R?Wilder)在《作为文化系统的数学》一书中提出,自20世纪80年代起,我国数学教育专家、学者开始对数学文化开展了大量研究,进入21世纪之后,数学教育就是数学文化的教育的观点得到认可,一个重要的标志是数学文化走进中小学课堂,渗入到实际数学教学中。教育部 2003年颁布的《普通高中数学课程标准》(实验)中,有四个地方用大段文字从数学文化的角度来阐述观点,并且在标题中使用了“数学文化”一词。

20世纪初的数学曾经存在着脱离社会文化的孤立主义倾向,并影响着中国。在中国数学教育界,曾有“数学=逻辑”的观念,学生们把数学看作“一种符号的游戏”。过去由于强调基础教育和应试教育,很多教师在教学时不注意数学文化的渗透,只是单调死板的对知识进行讲授和大量练习,使很多学生从小就在心里埋下了数学难、恐惧、厌烦的种子,久而久之,学生的意识里深深烙下了“数学没意思的烙印”。如今把数学放在文化的背景下加以教学,数学文化作为教材的组成部分,能帮助学生了解数学在人类文明发展中的作用,激发学习数学的兴趣,感受数学家治学的严谨,努力使学生在学习数学过程中受到文化感染,体会数学的文化品位,体察社会文化和数学文化之间的互动。

二、数学文化的价值

数学的工具作用是有目共睹的,但数学不仅仅是工具,它以自己独特的思维方式、独特的表现形式,与文学、艺术等一样,具有重要的文化价值。一方面,数学是人类思维训练的体操,经过长期的数学学习,能让学生养成缜密严格的思维习惯,培养学生深入细致的洞察和抽象概括能力、逻辑推理能力、严谨的思维分析和判断能力,从而提高大学生的思维素质。另一方面,数学对人的观念、品质、道德情操的形成具有十分重要的影响。它能培养人坚强的毅力、百折不饶的精神,使学生在今后的工作中,遇到问题不偏听偏信,思路清晰、条理分明、严格依据客观事实做出判断,并能有条不紊地处理头绪纷繁的各项工作。

爱因斯坦曾说过,什么是教育?教育就是人走出校园许多年后,将所学的知识都忘记了,但还能够干出事业来,这就是教育的本质意义。曾有学生提出过“人为什么要学数学”这个问题。数学知识对很多人来说,也许一辈子都是用不上,但为什么数学还会成为全世界中小学的主要科目?并且是所花费的时间最多的科目?最重要的是数学体现的是人类的思维精华,能熏陶人的思维品质,培养人的情感态度,是为了提高全民族的数学文化素质。它会影响一个人的言行、思维方式等各个方面。数学教育不仅要使学生掌握数学知识,也要让学生获得极为重要的数学素养。

三、数学文化背景下的数学教学

如何在数学文化背景下提高数学教学质量,使学生能喜欢数学、学好数学,激发和调动学生学习数学的积极性是我们长期以来关注的问题。经过多年的探索,体会如下:

1.注重数学史与数学知识的结合。以往学生认为数学枯燥、难学,一个重要原因是教材的内容从形式上是抽象和严密的,各章节的内容之间除了定义、定理的推导及证明,就是例题和练习,学生并知道这些知识的来龙去脉,不能引起他们的兴趣。因此,在教学中,教师要注重把一些重要的数学史知识介绍给学生,使学生掌握数学发展的基本规律,了解数学的基本思想,有助于学生对概念有一个整体认识。例如,在讲授极限概念时,可以先介绍战国时期公孙龙的一个命题:“一尺之棰,日取其半,万世不竭”,及刘徽的割圆术。刘徽的“割圆术”不仅计算出π的近似值,而且还提供了一种极限的思想,也反映出我国数学的悠久历史;在讲微积分之前,先介绍微积分的创立,同时配合图片介绍牛顿、莱布尼兹是如何在不同的背景、方法和形式上提出并创立微积分的,还可以进一步介绍微积分发现的优先权争论;在讲积分时,介绍积分号“∫”是莱布尼兹发明的,是英文字母sum的开头字母的缩写,数学上很多符号都是他发明的,并介绍在数学史上是先有定积分,然后才有不定积分的,等等,这些都会引起学生的兴趣。而且数学史上无数数学家的奋斗历程,也可以使学生树立正确的数学观,培养学生顽强的毅力、坚强的品格。

2.让学数学成为娱乐。数学娱乐的理论是王青建教授提出的。数学大师陈省身、陶哲轩等也分别提出“数学好玩”和“去与数学玩”的观点,这些都反映出数学家享受数学乐趣的心情,反映了他们对数学研究和数学教育的态度。

在教学过程中,教师应尽量用娱乐的态度、愉快的心情引入数学概念:张奠宙先生曾谈到一个老师,引用南宋诗人叶绍翁的“满园春色关不住,一枝红杏出墙来”的诗句,引入无界变量的概念,使学生学得兴趣盎然。我们在教学中也不妨引用李白的“孤帆远影碧空尽,唯见长江天际流”讲解极限的意境;通过思考阿基里斯悖论的故事,让学生理解“无限趋近……”的概念;在解题过程中,借用图形来说明时,可以用著名数学家华罗庚的论述:“数缺形时少直觉,形少数时难入微,形数结合百般好,割裂分家万事……”让学生感到数学也可以用文学形式来描述,使数学与文化交融到一起,把数学文化发挥得淋漓尽致。

3.注意知识性、趣味性、思想性和应用性的统一。数学课常常被认为是枯燥难懂、脱离实际的。为了改变这种印象,唤起学生对数学的兴趣,让学生真正体会到数学是有用的,就要注意课程的趣味性和应用性。例如,讲数列时,从“兔子问题”和“斐波那契数列”引课,同时进一步说明这个数列还出现在很多自然现象中,“例如:植物叶子在茎上的排列,菠萝的鳞片,树枝的生长分叉,蜜蜂进蜂房的路线等”,会使学生感到既有知识性又有趣味性。例如,在讲“函数极值和最值”问题时,可以介绍我们常喝的可口可乐瓶的设计;讲概率问题时,可通过让学生自己亲身试验抛硬币、掷筛子等,得出概率和频率的关系,还可以让学生们计算彩票中奖的可能性,掌握概率的计算等;在讲单利和复利计算时,让学生亲自到银行体验存款;通过这些简单可行的活动,都可以让学生在动中学,点燃学生学习数学的热情。子曰“知之者不如好之者,好之者不如乐之者”,真实地反映出了趣味和乐学的重要意义。

4.提高教师素质和修养

教师作为数学文化的传播者,教师的数学观念、数学能力、数学理解和数学教育价值认识直接影响着数学教学。一支高素质的教师队伍是实施素质教育的良好保证。因此,要进行高质量的数学教学,数学教师必须提高自身的数学修养,拓宽自己的知识面,要多读数学名著,多了解数学史、科学史、文化史、社会学等方面的知识。研读数学名著会增强教师从事数学教科研活动的文化底蕴。教师要有足够深、广的知识,还要对数学的产生、发展的历史背景有全局性的了解和把握,对数学内容本质的内在联系有一定的认识。同时挖掘数学与其他学科的联系,体现数学的应用价值,拓展数学文化的内涵,借鉴、吸收他人的成功经验,将其精华融进自己的教学方法之中,形成最能发挥自己个性特点的教学方法。这样才能创造出完美的课堂教学。

参考文献:

[1]梁绍君.数学文化及其数学文化观照之数学教育[J].重庆大学学报(社会科学版), 2006,(3):127-131.

[2]吴强,李建平.在大学数学教学中融入数学文化的思考[J].湖南工业大学学报,2010(3):61-64.[3]陈浩.数学娱乐与数学教学[D].辽宁师范大学,2007.

[4]王青建.数学娱乐的理论与实践[J].数学教育学报,2010,(8).[5]杨艳萍.对数学教师专业化成长的思考[J].课堂教学.[6]国秀香,刘秀云.论数学文化的价值[J].中国成人教育,2010.基金项目:2009年辽宁省高等教育教学改革研究项目――与后续专业课相衔接的公共基础课教学内容改革与实践(立项号4-2)。

第四篇:数学文化

选 修 课 论 文

课程:数学文化 院系:化工学院化工系 专业:化学工程与工艺

班级:

学号: 姓名:

数学文化的美以及其他学科的体现

摘要:数学文化中的美主要体现在以下四个方面:

一、完美的符号语言;

二、特有的抽象艺术;

三、严密的逻辑体系;

四、永恒的创新动力。通过展现数学文化中的与哲学、计算机、经济、教育方面的关系,可以激发我们的学习兴趣,提高学习质量。

关键词:数学;美; 其他学科;体现

从学科分类来看,数学是理论自然科学中的重要分支—素有“科学之王”之美誉;从数学的起源来看,她是对客观事物的一种量的抽象—从客观存在的有限性演变为认识领域的无限性;从人文环境来看,数学有着无与伦比的美学情趣—古希腊有一句名言:“哪里有数,哪里就有美”。

面对以上种种美誉,人们不禁要问:“数学为何如此美丽?又该怎样从美学的角度,来观察、分析、理解、并感受数学的魅力?”事实上,数学美的表现形式是多种多样的—从数学的外在形象上观赏:她有体系之美、概念之美、公式之美;从数学的思维方式上分析:她有简约之美、无限之美、抽象之美、类比之美;从美学原理上探讨:她有对称之美、和谐之美、奇异之美

[1]

等。

一、数学有着自身特有的语言——数学

语言从形的角度来看—对称性:“中心对称”、“轴对称”演绎了多少遥相呼应的缠绵故事:比例性:美丽的“黄金分割法”分出的又岂止身材的绝妙配置?和谐性:如对数中,对数记号、底数以及真数三者之间的关联与配套实际上是一种怎样的经典的优化组合!鲜明性:“最大值”、“最小值”让我们联想起——“山的伟岸”与“水的温柔”,新颖性:一个接一个数学“悖论”的出现,保持了数学乃至所有自然科学的新鲜与活力„„

数与形完美结合的思想—辨证法:熟悉数学的人都体会到在数学中充满着辨证法。如果说各门科学都包含着丰富的辨证思想,那么,数学则有自己特殊的表现方式,即用数学的符号语言以及简明的数学公式能明确地表达出各种辨证的关系和转化。例如:初等数学中:点与坐标的对应;曲线与方程之间的关系;二面角的平面角的度数;两条异面直线之间的距离;概率论和数理统计所揭示出的事物的必然性与偶然性的内在联系等。以及高等数学里所涉及的:极限概念,特别是现代的极限语言,很好地体现了有限与无限,近似和精确的辨证关系:牛顿—莱布尼茨公式描述了微分和积分两种运算方式之间的联系和相互转化等等。这类事例在数学中比比皆是。当然,要真正掌握好“数学美”,仅仅知道一些数学知识还是远远不够的,还必须善于发现各种数学结构、数学运算之间的关系,建立和运用它们之间的联系和转化。唯其如此,才能发挥出蕴藏在数学中的辨证思维的力量。数学中许多计算方法之灵巧,证明方法之美妙,究其思路,往往就是综合利用了各种关系并对他们进行过适宜的转化而成的。

二、特有的抽象艺术

从初等数学的基本概念到现代数学的各种原理都具有普遍的抽象性与一般性。正如开普勒所说的:“对于外部世界进行研究的主要目的,在于发现上帝赋予它的合理次序与和谐,而这些是上帝以数学语言透露给我们的”。

数学的第一特征在于她具有抽象思维的能力,在数学中所处理的是抽象的量,是脱离了具体事物内容的用符号表示的量。它可以成为任何一个具体数的代表,但它又不等于任何具体数。比如“N”表示自然数,它不是N个岗位,N只鸡或N张照片„也不是哪一个具体的数,分不清是0?是1?或者是100?„“知道”中蕴含着“不知道”,“具体”中充满了“不具体”,它就是这样一个抽象的数!

从初等数学的基本概念到现代数学的各个分支,都具有相当的抽象性与一般性。正如恩格斯所说的,数学是一种研究事物的抽象的科学。人们一直在各种抽象的数概念或数学结构之间思索着、追求着,努力寻找它们之间的内在联系和规律。人们总在大谈特谈“数字化”,事实上,绝大多数人并不知道数学的成就,给人类带来了哪些巨大变化。但有一点几乎是不争的事实:数学研究成果运用于实际问题之所以有效,甚至是惊人的成功,正是因为它们反映了实际事物的规律性。这就是“矛盾”中的“统一”!

三、严密的逻辑体系

数学以逻辑的严密性和结论的可靠性作为特征在数学中,每一个公式、定理都要严格地从逻辑上加以证明后才能够确立。数学的推理步骤要严格遵守形式逻辑的各种法则,以保证从前提到结论的推导过程中,每一个步骤在逻辑上都是准确无误的。所以,运用数学方法从已知的关系推求未知的关系时,所得到的结论具有逻辑上的确定性和可靠性。而数学的这种逻辑确定性又是与数学的抽象性分不开的,没有高度的抽象性,就难以达到逻辑上的严格化。

爱因斯坦说得好:“为什么数学比其它一切科学受到特殊的尊重,一个理由是它的命题是绝对可靠的和无可争辩的,并且经常处于会被新发现的事实推翻的危险之中。”数学之所以声誉高,还有另一个理由,那就是数学给予精密自然科学以某种程度的可靠性,没有数学,这些科学是达不到这种可靠性的。

四、永恒的创新动力

黑格尔对于数学的智慧之美十分推崇,十二岁的爱因斯坦就被欧几里得平面几何体系的逻辑推理美和伟力所深深吸引。“数学那种所向披靡的力量是什么?难道不是人类智慧的力量吗?”在自然科学中,古老如数学的不多,创新如数学的更少,数学以其特有的生命力,展现在科学论坛上。数学运用于实际的关键在于建立较好的数学模型,所谓“数学模型”实际上能从“量”的方面,反映出所要研究问题的本质关系的模型。这是一个科学抽象的过程,分析和综合的过程。要善于把无关紧要的东西先撇在一边,抓住系统中的主要因素、主要关系,经过合理的简化,把问题用数学语言表述出来。在这样提炼成的数学模型上展开数学的推导和演算,以形成对问题的认识、判断和预测。这是数学运用抽象思维去把握现实的力量所在。

数学是思维的工具:随着电子计算机广泛应用,数学计算与推理进入了一个崭新的时代。科学实验研究、系统工程技术以及社会生活的各个方面都需要计算,其中有一些问题计算量之大,精确要求之高和速度之快,往往是人力难以胜任的。在电子计算机上进行数学定理的证明,使一些数学推理实现了智能化,从而帮助人们节约思维劳动,把许多人从繁琐的运算中解放出来。如同机器是人手的延伸一样,电子计算机是人脑的延伸。人脑加上电脑,人的智能加上计算机实现的人工智能,极大地增强了人类的思维能力。现在还出现了一种“数学实验”,即运用电子计算机对数学模型进行大量的试算---数学的和逻辑的演算。这对于复杂系统的研究和处理,有很大意义。因此从多个数学模型中挑选一个好的模型,或是在一个模型中挑选一组好的参数,需要通过数学实验,加以验算比较,从而对各个模型或各种参数做出评价。在社会管理、经济生活中,这种试算有可能是帮助决策人“深思熟虑”,选定优秀方案的一种手段。

由此可见,无论是计算、推理、以及模型的建立,都是数学的运用之美。我们完全有理由这样认为:数学是人类社会永恒的创新动力!

数学已广泛应用于自然科学、社会科学、管理科学等各个领域,成为这些领域的工具和语言。数学化,不仅仅出现在自然科学中,而且越来越多地出现在社会科学中。因此,数学是人类精神文明的一部分,无疑它也是人类文化的一个重要组成部分,本身应该属于文化的范畴。

所谓的数学文化包括用数学的观点观察现实,构造数学模型,学习数学的语言、图表、符号表示,进行数学交流;通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美。重视数学文化与其他文化的联系[2],真正理解数学是一个有机的整体,是科学思考和行动的基础。

五、数学与哲学

马克思主义哲学是具体学科的最普遍规律、方法的高度抽象和概括,同时又对具体学科有着重要的指导作用。数学是研究客观世界数量关系和空间形式的自然科学,数学反映了哲学范畴或基本矛盾的数量方面,数学有其逻辑严密性、高度抽象性、应用广泛性等特点,当然与哲学有很多相似之处,因而决定了其与哲学必有更为密切的联系。

(一)数学科学的发展,为哲学的发展提供了内容和证据 恩格斯指出,数学是“辨证的辅助工具和表现形式。”事物的发展总是由量变的积累到质变,质变又为新的量变开辟新的领域,每次质变都是量变积累的结果。例如在二次曲线中,当e=0,表示圆;当01 时表示双曲线。通过加强对e 连续变化分析,可以使学生加深对量变质变观点的理解。

(二)哲学指导数学的研究与发展方向,促进了数学科学的发展 用辩证唯物主义哲学观点来看待数学,这不仅是认识数学的需要,而且也是研究数学、发展数学、保持数学之树常青的需要。借用模型研究原型的功能特征及其内在规律的数学模型方法,在当今已发展成为解决科学技术以及人脑思维等问题的最重要的一种常用方法。它运用数学变换方法揭示和把握了这种高度的抽象化和形式化。它的思想基础是辩证法:任何事物都是相互联系,不断发展变化的。因此作为一个数学模型其组成要素之间的相互依存和相互联系的形式是可变的。数学家利用这种可变的规律性,强化自身在解决数学问题中的应变能力,从而不断提高解决数学问题的能力。

六、数学与计算机

从帕斯卡发明第一台能做加减法运算的机械式计算机到图灵、冯·诺依曼提出现代计算机设计思想,数学家在计算机的产生和发展过程中始终扮演着重要的角色。计算机自诞生之日起便与数学结下了最为亲密的关系[3],这种关系一方面使计算机离不开数学,一方面也使计算机对数学产生了深层次的影响。

(一)数学是计算机的缔造者,为计算机科学提供了内容和方法 离散数学作为有力的数学工具,对计算机的发展、计算机科学的研究起着重大的作用。计算机发展初期,利用布尔代数理论研究开关电路从而建立了一门完整的数字逻辑理论,对计算机的逻辑设计起了很大的作用。在近期利用代数结构研究编码理论。利用谓词演算研究程序正确性等问题使离散数学在计算机研究中的作用越来越大,计算机科学中普遍采用其基本的概念、方法和思想,使得计算机科学越趋成熟与完善。

(二)计算机为数学提供了强有力的工具,拓宽了数学的发展空间

计算机的出现,对数学的发展、其他学科的发展与数学方法在诸多领域中的应用带来了巨大的影响,计算机快速、准确的计算能力为自然科学、社会科学的定量研究和用科学理论定量地指导实践打开了新的局面,使得近似计算方法作为一种科学方法开始发展起来。例如由于天气预报微分方程组中涉及的参数多,测得的各种数据十分复杂,计算机产生之前,往往需要利用手算或简单的计算器械花费几天甚至几十天的实践进行求解,预报也就失去了意义。而计算机的出现使得求解几分钟就能完成,天气预报才真正成为可能。随着经济、化学、生物、地理等学科数学化进程的加快,建立数学模型的实验方法的应用范围也大大加强。计算机快速、精确的计算机进行大量复杂计算的能力使得数学家能够把时间放在数学的发现和发明上,并且在计算机的帮助下形成了新的数学分支,例如计算数学、机器证明等等,繁荣了数学的发展,数学科学在社会发展中的地位得到了空前提高。

七、数学与经济

数学在经济分析

[4]

中有着重要的作用,它为解决以“变量”为对象的大量问题提供了一种深刻的思想方法,是运用定量分析法研究经济理论与管理问题的有效工具。随着社会的发展,数学与经济学二者的结合越来越紧密,数学成为每个从事经济专业的人进行经济实践和研究必备的工具。利用高等数学的知识可以分析商品的市场价格与需求量(供给量)之间的函数关系、经济最优化问题等。利用数学知识建立模型以后,能够成功解决许多经济问题。数学应用于经济学,并不意味着简单地将数学中的公式、定理、结论照搬,而是需要进行创造性的研究。正是在这样的意义下,经济学成了数学家、经济学家共同创造的领地。由于数学知识在经济中的应用,从而促进了数学的发展。数学应用于经济学

[5],不仅能灵活地建立经济模型,使复杂问题用世界统一的逻辑简单语言表达出来,而且由于计算机的参与,可以解决十分复杂、繁重的经济问题。因此,随着经济学的发展,数学将会显得日益重要。

八、数学与教育

在传授数学文化的过程中,我们要不失时机地对学生进行思想教育,塑造学生的优秀品质。首先数学是一门论证科学,它的发展史可以教育学生尊重事实,服从真理,养成言必有据的习惯。其次数学的研究和学习是一种连续的、不断发展、永无止境的探索活动,一个问题的研究往往需要几代人的共同努力,也可以耗费人一生的精力,因此数学文化的学习能促使人养成追求真理

[6],坚持真理的习惯,激发献身事业的热忱和执著,培养人勤奋进取的精神。再次,数学中大量计算有利于培养学生做事严谨、细致、准确的作风。最后,数学在实际工作和生活中的应用,可以培养学生理论联系实际的品德,脚踏实地的办事风格。这些优秀品质的形成都会使学生在将来的工作和生活中受益匪浅。

九、参考文献:

[1]崔瑞苹,数学文化中的美.郑州市科技工业学校

[2]杨菲,数学文化与其他文化关系的研究.天津市河西区职工大学

[3]郑丽.数学-计算机教育的基石[J].职业教育研究,2005,(11). [4]黄林静.基于高等数学在经济研究中的运用[J].商场现代化,2009,(5):62.

[5]杨丽贤,曹新成,关丽红.谈高等数学理论在经济领域中的应用[J].长春大学学报,2006,(12).

[6]丁石孙,张祖贵.数学与教育[M].大连:大连理工大学出版 社,2008.

第五篇:数学文化

数学文化

上大学了,第一次接触高等数学,感觉还不错,对于数学文化感觉如果能掌握了学习数学的方法,并能针对自己学习中所存在的问题加强其薄弱环节,对高等数学这门课程的学习是应该有所帮助的.笔者试图依照数学思想方法学习对个人整体素养提高的重要性,通过对数学思想方法的层次性划分,在微观方面提供学习数学的一些具体方法,以提高学生的学习效率数学思想方法学习对提高个体整体素养的有效性数学教育作为教育的一个重要组成部分,在发展人和社会方面有着极其重要的作用.数学教育的价值和目标:“数学的贡献在于对科学技术水平的推进与提高,对科技人才的培养和滋润,对经济建设的繁荣,对全体人民科学思维的提高和文化素质的哺育.”

数学是一门充满神秘与奇趣的学科“.一天怎样过24次新年?”“地球有多重?”“动物中的数学天才”“大金字塔之迷”“什么是电脑动物?”“人身上的尺子”“蝴蝶效应”“为什么芭蕾舞蹈演员要惦起脚尖跳舞?”等等,这些有趣的知识适当的在低年级给学生补充一下就容易让他们产生强烈的好奇心去想得到这些课本上没有的知识。学生怀着强烈的好奇心和积极的热情投入到教学中,从数学知识得到这些小知识。爱因斯坦说过:“兴趣是最好的老师。”

数学文化,往往会联想到数学史。确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径。但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念、数学方法、数学思想中揭示数学的文化底蕴。以下将阐述一些新视角,力求多侧面地展现数学文化。

数学和文学。数学和文学的思考方法往往是相通的。举例来说,中学课程里有“对称”,文学中则有“对仗”。对称是一种变换,变过去了却有些性质保持不变。轴对称,即是依对称轴对折,图形的形状和大小都保持不变。那么对仗是什么?无非是上联变成下联,但是字词句的某些特性不变。王维诗云:“明月松间照,清泉石上流”。这里,明月对清泉,都是自然景物,没有变。形容词“明”对“清”,名词“月”对“泉”,词性不变。其余各词均如此。变化中的不变性质,在文化中、文学中、数学中,都广泛存在着。数学中的“对偶理论”,拓扑学的变与不变,都是这种思想的体现。文学意境也有和数学观念相通的地方。徐利治先生早就指出:“孤帆远影碧空尽”,正是极限概念的意境。

欧氏几何和中国古代的时空观。初唐诗人陈子昂有句云:“前不见古人,后不见来者,念天地之悠悠,独怆然而涕下。”这是时间和三维欧几里得空间的文学描述。在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线。天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千。数学正是把这种人生感受精确化、形式化。诗人的想象可以补充我们的数学理解。

数学与语言。语言是文化的载体和外壳。数学的一种文化表现形式,就是把数学溶入语言之中。“不管三七二十一”涉及乘法口诀,“三下二除五就把它解决了”则是算盘口诀。再如“万无一失”,在中国语言里比喻“有绝对把握”,但是,这句成语可以联系“小概率事件”进行思考。“十万有一失”在航天器的零件中也是不允许的。此外,“指数爆炸”“直线上升”等等已经进入日常语言。它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的。“事业坐标”“人生轨迹”也已经是人们耳熟能详的词语。

数学的宏观和微观认识。宏观和微观是从物理学借用过来的,后来变成一种常识性的名词。以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别。初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态。高中的对应则是微观的分析。在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行。政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的。是否要从这样的观点考察函数呢?

数学和美学。“1/2+1/3=2/5 ?”是不是和谐美?二次方程的求根公式美不美?这涉及到美学观。三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上。欣赏艾舍尔(M.C.Escher)的画、计算机画出的分形图,也是数学美的表现。名数学教育家波利亚有过这样的精辟的论述:“如果学生在学校里没有机会尝尽为求解而奋斗的喜怒哀乐,那么他的数学教育就在最重要的地方失败了。”在数学课上根据学生的掌握情况,适当安排古今中外数学史上的一些名题,让学生打开自己的思路多做相关题型就会让他们更加丰富知识容量,增快思维的敏捷性。例如高斯8岁时做的1+2+3+4+5+„„+100=?不仅让学生感到数学的神秘还让学生学到了如何运用,对以后填方格以及求55+56+57+58+59+60=?这样类似的题都起到了很大的作用。还比如中外数学家解决”幻方”的方法很多:杨辉法、罗伯法、巴舍法等。我国的“百鸡问题”、“韩信点兵”“三人分钱”、“田忌赛马”这些数学名题,因其巧妙的解题思路向学生展现了数学的无穷魅力。

数学文化离不开数学史,但是不能仅限于数学史。当数学文化的魅力真正渗入教材、到达课堂、溶入教学时,数学就会更加平易近人,数学教学就会通过文化层面让学生进一步理解数学、喜欢数学、热爱数学。

下载对数学阅读与数学文化的学习体会word格式文档
下载对数学阅读与数学文化的学习体会.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学文化

    2011/9/14P573、什么是数学文化?为什么说数学是一种文化?答:所谓数学文化,是指以数学家为主导的数学共同体所特有的行为、观念、态度和精神等,也即是指数学共同体所特有的生活方......

    数学新课标学习体会

    数学新课标学习体会 国家基础教育课程改革已在我省全面展开,课程改革是创新和继承并存的过程,课程理念的创新来自实践,是对以素质教育为核心的课程理念的深化。《数学课程标准......

    数学学习体会心得

    学习心得体会 12月24日下午我参加了济南市高一数学“新授课下的思维暴露”主题教研活动,参加活动之前对于“思维暴露”这个问题比较迷惑。参加活动之后才知道这是济南教研室......

    数学学习体会心得

    学习心得体会 12月24日下午我参加了济南市高一数学“新授课下的思维暴露”主题教研活动,参加活动之前对于“思维暴露”这个问题比较迷惑。参加活动之后才知道这是济南教研室......

    数学学习体会心得

    学习心得体会 12月24日下午我参加了济南市高一数学“新授课下的思维暴露”主题教研活动,参加活动之前对于“思维暴露”这个问题比较迷惑。参加活动之后才知道这是济南教研室......

    数学学习体会心得

    学习心得体会 12月24日下午我参加了济南市高一数学“新授课下的思维暴露”主题教研活动,参加活动之前对于“思维暴露”这个问题比较迷惑。参加活动之后才知道这是济南教研室......

    数学学习体会(二)

    数学学习体会(二) 通过网上学习,我懂得了在小学数学知识中,蕴涵着很多的数学思想,最基本的数学思想有:数与形结合、函数、符号化、方程、分类、转化等。 教师在课堂教学中应注重数......

    数学建模学习体会

    1 数学建模 数学建模学习体会 以前在大一时就曾听说过数学建模这一学科,但只是很肤浅的了解,还错误的以为这门学科只是跟数学有关系,只要数学学好了,学好数学建模就轻而易举了......