【人教版】小学数学六年级上册知识点总结

时间:2019-05-12 12:24:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《【人教版】小学数学六年级上册知识点总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《【人教版】小学数学六年级上册知识点总结》。

第一篇:【人教版】小学数学六年级上册知识点总结

【人教版】小学数学六年级上册知识点总结

【编者按】小学六年级数学是小学阶段学习数学的最后一年,它是同学们进入中学学好数学的关键。在上册中,同学们会学习到新的本领,比如:用两个数据来确定物理的位置,分数计算,用圆、百分数的知识来解决生活中的问题等。

一、目标与要求

1.使学生能在方格纸上用数对确定位置。

2.使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。3.使学生理解倒数的意义,掌握求倒数的方法。

4.理解并掌握分数除法的计算方法,会进行分数除法计算。

5.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

6.使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握 圆周率的近似值。

7.使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

二、重、难点

1.能用数对表示物体的位置,正确区分列和行的顺序;

2.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法; 3.掌握求倒数的方法;

4.圆的周长和圆周率的意义,圆周长公式的推导过程; 5.百分数的意义,求一个数是另一个数的百分之几的应用题;

6.理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆; 7.理解比的意义。

三、知识点概念总结

1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。2.分数乘法的计算法则

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。3.分数乘法意义

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。4.分数乘整数:数形结合、转化化归 5.倒数:乘积是1的两个数叫做互为倒数。6.分数的倒数

找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。7.整数的倒数

找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。8.小数的倒数

普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1 9.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。10.分数除法:分数除法是分数乘法的逆运算。11.分数除法计算法则:

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。14.比和比例:

比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括: 比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值

相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个.15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。

比表示两个数相除;只有两个项:比的前项和后项。

比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。

17.比和比例的区别

(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b 这是比 比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4 这是比例。

(2)比的基本性质和比例的基本性质意义不同、应用不同。比的性质: 比的前项和后项都乘或除以一个不为零的数。比值不变。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系: 比例是由两个相等的比组成。

18.比和比例的意义

比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。而且,比号没有括号的含义 而另一种形式,分数有括号的含义!19.比和比例的联系:

比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。比例是由比组成的,如果没有两种量的比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。如果两个比相等,那么这两个比就可以组成比例。成比例的两个比的比值一定相等。

20.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

21.圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

22.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

23.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。圆的半径或直径决定圆的大小,圆心决定圆的位置。

24.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。25.圆周率:圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

26.圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。27.周长计算公式(1)已知直径:C=πd(2)已知半径:C=2πr(3)已知周长:D=c/π

(4)圆周长的一半:1/2周长(曲线)(5)半圆的周长:1/2周长+直径(π÷2+1)28.面积计算公式:(1)已知半径:S=πr2(2)已知直径:S=π(d/2)(3)已知周长:S=π[c÷(2π)] 29.百分数与分数的区别

(1)意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数还可以表示两数之间的倍数关系.(2)应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。

(3)书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。

而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.(4)百分数不能带单位名称;当分数表示具体数时可带单位名称。30.百分数应用

百分数一般有三种情况: ①100%以上,如:增长率、增产率等。②100%以下,如:

2发芽率、成长率等。③刚好100%,如:正确率,合格率等。31.百分数的意义

百分数只可以表示分率,而不能表示具体量,所以不能带单位。百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入。32.日常应用

每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。20%、10%让人一目了然,既清楚又简练。知识点扩展 1.圆的定义

几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

集合说:到定点的距离等于定长的点的集合叫做圆。

2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。

3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。

6.圆的种类:(1)整体圆形,(2)弧形圆,(3)扁圆,(4)椭形圆,(5)缠丝圆,(6)螺旋圆,(7)圆中圆、圆外圆,(8)重圆,(9)横圆,(10)竖圆,(11)斜圆。7.圆和其他图形的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO

8.百分数的由来

200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。

第二篇:小学数学六年级上册知识点总结范文

六年级上册数学知识要点

一、目标与要求

1.使学生能在方格纸上用数对确定位置。

2.使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。3.使学生理解倒数的意义,掌握求倒数的方法。

4.理解并掌握分数除法的计算方法,会进行分数除法计算。

5.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

6.使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握 圆周率的近似值。

7.使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

二、重、难点

1.能用数对表示物体的位置,正确区分列和行的顺序; 2.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法; 3.掌握求倒数的方法;

4.圆的周长和圆周率的意义,圆周长公式的推导过程; 5.百分数的意义,求一个数是另一个数的百分之几的应用题;

6.理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆; 7.理解比的意义。

三、知识点概念总结

1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。2.分数乘法的计算法则

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。3.分数乘法意义

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。4.分数乘整数:数形结合、转化化归 5.倒数:乘积是1的两个数叫做互为倒数。6.分数的倒数 找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。7.整数的倒数

找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。8.小数的倒数

普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1 9.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。10.分数除法:分数除法是分数乘法的逆运算。11.分数除法计算法则:

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。14.比和比例:

比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括: 比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个.15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。

比表示两个数相除;只有两个项:比的前项和后项。

比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。

17.比和比例的区别

(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b 这是比 比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4 这是比例。

(2)比的基本性质和比例的基本性质意义不同、应用不同。比的性质: 比的前项和后项都乘或除以一个不为零的数。比值不变。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系: 比例是由两个相等的比组成。

18.比和比例的意义

比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。而且,比号没有括号的含义 而另一种形式,分数有括号的含义!19.比和比例的联系:

比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。比例是由比组成的,如果没有两种量的比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。如果两个比相等,那么这两个比就可以组成比例。成比例的两个比的比值一定相等。20.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

21.圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

22.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

23.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。圆的半径或直径决定圆的大小,圆心决定圆的位置。

24.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。25.圆周率:圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

26.圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。27.周长计算公式(1)已知直径:C=πd(2)已知半径:C=2πr(3)已知周长:D=c/π

(4)圆周长的一半:1/2周长(曲线)(5)半圆的周长:1/2周长+直径(π÷2+1)28.面积计算公式:(1)已知半径:S=πr(2)已知直径:S=π(d/2)(3)已知周长:S=π[c÷(2π)] 29.百分数与分数的区别

(1)意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数还可以表示两数之间的倍数关系.(2)应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。

(3)书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。

而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.(4)百分数不能带单位名称;当分数表示具体数时可带单位名称。30.百分数应用

百分数一般有三种情况: ①100%以上,如:增长率、增产率等。②100%以下,如:发芽率、成长率等。③刚好100%,如:正确率,合格率等。31.百分数的意义

百分数只可以表示分率,而不能表示具体量,所以不能带单位。百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入。32.日常应用

每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~

22六级大风,降水概率是10%,早晚应增加衣服。20%、10%让人一目了然,既清楚又简练。知识点扩展 1.圆的定义

几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

集合说:到定点的距离等于定长的点的集合叫做圆。

2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。

3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。

6.圆的种类:(1)整体圆形,(2)弧形圆,(3)扁圆,(4)椭形圆,(5)缠丝圆,(6)螺旋圆,(7)圆中圆、圆外圆,(8)重圆,(9)横圆,(10)竖圆,(11)斜圆。7.圆和其他图形的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO

200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。

第三篇:人教办小学数学六年级上册

人教办小学数学六年级上册《圆的面积》学生调研

课堂再现

以下是我在教学六年级上册《圆的面积》一课前所做的学生调研。

几何知识的初步认识按由易到难的顺序贯穿在整个小学数学教学中,《圆的面积》的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解圆特征的基础上进行教学的,而且这一知识的学习运用会为学生学习后面的扇形的面积打下良好的基础。这部分的知识的教学是促进学生空间观念发展,渗透转化等数学思想方法的重要环节。学生学好这部分内容,对于提高他们解决生活中的实际问题的能力有重要的作用。为了把握教学设计的特点,课前我对我们班的学生做了问卷调查和抽样访谈。

调研内容及形式

(一)问卷调查(全班35名学生)

1、老师让每个学生准备两个图形一个圆形、一个长方形,把你手中的长方形和圆形的信息

提供给大家。

目的:调研学生的知识基础。

2、如果让你拿一把剪刀,要求你把圆形能转化成长方形,你能吗?

目的:调研学生遇到的困难后所采取的方法。

3、公园里准备在一块圆形花坛空地上铺草坪,要计算这块草坪的面积,你认为应该测量出

圆形的直径,半径这一组数据?还是测出这圆形一圈的长度即周长这一组数据? 目的:让学生面对新的问题,思考如何去解决,从而使学生感到学习新知识的必要性。

(二)访谈(随机抽取10名学生)

1、老师出示两个图形,长方形和圆形,长方形的长是4厘米,宽是3厘米:圆形的直径是

4厘米,你能很快说出长方形和圆形的面积那个大一些吗?你是用什么方法比较的? 目的:调研学生对所学知识经验,以及遇到问题后所采取的方法。

2、在学习习近平面图形的面积计算中,你遇到的最大困难是什么?遇到困难时你愿意采取什么

方法解决困难(看书自学、询问他人、教师讲解、小组讨论、自己探索)?

目的:调研学生的学习方式和兴趣点。

学生调研分析情况

(一问卷调查(全班35名学生)

4、1、我们每个同学准备的两个图形一个圆形、一个长方形,把你手中的长方形和圆形的信息提供给大家:

第四篇:六年级上册数学知识点总结

圆知识点总结

一、与圆有关的概念

1、圆是由一条曲线围成的平面图形。

(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)

2、画圆时,针尖固定的一点是圆心,通常用字母O表示;

连接圆心和圆上任意一点的线段是半径,通常用字母r表示;

通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。

在同一个圆里,有无数条半径和直径。

在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。在同一个圆内的所有线段中,圆的直径是最长的。

3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。

画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。

4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d÷2)

5、圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线。

6、圆心决定圆的位置,半径决定圆的大小。要比较两圆的大小,就是比较两个圆的直径或半径。

7、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。用字母π表示。

π是一个无限不循环小数。π=3.141592653„„

我们在计算时,一般保留两位小数,取它的近似值3.14。π>3.14

8、周长相等的平面图形中,圆的面积最大; 面积相等的平面图形中,圆的周长 最短。

9、几个直径和为n的圆的周长=直径为n的圆的周长(如图)

几个直径和为n的圆的面积<直径为n的圆的周长

10、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径倍数的平方

(即r扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n2倍)

11、常用的3.14的倍数:

3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×12=37.68 3.14×14=43.96 3.14×16=50.24 3.14×18=56.52 3.14×24=75.36 3.14×25=78.5 3.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.34

12、常用的平方数:

11²=121 12²=144 13²=169 14²=196 15²=225 16²=256 17²=289 18²=324

19²=361

20²=400 25²=625

二、圆的周长公式

1、已知圆的半径(r),求圆的周长(c):C=2πr

2、已知圆的直径(d),求圆的周长(c)C=πd

3、已知圆的周长,求圆的半径:r=C÷π÷2

4、已知圆的周长,求圆的直径:d=C÷π

5、求半圆的弧长,半圆的弧长等于圆周长的一半:半圆的弧长=πr或者半圆的弧 长=πd÷2

6、求半圆的周长,半圆的周长等于圆周长的一半加一条直径: C半圆= πr+2r=5.14r

C半圆= πd÷2+d=2.57d

7、车轮滚动一周前进的路程就是车轮的周长。

每分前进米数(速度)=车轮的周长×每分的转数

8、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。圆面积公式1、2、已知圆的半径,求圆的面积S=πr²

3、已知圆的直径,求圆的面积S=(d÷2)²

4、已知圆的周长,求圆的面积S=(C÷π÷2)²

5、半圆的面积,即整圆面积的一半:半圆面积=πr²÷2=(d÷2)²÷2=(C÷π÷2)²÷2总之,即得除以2

6、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。

S圆环=S外圆—S内圆=πR²-πr²=π(R²-r²)

7、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积

画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

8、长方形里最大的圆。两者联系:宽=直径

画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。

例:在长10分米,宽8分米的长方形中画一个最大的圆,圆的周长和面积各是多少?

9、在圆内画一个最大的正方形 这个最大的正方形的面积=直径×半径 画法:

10、在半圆内画一个最大的三角形,三角形的底就是圆的直径,三角形的高就是圆的关径。三角形的面积=直径直径×半径÷2

11、周长相等的平面图形中,圆的面积最大; 面积相等的平面图形中,圆的周长最短。

11、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径倍数的平方(即r扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n2倍)

二、分数混合运算

(一)分数混合运算

1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。

2、整数的运算律在分数运算中同样适用。加法运算定律:

加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:

乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c 减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c)=a-b-c 除法的性持:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c

3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。

4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。

5、分数加减法

同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。

(二)分数混合运算的应用

1、打折 计算方法:现价÷原价=折扣

2、一件商品打几折,求现价。计算方法:原价×折数

3、一件商品打几折,求原价。计算方法:现价÷折数

4、分数混合运算的应用题解答方法

基本知识规律:解答方法:

1、找单位“1”

2.确定乘或除:已知单位1,用乘法;未知单位1,用除法

3.对应量和对应分率:单位1×对应分率=对应量;对应量÷对应分率=单位1.若用方程,一般设单位1未未知数 找单位1:

三、百分数及百分数的应用

1、表示一个数是另一个数的百分之几的数叫作(百分数),也叫作(百分率)或(百分比)。

2、百分率一般是指(部分)占(整体)的百分之几。

3、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。

4、百分数化成小数时,把(百分号)先去掉,再把小数点向(左)移动(两)位;百分数化成分数,先写成分母是(100)的分数形式,再化成(最简)分数。

5、求一个数是另一个数的几分之几(或百分之几)?

“是”字前面的数÷“是”字后面的数

6、求一个数比另一个数多(或少)几分之几(或百分之几)?

(大数-小数)÷“比”字后面的数 7、8、打折 计算方法:现价÷原价=折扣

9、一件商品打几折,求现价。计算方法:原价×折数

10、一件商品打几折,求原价。计算方法:现价÷折数

11、应纳税额。计算方法: 营业额×税率

12、利息=本金×利率×时间,本金=利息÷利率÷时间,利率=利息÷本金÷时间,时间=利息÷本金÷利率

13、税后利息 计算方法:利息-利息×税率

14、到期后可以取出的钱数 计算方法:本金+税后利息

15、生活中的百分率:

出勤率、缺勤率、发芽率、优秀率、及格率、合格率、命中率、近视率、出粉率、出米率、成活率、出油率、入学率、升学率、森林覆盖率、绿化覆盖率、收视率、体育达标率、疫苗接种率、含糖率、含盐率、正确率、错误率

达标率 = 达标学生人数 ÷ 学生总人数 发芽率 = 发芽种子数 ÷ 种子总数 出勤率 = 出勤人数 ÷ 学生总人数 合格率 = 合格的产品数 ÷ 产品总数 出粉率 = 粉的重量 ÷ 小麦的重量 出油率 = 油的重量 ÷ 花生的重量 出米率 = 米的重量 ÷ 稻谷的重量 成活率 = 成活的数量 ÷ 种植总数 命中率 = 命中的次数 ÷ 投篮总数 含盐率 = 盐的重量 ÷ 盐水的重量

有关分数百分数应用题解题技巧与方法指导

一、解分数,百分数应用题的基本步骤:

1、找准单位1——并在题目的文字下面标注

二、找单位1的方法

1、部分数和总数

在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。

2、两种数量比较

分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。例如:六(2)班男生比女生多1/2。就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。在另外一种没有比字的两种量相比的时候,我们通常找到分 率,看“占” 谁的,“相当于”谁的,“是”谁的几分之几。这个“占”,“相当于”,“是”后面的数量——谁就是单位“1”。例如,一个长方形的宽是长的5/12。在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。又如,今年的产量相当于去年的4/3倍。那么相当于后面的去年的产量就是标准量,也就是单位“1”。

3、原数量与现数量

有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。这类分数应用题的单位“1”比较难找。例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!比如水结成冰,原来的数量就是水,那么水就是单位“1”。冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”。

四、百分数题型分类及解题方法 百分数应用题三种类型

第一大类求分率用除法:求一个数是另一个数的百分之几

1.直接求一个数是另一个数的百分之几 一个数÷另一个数 2.求一个数比另一个数多百分之几 多的部分÷单位1 3.求一个数比另一个数少百分之几 少的部分÷单位1 例:(1)男生有25人,女生有20人,女生是男生的百分之几?(2)男生有25人,女生有20人,男生比女生多百分之几?(3)男生有25人,女生有20人,女生比男生少百分之几? 第二大类单位1已知用乘法:求一个数的百分之几是多少

1.直接求一个数的百分之几是多少 单位1×分率 2.求比一个数多百分之几的数是多少 单位1×(1+分率)3.求比一个数少百分之几的数是多少 单位1×(1-分率)例:(1)男生有25人,女生是男生的80%,女生有多少人?(2)女生有20人,男生比女生多25%,女生有多少人?(3)男生有25人,女生比男生少20%,女生有多少人?

第三大类单位1未知用除法:已知一个数的百分之几是多少,求这个数。1.已知一个数的百分之几是多少,求这个数。已知量÷分率=单位1 2.已知比一个数多百分之几的数是多少,求这个数 已知量÷(1+多的分率)=单位1 3.已知比一个数少百分之几的数是多少,求这个数 已知量÷(1-少的分率)=单位1 例:(1)女生有25人,是男生的80%,男生有多少人?(2)男生有25人,比女生多25%,女生有多少人?(3)女生有20人,比男生少20%,男生有多少人?

四、比的认识

(一)、比的意义

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。(比值通常用分数表示,也可以用小数或整数表示)

比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:

路程÷速度=时间。

3、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4、化简比:

5、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)

工作总量一定,工作效率和工作时间成反比。(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

(三)和比的应用题有关的概念

1、求每份数的方法

和÷分数和=每份数

相差数÷相差份数=每份数

部分数÷对应份数=每份数

2、图形求比的常见公式

长方体:(长+宽+高)的和=棱长和÷4

长方形:(长+宽)的和=周长÷2

3、相遇问题 速度和 = 路程÷相遇时间

(四)比的应用

★知识体系

1、在工农业生产和生活中,常常需要把一个数量按照一定的比来进行分配。这种分配方法通常叫按比例分配。

按比例分配应用题分为三种情况,看下面的三个例子:

例(1)一年级与二年级共有学生130人,一年级与二年级人数比是5︰8,两个年级各有学生多少人?

例(2)二年级比一年级多30人,一年级与二年级人数比是5︰8,两个年级各有多少人? 例(3)二年级有80人,一年级与二年级人数比是5︰8,一年级有多少人? ★解题方法总结:

在解决“比的应用”的有关问题时,要抓住解题关键,用所给的数量除以对应的份数,求出每份数,然后用每份数分别乘所求数量的份数,从而求出所求数量。类型不同的题要用不同的方法求出每份数:

(1)“已知两数的和与两数的比,求两数分别是多少?” 每份数=两数的和÷比各项的和

(2)“已知两数的差与两数的比,求两数分别是多少?”每份数=两数的差÷比各项的差

(3)“已知其中一项与两数的比,求另一个数是多少?” 每份数=其中一项÷对应的份数 题型体系

●己知总数和比。

解题方法:

(1)每份数=两数的和÷比中各项的和(2)用各部分数占的份数×每份数 求出每部分量。

3、答题并检验。

●已知一个量和比。

解题方法:

1、每份数=其中一项÷对应的份数

2、用各部分数占的份数×每份数 求出每部分量。

3、答题并检验。

●已知相差数和比。

解题方法:

1、每份数=两数的差÷比中各项的差

2、用各部分数占的份数×每份数 求出每部分量。

3、答题并检验。

五、数据处理

六、常用的数量关系

1、每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

2、速度×时间=路程

路程÷速度=时间

路程÷时间=速度

3、单价×数量=总价

总价÷单价=数量

总价÷数量=单价

4、工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

5、加数+加数=和

和-一个加数=另一个加数

6、被减数-减数=差

被减数-差=减数

差+减数=被减数

7、因数×因数=积

积÷一个因数=另一个因数

8、被除数÷除数=商

被除数÷商=除数

商×除数=被除数

七、常见的单位换算 【长度单位】

1千米=1000米=10000分米=100000厘米=1000000毫米 1米=10分米=100厘米 1厘米=10毫米 1分米=10厘米 【面积单位】

1平方千米=100公顷 1公顷=10000平方米 一平方千米=1000000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 相邻面积单位间的进率是100。大单位转化成小单位乘以进率,小单位转化成大单位除以进率。【体积、容积单位】

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1升=1000毫升 1立方分米=1升 1立方厘米=1毫升

相邻体积间进率为1000。大单位转化成小单位乘以进率,小单位转化成大单位除 以进率。【质量单位】

1吨=1000千克 1千克=1000克 【人民币单位换算】

1元=10角 1角=10分 1元=100分

【时间换算】 1世纪=100年 1年=12月 1日=24小时=60秒 例题

时=60分分 1 1

第五篇:小学六年级数学知识点总结

小学六年级数学知识点总结

1. 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价

5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6、加数+加数=和和-一个加数=另一个加数、被减数-减数=差被减数-差=减数差+减数=被减数

8、因数×因数=积积÷一个因数=另一个因数

9、被除数÷除数=商被除数÷商=除数商×除数=被除数

小学数学图形计算公式正方形

C周长 S面积 a边长周长=边长×4C=4a面积=边长×边长S=a×a2 正方体

V:体积 a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 长方形

C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 长方体V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形

s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积 ×2÷底三角形底=面积 ×2÷高6平行四边形

s面积 a底 h高面积=底×高s=ah7 梯形

s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形

S面积 C周长 ∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏S=∏rr 9 圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2

下载【人教版】小学数学六年级上册知识点总结word格式文档
下载【人教版】小学数学六年级上册知识点总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学六年级数学知识点总结

    小学六年级数学知识点总结 1. 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、 速度×时间=路程路程÷速度=......

    六年级上册数学知识点总结(5篇材料)

    读书不是为了考试,本来考试是一件正确的事情,它是用来检查我们对学习过的知识是否懂了,懂了多少 多深分数只是反映了我们对学过知识的掌握程度,下面小编给大家分享一些六年级上......

    苏教版六年级上册数学知识点总结[范文大全]

    第一章:方程以及列方程解应用题1、形如ax±b=c方程的解法 【解方程时,可以利用等式的基本性质来解,注意两边要同时加上或减去同一个数】 例:3x+15=30要在两边同时减去15;而4x-6=1......

    苏教版六年级数学上册知识点总结归纳

    (新版)苏教版六年级数学上册知识点归纳总结 第一单元长方体和正方体 1.长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。 2.长方体的特征:面——有六个面,都是长......

    小学六年级冀教版科学上册知识点总结

    小学六年级冀教版科学上册知识点总结 一、小草和大树 1、迄今为止,人们已经知道的植物大约有( )种。有些覆盖在陆地表面,有些生活在( )、( )、( )和( )。 2、小草的相同特点:( );大树的相同......

    【数学】小学六年级数学知识点归纳[★]

    小学六年级数学知识点归纳 六年级上册 知识点概念总结 1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。 2.分数乘法的计算法则: 分数乘整数,......

    北师大版小学数学六年级上册知识点整理

    北师大版小学数学六年级上册必备知识点 一、圆的知识 1、圆是由曲线围成的平面封闭图形。圆中心的一点叫圆心,用字母O表示。以某一点为圆心,可以画无数个圆。连接圆心和圆上......

    北师大版小学数学六年级上册知识点整理

    第一单元 圆 1.圆的定义:平面上的一种曲线图形。 2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心(O)。它到圆上任意一点的距离都相等. 3.半径:连接圆心到圆上任意一......