第一篇:雷达系统仿真个人总结
第一章
1、雷达的基本任务可以概括为:探测、定位、成像、识别。
2、系统仿真的定义: 系统仿真就是进行模型试验,通过系统模型的试验去研究一个已经存在的或正在设计中的系统的过程。这个模型是对系统的简化提炼,能反映问题的本质或主要矛盾,这种建立在模型系统上的试验技术称之为仿真技术。
3、系统模型:是系统某种特定性能的一种抽象形式。
系统模型实质是一个由研究目的所确定的,关于系统某一方面本质属性的抽象和简化,并以某种形式来描述。
模型可以描述系统的本质和内在的关系,通过对模型的分析研究,达到对原型系统的了解。系统模型的建立是系统仿真的基础。
4、计算机仿真的步骤:1)模型建立阶段:系统分析与描述、建立系统的数学模型
2)模型转换阶段:数据收集、建立系统的仿真模型、模型验证、模型确认
3)模型试验阶段:试验设计、仿真运行研究、仿真结果分析
清楚仿真每一步步骤,知道关键步骤。
请简述系统仿真、系统模型的概念以及系统仿真的步骤。
第二章
1、蒙特卡洛方法,也叫随机抽样法或统计试验方法,又称计算机随机模拟方法,其基本原理是事件发生的“频率”来决定事件的“概率”。
2、蒙特卡洛(Monte Carlo)方法实现步骤:构造或描述概率过程、实现从已知概率分布抽样、建立各种估计量。
3、蒙特卡洛方法的理论基础是概率论中的基本定律——大数定律。
4、重要抽样技术——小概率事件仿真。重要抽样技术的基本思想:通过尺度变换(Change of Measure,CM)来修改决定仿真输出结果的概率测度,使本来发生概率很小的稀有事件频繁发生,从而加快仿真速度,能够在较短的时间内得到稀有事件。
5、重要抽样技术利用修改了的概率密度函数进行抽样,得到以较高概率出现的样本,然后通过对其输出结果加权来补偿由修改密度函数带来的偏差。按以上思路,可以在较短的时间内得到稀有事件。
6、请按照蒙特卡洛方法的步骤计算下面的积分,并用数学公式解释重要抽样技术的思想。
清楚蒙特卡洛定义。仿真是蒙特卡洛的应用,给题目,怎么用蒙特卡
洛实现。概念、实施过程,定积分
第三章
1、均匀分布白噪声的产生:物理方法——真随机数;数学方法——伪随机数,包括:线性同余法、联合法(组合发生器)、反馈位移寄存器法。
2、非均匀分布白噪声的产生:理论方法:反变换法、舍选抽样法、复合法、变换法、查表法。
3、反变换法:由已知的分布函数r = F(x)反过来求x = F-1(r)。
4、变换法:利用变换关系从一种分布的随机数产生另一种分布的随机数。反变换法是此法特例。
请解释一下变换法与反变换法的区别与联系。
第四章
1、随机矢量的定义
2、随机矢量抽样
随机矢量用协方差阵描述各变量之间的相关性。若视随机矢量的一次抽样为一随机序列,则它可以仿真相关随机序列。
缺点:当N很大时其计算量非常大,一般情况仅具有理论意义。
3、线性滤波法(产生高斯色噪声):理论基础——概率分布要求、功率谱密度要求
4、概率分布要求的物理解释:由高斯随机变量性质知:n维高斯随机变量的线性组合仍为高斯分布,因此Y(t)是高斯分布的。显然Y(t)在任意m个时刻取值构成的m个随机变量都可看成输入随机过程X(t)的n(无穷)维高斯变量线性变换所得,这样m个随机变量间仅存在线性相关关系,故它们服从m维高斯分布,即输出Y(t)是高斯过程。只要求得系统的输出均值及相关函数集合,即可得到输出随机过程的多维概率密度函数。
5、功率谱密度要求的解释:输出随机过程的功率谱形状主要取决于系统的幅频特性,这样为产生特定相关特性(特定功率谱密度)的随机过程,可将白噪声通过一个特定的线性系统来产生
4、ARMA模型——产生实高斯色噪声
5、复高斯白噪声线性滤波法——产生复高斯色噪声
6、功率谱密度逆变换——产生复色噪声
请解释线性滤波法的原理并画出框图,解释一下两个约束条件。
第五章
1、相关传递法:可以使一个随机序列的相关特性传递给另一个随机序列。
具体过程:只要使第一个序列具有所要求的振幅分布,第二个序列具有规定的相关特性,通过使第一个序列按第二个序列的大小次序排列就可使前者同时具有规定的概率密度函数和相关特性。
解释:概率分布是随机序列值大小的总体描述而与其排列次序无关,而自相关特性不仅与随机序列值大小有关,更取决于序列值的相对位置,因此概率分布特性与自相关特性是两个截然不同、完全无关的概念,可以分别单独考虑实现。
2、ZMNL方法的思想:首先通过线性滤波产生相关高斯随机过程,然后经过某种非线性变换得到所要求的相关随机序列。
3、ZMNL中线性变换产生特定的PSD,非线性变换产生特定的PDF
4、SIRP方法是一种外生模型,它允许对杂波的边缘概率密度函数和自相关函数独立进行控制,从而克服了ZMNL方法中非线性变换对相关函数的影响。基本思路是:将高斯白噪声序列wk经过一个线性系统Hz,得到一个相关高斯随机序列yk,然后用特定的概率密度函数的随机序列sk进行调制即得到所需的序列xk。其产生框图为: wkskHzyxk
请解释zmnl 方法的原理以及框图
第六章
1、正交双通道处理的定义:中频回波信号经过两个相似的支路分别处理,其差别仅是其基准的相参电压相位差900,这两路称为: 同相支路(Inphase Channel)——I支路 正交支路(Quadrature Channel)——Q支路
2、正交双通道处理框图
3、复非高斯色噪声的产生:零记忆非线性变换法(ZMNL)、球不变随机过程法(SIRP)、幅相分离法(APSM)请解释复色噪声产生的难点
对数正态不能由球不变法产生,原因:对数正态的PDF不满足SIRP随机过程PDF性质(积分表达式)
第七章
了解概念
第八章
1、概率分布的三种基本参数:位置参数、比例参数、形状参数。
2、做直方图的步骤如下:
1、将数据x1,x2,,xN分组 先求数据的xmax、xmin,再取边界点axmin和bxmax。将a,bk等分得分界点aa0a1a2alakb,其中aiai1
2、统计落入每一子区间的数据频率fiba,i1,2,,k。kMi,Mi为落入每一子区间数据的个数。N3、据区间分界点及每个子区间数据个数画出直方图。
3、参数点估计的基本要求:无偏估计、有效估计
4、参数估计方法:矩估计法(优点是方便,但大样本下其精度不如极大似然估计)、极大似然法(一致、不变、渐近无偏估计)
5、直方图的改进:核函数估计、近邻估计
公式不做要求,概念要知道。无偏估计、有效估计举例子、结果
第九章
1、由样本寻找T及其渐近分布的两个基本方法:概率论中的中心极限定理、概率统计中的皮尔逊卡方检验。
2、3、拟合性检验——概率密度函数——PDF(1)卡方检验
*(2)柯尔莫哥洛夫—斯米尔诺检验(K-S检验):小样本,只适用于连续分布函数
*(3)正态性检验——特殊方法
4、2检验是关于试验频数与理论频数有无显著差异的检验,即检验直方图与所拟合的理论密度函数之间的差异是否显著。将所拟合的分布的取值范围分为k个区间:[a0,a1]、[a1,a2]、…、[ak1,ak]。若取值范围为(,),则取第一区间为(,a1],最末区间为[ak1,)。设N点数据x1,x2,…,xN落入第i个区间的频数为Mi,所选择的理论分布在第i个区间取值的概率为pi,即理论频数TiNpi,则 k(MiTi)2(MiNpi)2 TiNpii1i12k当N时2~2(kl1),l为用数据估计参数个数。此法关键在于选择子区间数,它与数据、样本容量、所拟合的概率分布等有关。
5、独立性检验——白噪声——PSD 自相关函数估计:定义法(时域法)、间接法(频域法)
功率谱密度估计:直接法(周期图法)、间接法(按定义)、现代谱估计方法
6、不相关性检验针对白噪声进行的,而相关性检验则是针对色噪声而言的,一般意义上讲,不相关性检验可视为相关性检验的一种特例。
7、相关性检验——色噪声
功率谱比值法、自相关求差法、白化法——待深入研究。请叙述直方图估计和卡方检验的步骤,并解释相关性检验的目的 和方法。
第十章
1、等间距线性阵列模型
2、阵列信号的空时等价性
将空域阵列对单目标回波的采样序列amexp[jmψr]=amexp[j2π(cosφr)(md/λ)]与时域单频信号的采样序列形式snexp[j2πfsn∆t]相比较,得到如下空时对偶特性:
3、请解释阵列信号的时空等价性以及幅度加权和相位加权。
第十一章
1、雷达系统仿真:类比模拟(物理仿真)、数字计算机模拟(数字仿真)
2、数字仿真分为:功能仿真——实信号、相参视频信号仿真——复信号(目标回波+杂波+噪声)
请叙述雷达系统仿真、雷达系统数字仿真的分类以及常用的目标 散射特性
各种分布的噪声的产生方法
1、均匀分布白噪声的产生:物理方法——真随机数;数学方法——伪随机数,包括:线性同余法、联合法(组合发生器)、反馈位移寄存器法。
2、非均匀分布白噪声的产生:反变换法、舍选抽样法、复合法、变换法、查表法。
3、高斯色噪声的产生:线性滤波法
4、实高斯色噪声的产生:ARMA模型
5、复高斯色噪声的产生:复高斯白噪声线性滤波法;时域滤波法、频域逆变换法(后两个是第六章的)
6、复色噪声的产生:功率谱密度逆变换
7、非高斯色噪声的产生:相关传递法、零记忆非线性变换法ZMNL、球不变随机过程法SIRP
8、复非高斯色噪声的产生:零记忆非线性变换法(ZMNL)、球不变随机过程法(SIRP)、幅相分离法(APSM)
第二篇:微波雷达系统介绍
微波雷达系统介绍
摘要:首先介绍了雷达的基本工作原理,对雷达的基本参数进行了简单的说明,而后对雷达中用到的微波器件做了说明,主要介绍了两种雷达结构,最后对雷达系统进行了简单总结。
关键词:雷达;微波 0前言
20世纪40年代,电磁波被用于发现目标和测量目标的距离,称之为“无线电探测和测距”(radio detecting and ranging),取这几个英文字母便构成radar(雷达)一词。按照IEEE的标准定义[1],雷达是通过发射电磁波信号,接收来自其威力覆盖范围内目标的回波,并从回波信号中提取位置和其他信息,以用于探测、定位,以及有时进行目标识别的电磁波系统。由于微波具有频带宽、穿透电离层能较强、似光性等优点,雷达就是利用了微波这些特性的典型代表。
1雷达的基本工作原理[2][4]
雷达的基本工作原理是,发射机通过天线向空间定向发送探测信号,信号被远距离的目标部分反射后,由天线接收并传送到接收机接收检测和信号处理,观测人员可以在接收机输出端显示屏上观测有无目标以及目标的性质和距离。如果发射和接收共用一副天线,叫做单站雷达;如果收、发系统各有自己的天线,则叫做双站雷达,分别如图1和图2所示。
GRPt双工器目标
图1单站雷达图
GtPt接收机/处理机GrR目标
图2双站雷达图
以单站雷达为例。发射功率Pt,发射天线增益G,传输距离R,则目标处的功率密度为
S1PGt(W/m2)24R目标将在各个方向散射入射功率,在某个给定方向上的散射功率与入射功率密度之比定义为目标的雷达截面,表征目标的电磁散射特性,即
Ps(m2)S1因此雷达截面具有面积的量纲,是目标本身的特性,它还依赖于入射角、反射角和入射波的偏振态。若把散射场看作二次源,二次辐射的功率密度为
S2PG2t(W/m)22(4R)PRM2Gt由天线的有效面积定义式Aeff,PRM最大接收功率。可得,接收功率为 Si422PGttPr(4)3R4
这就是雷达方程,接收功率单位W。接收功率按1/R减小,这意味着为了检测远距离目标,需要高功率发射机和高灵敏度接收机。
由于天线接收噪声和接收机噪声,存在接收机能够识别的最小监测功率。若这一功率是Pmin,则得到最大可探测距离为
Rmax22PGtt(m)3(4)Pmin1/44信号处理技术能够有效降低最小可检测信号,从而增加了可测量距离。
2雷达的基本参数[3]
2.1分辨率
分辨率可严格定义为分辨具有不同对比度的相隔一定距离的相邻目标的能力。一般习惯使用一个不太精确的定义,既对微波系统来说,分辨率通常是指测量系统响应的半功率宽度。2.2角度分辨
毫米波雷达及辐射计通常都采用窄波束天线来提高角度分辨率。角度分辨一般采用半功率点的波束宽度来表示。其半功率点的波束宽度可表示为
hKh
DKh—取决于天线类型和加权函数的系数;—波长;D—天线口径。
2.3距离分辨
大多数雷达都采用距离分辨概念。距离的分辨率由测量信号从雷达发至目标,并返回雷达所需的这一有限时间间隔决定。
当忽略大气对微波传播速度的影响(一般只有十万分之几的数量级),电波从雷达传播到目标往返引起的时间延迟,就是电波传播从雷达到目标的两倍距离的时间,可由下
第三篇:雷达总结
雷达气象学是一门与大气探测、大气物理,天气系统探测相关联的学科
Radar:通过无线电技术对目标物的探测和定位。测定目标位置的无线电技术范畴 气象雷达:是用于探测气象要素和各种天气现象的雷达,“千里眼、顺风耳”。
雷达气象学:利用气象雷达,进行大气探测和研究雷达波与大气相互作用的学科,它是大气物理学、大气探测和天气学共同研究的一个分支。雷达气象学在突发性、灾害性天气的监测、预报和警报中具有极为重要的作用。气象雷达的分类:探空雷达、测雨雷达、声雷达、多普勒雷达、激光雷达 南方:S波段为主,北方:C波段为主 雷达机的主要构成
RDA-雷达数据采集子系统 RPG-雷达产品生成子系统
PUP-主用户处理器子系统
其次包括:通讯子系统、附属安装设备 RDA 主要结构:天伺系统、发射机、接收机、信号处理器 定义:用户所使用的雷达数据的采集单元。
功能:产生和发射射频脉冲,接收目标物对这些脉冲的散射能量,并通过数字化形成基数据。雷达的硬件系统!
RDA的扫描方式:雷达在一次体积扫描中使用多少角度和时间。
RDA的天气模式:1.晴空模式:VCP11或VCP21
2.降水模式:VCP31或VCP32
新一代雷达:降水模式 VCP:雷达天线体扫模式
RPG(雷达产品生成系统)定义:(指令中心)由宽带通讯线路从RDA接收数字化的基本数据,对其进行处理和生成各种雷达数据产品,并将产品通过窄带通讯线路传给用户
功能:产品生成、产品分发、雷达控制台(UCP)PUP(主用户处理系统)
功能:获取、存贮和显示雷达数据产品。预报员通过这一界面获取所需要的雷达产品,并将它们以适当的形式显示在监视器上
用处:(1)产品请求(获取),(2)产品数据存贮和管理,(3)产品显示,(4)状态监视,(5)产品编辑注释。粒子对电磁波有散射,衰减,折射的作用
散射:当电磁波束在大气中传播,遇到空气介质或云滴、雨滴等悬浮粒子时,入射电磁波会从这些介质或粒子上向四面八方传播开来,这种现象称为散射现象。
主要物质:大气介质、云滴、水滴,气溶胶等。其它散射现象:光波、声波等 散射的类型:瑞利散射:d<<λ;米(Mie)散射:
d≈λ 瑞利散射
散射函数或方向函数 :
后向散射能量:雷达天线接收到的只是粒子散射中返回雷达方向(θ=π)的那一部分能量,这部分能量称为后向散射能量。瑞利散射性质
①粒子的散射能力与波长的四次方成反比。波长越短,散射越强。②粒子的散射能力与直径的6次方成正比。粒子半径越大,散射越强。
③粒子的前向散射和后向散射为最大,粒子无侧向散射。散射截面为纺锤形。散射截面或后向散射截面
定义:设有一个理想的散射体,其截面为σ,它能全部接收射到其上的电磁波能量,并全部均匀地向四周散射,该理想散射体散射回雷达天线处的电磁波能流密度,恰好等于同距离上实际散体返回雷达天线的电磁波能流密度,则该理想散射体的截面σ就是实际散射体的后向散射截面。
意义:用来表示粒子后向散射能力的强弱。后向散射截面越大,粒子的后向散射能力越强,在同样条件下,所产生的回波信号也越强。
反射率η:单位体积内全部降水粒子的雷达截面之和。反射率因子(Z): Z的不同取值,意味着不同天气状况。通常Z的取值从0dBz~70dBz,因此要求天气雷达必需有非常大的检测范围。新一代天气多普勒雷达的接收机动态范围是90~100dBz以内。
云、雨滴的散射:
雷达的波长越短,散射越强。若雷达的波长一定时,在满足瑞利散射的情况下,粒子半径越大,散射越强。电磁波衰减:电磁波能量沿传播路径减弱的现象,是散射和吸收两种作用的总和。
衰减原因:当电磁波投射到气体或云雨粒子上时,一部分能量被散射,一部分能量被吸收,转变为热能或其它形式的能量,从而使电磁波能量减弱。
雷达回波:当雷达波束投射到云、降水粒子上时,云、降水粒子就会发生散射现象。其中向后方散射的一部分散射波重新返回到雷达天线处,并在雷达显示器上显示出各种图像。
雷达气象方程:雷达回波强度不仅取决于雷达系统各参数的特性,而且和被测云、降水粒子的性质有关,还与雷达和被测目标之间的距离以及其间的大气状态有关。雷达气象方程就是根据所测定的回波强度去推断云、降水的物理状况,将雷达的作用距离与发射机、接收机、天线、目标和环境的种种特性联系起来的方程。普通雷达方程:
结论:雷达回波功率强弱取决于:Pt发射功率,G增益,雷达截面,R目标物距雷达站的距离
雷达气象方程的讨论:雷达气象方程:①雷达机各参数、②气象因子、③目标物和雷达机之间的距离 雷达机参数:①发射功率,②脉冲宽度和脉冲长度,③波瓣宽度,④天线增益等
发射功率:增加发射功率通常可以提高信噪比,从而增大最大探测距离。但最大探测距离还取决于脉冲重复频率,目标物最大高度,雷达架设高度,以及地球曲率等影响。
脉冲宽度Γ和脉冲长度h:当两者增加时,雷达脉冲在空间的体积增加,同一时间里被电磁波所照射到的降水粒子数量增多,所以回波接收功率增大,使一些弱的雨区等容易发现。缺点:1)雷达的距离分辨率变低2)雷达的盲区变大。
波束宽度θ: 水平波束宽度和垂直宽度愈大,天线发射的能量愈分散,入射能流密度将随距离增加而较快地减小,造成回波能量变弱。天线增益也随之增加。
天线增益G: 天线增益增加时,回波功率以平方的倍数增大,可提高雷达的探测能力。提高G,必须增大圆抛物面口径的几何面积,带来转动性能和抗风能力差的缺点。增大天线口径面积可以提高天线的增益和减小波束宽度,从而增大雷达的探测能力和探测的角分辨率
波长:雷达的最重要参数,云雨粒子对电磁波的散射能力和衰减能力,都与波长有密切关系。各气象因子的作用:1)目标物的后向散射特性。反映在因子
上
2)波束路径上各种粒子对雷达波的衰减作用。反映在因子
上
距离因子的影响:Pr与R平方成反比,气象目标随距离增加而减小,同样强度的降水出现在远距离处要比近距离处弱得多 大气折射:电磁波在大气中曲线传播的现象
大气折射类型:标准大气折射、临界折射、超折射、零折射、负折射
大气折射对探测的影响:由于大气折射指数分布不均匀性,会使电磁波在传播中发生折射现象
超折射:当波束路径曲率大于地球表面的曲率时,雷达波束在传播时将碰到地面,经地面反射后继续向前传播。然后再弯曲到地面,再经地面反射,重复多次,雷达波束在地面和某层大气之间,依靠地面的反射向前传播,与波导管中的微波传播相似,又称超折射
超折射形成的气象条件:超折射是因为大气中折射指数m随高度迅速减小造成。折射指数随高度迅速减小,必须是气温向上递增,同时水汽压向上迅速递减,就是常说”暖干盖”的大气层结。雨后晴朗的夜间:由于地面辐射,形成上干下湿的逆温层,发生超折射
测距原理:物理基础:目标散射,电磁波等速直线传播。多普勒频率(频移):当目标物与雷达之间存在相对运动时,接收到回波信号的频率相对于原来的发射的频率产生一个频率偏移,在物理学上称之为多普勒频移。
径向速度:物体(目标)在观察者视线方向的速度。
距离折叠:是指雷达对雷达回波的一种辨认错误,当目标位于最大不模糊距离以外时,会发生距离折叠,雷达显示回波位置的方位角是正确的,但是距离是错误的。
多普勒两难:对于实际工作的雷达,波长是固定的,当选定了最大不模糊距离(或脉冲重复频率)后,就存在一个最大不模糊速度。即当目标的径向速度大于最大不模糊速度时,就会产生混淆。由雷达测得的径向速度将相差两倍最大不模糊速度。2
当最大不模糊速度较小时,会产生多次速度折叠。
显示方式: PPI:平面扫描、RHI:垂直扫描、VOL:体积扫描显示、CAPPI:等高平面位置显示、VCS:任意垂直剖面、局部多层CAPPI显示、、垂直最大回波显示CR、等值线图显示
等速度线:径向速度相同的点构成的线。零速度线是由雷达径向速度为零的点组成 零径向速度:某点的径向速度为零。
1)该点处的真实风向与该点相对于雷达的径向互相垂直 2)该点的真实风速为零,在那里的大气运动极小或处于静止状态
零径向速度意义:零等速点的风向是由邻近的负速度区,垂直于该等速度点吹向正速度区。地物回波:是指由山地及其上面的各种建筑物等对电磁波的散射产生的回波。晴空回波:云很稀薄或没有云雨的晴空大气里,或在不可能被探测到的小粒子所组成的云区内探测到的回波 超折射回波:当大气状况为超折射时,雷达回波会出现平常探测不到的远距离地物回波,就是超折射回波 旁瓣假回波:雷达沿主波瓣传输电磁波,主波瓣典型宽度为1º,当旁瓣发射出的电磁波在近距离遇到一些特别强的降水中心时,也能产生雷达接收到的回波。一般情况下,旁瓣产生的回波太弱,不易分辨出来。但是当遇上反射率因子极高的目标物(如积雨云中柱状的冰雹和暴雨)时就能够出现旁瓣回波 二次回波:由于距离折叠或者多层回波,当目标物位于最大不模糊距离之外时,就会产生距离折叠,而出现二次回波
三体散射:由于雷达能量在强回波区向前散射而形成的异常回波。因为强回波区一部分能量被散射到雷达,一部分能量散射回地面,其中散射到地面的能量又返回到含冰雹的强反射率因子区,强反射率因子区再次反射回雷达而形成。
层状云降水:又称稳定性降水或连续性降水。特点:水平尺度较大、持续时间较长,强度较均匀,时间变化缓慢。
层状云降水回波: PPI:呈均匀连续的大面积薄膜状,片状,丝缕状结构明显,强度弱,一般在20~30dBz,边缘不整齐,有时有强雨中心。(零度层亮带)
RHI:云体厚度较小,回波高度约5-6km,顶部和底部平坦,结构较均匀。
零度层亮带:是层状云降水回波的主要特征,是冰水混合层,反映了层状云中有明显的冰水转化区。零度层以上的降水粒子以冰晶为主,通过亮带后,全部转化为水滴。亮带说明层状云气流稳定,无明显对流活动。积状云:或称对流云,是由对流运动所产生的,通常与短时强烈天气相配合。
积云降水回波强度特征:PPI:表现为几km到几十km不规则分散、孤立块状。回波通常由单个或多个对流单体形成的回波组成。回波呈块状,尺度小,结构密实,边缘清晰,强度较强(35dBz以上),持续时间变化大。强中心到外围的强度梯度较大,随不同的天气过程排列成带状、条状、离散状等。
RHI:单体呈柱状结构,垂直伸展大于水平伸展,强对流单体顶部有云砧向下风方伸展或呈花菜状,悬垂中空,云体随对流发展变厚。回波顶发展较高,多数在6-7km,一些发展强烈的单体可达10km,个别可达20km。
穹隆:由雷暴前方的强烈斜上升气流深入云体,形成回波图像中的弱回波区。云体上冲:由上升气流引起的。积层混合云降水的天气特点:范围大,降水持续时间长,累积降水量大,往往造成大面积的强降水。
积层混合云降水回波:PPI:又称为絮状回波,比较大的范围内,回波边缘呈现支离破,没有明显的边界,边缘紊乱,层状云回波中镶嵌着一个个密实团块的对流云,强度可达40dBz或以上,有时强回波团块整齐排列可形成一条短带。
RHI:表现在均匀的层状云高度上柱状回波起伏地镶嵌在其中。在对流云衰败阶段,柱状回波与层状云回波合在一起。雷达产品:
1.基本数据产品:反射率因子(R)平均径向速度(V)谱宽产品(W)2.物理量产品:
强度物理量产品:回波顶高(ET)垂直累积含水量(VIL)时段雨量累积(OHP、THP)雨强显示(RZ)
速度物理量产品:垂直风廓线产品(VWP)合成切变(CS)径向散度(RVD)或称速度径向切变、方位涡度(ARD)谱宽物理量产品
3.反演识别产品:(1)阵风锋;下击暴流;
(2)中尺度气旋;龙卷涡旋;
(3)风暴;冰雹自动识别等;(4)风暴自动识别、跟踪、预报和预报检验。3
第四篇:系统建模和计算机仿真课程总结
系统建模和计算机仿真课程总结
第一章
1.系统:按照某些规律结合起来,互相作用、互相依存的所有实体的集合或总和。
模型:真实对象、对象间关系的特性抽象,描述某些系统本质。仿真:通过对模型的实验以达到研究系统这个目的。
2.同态:系统与模型在行为级上等价。同构:系统与模型在结构级上等价。
黑箱:可观测输入、输出值,但不知内部结构的系统(通过输入和输出推断其内部结构)
白箱:已知内部结构的系统(灰箱:介于黑箱和白箱之间)3.演绎:应用先验理论,补充假设和推理,通过数学逻辑演绎建模,是一个从一般(抽象)到特殊(具体)的过程。
归纳:从系统的行为级开始,逐步获得系统结构级的描述。是一个从特殊(具体)到一般(抽象)的过程。推理结果往往不是唯一解。4.面向对象仿真:从人类认识世界模式出发,使问题空间和求解空间一致,提供更自然直观、可维护、可重用的系统仿真框架。
定性仿真:力求非数字化,以非数字手段处理信息输入、建模、行为分析和结构输出,通过定性模型推导系统定性行为描述。
智能仿真:力求非数字化,以非数字手段处理信息输入、建模、行为分析和结构输出,通过定性模型推导系统定性行为描述。
可视化仿真:用于为仿真过程及结果增加文本提示、图形、图像、动画表现,使仿真过程更加直观,并能验证仿真过程是否正确。虚拟现实仿真:由计算机全部或部分生成的多维感觉环境,给参与者产生各种感官信号,若视觉、听觉、触觉等,使参与者身临其境。第二章
1.系统建模原则:
(1)可分离原则:系统中的实体不同程度上均相互关联,结合建模目标合理忽略某些关联。依赖于系统环境的界定、系统因素的提炼即约束条件与外部条件的设定。
(2)合理假设原则:任何模型的建立均应基于某些合理的假设,以简
化模型,有利于仿真的实现。
(3)因果性原则:系统的输入和输出满足函数映射关系。(4)可测量、选择原则:输入量和输出量可量化。2.系统模型分类:(1)根据模型的时间集合
连续时间模型:时间用实数表示,系统的状态可以在任意时刻点获得。离散时间模型:时间用整数表示,系统的状态可以在离散的时刻点上获得,所谓整数时间指的是单位时间的整数倍。(2)根据模型的状态变量
连续变化模型:系统中的状态变量随时间连续变化。
离散变化模型:系统中的状态变量不连续变化,即在某一时刻到下一时刻之间的时间内,系统状态不发生变化。(3)其他分类
确定性模型和随机性模型:输入确定,输出确定/不确定。白箱模型、灰箱模型和黑箱模型。3.排队规则:
先到先服务(FIFO):按照到达次序接受服务。后到先服务(LIFO):按照到达次序的相反次序接受服务。随机服务(SIRO):从等待的客户中随机选择客户进行服务。优先权服务(PR):等待的客户具有不同的优先权,给优先权高的客户先提供服务。最短处理时间先服务(SPT):选择需要服务时间最短的客户提供服务。4.层次分析法的基本步骤
(1)建立层次结构模型,该结构图包括目标层,准则层,方案层。(2)构造成对比较矩阵,从第二层开始用成对比较矩阵和1~9尺度。(3)计算单排序权向量并做一致性检验(对每个成对比较矩阵计算最大特征值及其对应的特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量;若不通过,需要重新构造成对比较矩阵)。
(4)计算总排序权向量并做一致性检验,计算最下层对最上层总排序的权向量。
利用总排序一致性比率进行检验。若通过,则可按照总排序权向量表
示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较矩阵。
5.图解建模法、最小二乘法、层次分析法(AHP)、随机数生成的例题详解
例题1:线性拟合
建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值与拟合公式计算值
Yia0a的差值1xiYiYˆ的平方和i(YiYˆi)2最小为“优化判据”。
令(YiYˆi)2则(Yˆia0a1xi)2 ˆa(Yi0a1xi)22(Yˆia0ax)2(aaxYˆ)a0a1i01ii0(Yˆia0a1xi)22ˆaax)x2a(Yi01ii(a0a1xiYˆi)xi1a1 推导出:
na0a1(xi)Yˆiax20(xi)a1i(xiYˆi)a0(Yˆi)/na1(xi)/n0.15an(1xiYˆi)(xiYˆi)nx220.859i(xi)y0.150.859x
例题2:随机数 线性同余发生器
x(modm)axaxii1axii[m]ma,m选取规则
○
1随机数序列周期为m/4,依照所要产生的随机数规模确定m ○2证m是2的指数幂 ○3p为机器字长,k为任意整数,a取最接近2p/2且满足a=8k+3或a=8k-3 问:生一个15000个数的随机序列,m与a该如何取值?
m接近60000,取m=216=65536,机器字长为16位。2p/2=28=256;K=32时,259/253最接近256;xi+1=259xi-[259xi/65536]*65536;x0=10;x1=259*10-[259*10/65536]*65536=2590;x2=259*2590-[259*2590/65536]*65536=15450。例3:层次分析法(AHP)
Step1 将判断矩阵的每一列元素做归一化处理:
nbijbij/bkj.........(i,j1,2,...,n)k1Step2 将归一化的判断矩阵按行相加:nwibij.........(i1,2,...,n)j1Step3 对向量wi(w1,w2,...,wn)T归一化
:nwiwi/wj.........(i1,2,...,n)
j1(Step4 计算,作为最大特征根的近似值。)
练习:
可以将此例中的7 名专家分为3 类: A1 = { 1,4,6},A2 = { 3,7,5},A3 = { 2}
第三章
1.集中参数系统模型的数值实现(单步法、欧拉法、梯形法、龙格-库塔法)
欧拉法:ytn1n1ytnttft,ydtytnftn,ytnnytnhytnhytn
梯形法:ythn1ytn2ftn,ynftn1,yn1
例:龙格—库塔法
基本思想:以几个点上函数y(t)的一阶导函数值的线性组合来近似替代y(t)在某点的各阶导数,再用泰勒级数展开式确定线性组合中的各加权
系数。
ri1y(th)y(t)hbikikif(tcih,y(t)hkj)i1,2,,rc10i1ajj1y(th)y(t)hy(t)1h2y(t)1r!hry(r)(t)o(hr12!)r1y(th)y(t)b1hf(t,y)r2y(th)y(t)h2(k1k2)k1f(t,y)r4y(th)y(t)h6(k1k2k3k4)kf(t,y)khhhh12f(t2,y2k1)k3f(t2,y2k2)k4f(th,yhk3)2.分布参数系统模型的数值实现(偏微分方程的求解)
人口控制问题
定义一个地区在t时刻所有年龄小于r岁的人口总数为人口函数F(r,t),地区在t时刻的人口总数为N(t),人类所能活的最高年龄位rm,则有:F(0,t)0F(rm,t)N(t)
假设:F(r,t)是r,t的连续函数,且一阶偏导数也连续。p(r,t)Fr0F(r,t)r0p(,t)dF(0,t)r0p(,t)drrm时,F(r,t)N(t),所以p(rm,t)0
3.考虑一维热传导方程:
uta2ux2f(x),0tT(1.1)其中a是正常数,f(x)是给定的连续函数。现在考虑第二类初边值问题的差分逼近: 初始条件:u(x,0)(x),0xl(1.2)
边值条件:u(0,t)(t),u(l,t)(t),0tT(1.3)
假设f(x)和(x)在相应区域光滑,并且在x0,l满足相容条件,使上述问题有惟一充分光滑的解。
用向前差分格式计算如下热传导方程的初边值问题
ua2u20,(a0是常数),u(t,0)xx1x,0x1,u(0,t)1,u(1,t)0,t0,已知其精确解为u(x,t)=1-x.第四章
1.仿真时钟:表示仿真时间的变化,时间间隔称为仿真步长。x11
2.Petri网建模内容 ln[1F(x)]ln[1u]1lnu第五章
(3)取舍法:从许多均匀分布的随机数中选出一部分,使其具有给定1.随机变量:符合一定概率密度函数的变量。
分布的随机变量,它可用于产生任意有界的随机变量。
基本思路:产生[0,1]区间上均匀分布的随机数,再转换为正态分布、泊松分布、几何分布等。cg(x)dxf(x)1r(x)g(x)/c
2.随机数发生器设计
例:求
(4,3)分布的随机变量。(4,3)分布的密度函数是
(1)线性同余法Zi(aZi1c)(modm)ma,mc,Z0m
定理
f(x)60x3(1x2),0x1
0,其他○
1当且仅当下列三个条件满足后,线性同余发生器具有满周期;(4)组合法:当分布函数可以表示成若干个其他分布函数之和,而这○
2能够同时整除m和c的正整数只有1; 些分布函数较原来的分布函数更易求得其随机变量时,可以采用组合○
3如果q是整除m的素数(即q只能被自身及1整除), 则q能整除(a-1); 法。将欲生成的随机变量服从的分布函数拆分为其他分布函数的凸组○
4如果m能被4整除,则(a-1)也能被4整除。合,先产生其他分布函数的随机变量,再产生目标随机变量。
(2)逆变法:获得随机变量的概率分布函数的反函数,从而反推随机kkF(x)变量本身。
pjFj(x)f(x)fj(x)pj0,j1pjj1kp
j1j1P(Yy)P(F1(U)y)P(UF(y))F(y)P(xy)例:设存在一个分布,其密度函数为f(x)0.5e|x|,产生服从该分
布的随机变量x。
例:求服从指数分布的随机数x。
f(x)ex(x0)
f(x)0.5exI1,xA(,0)(x)0.5exI(0,)(x)IA(x)
x0,其他F(x)exdx1ex0(x0)
第五篇:系统仿真实习报告
系统仿真实习报告
一 FLEXSIM软件简介
Flexsim是一个强有力的分析工具,可帮助工程师和设计人员在系统设计和运作中做出智能决策。采用Flexsim,可以建立一个真实系统的3D计算机模型,然后用比在真实系统上更短的时间或者更低的成本来研究系统。
Flexsim是一个通用工具,已被用来对若干不同行业中的不同系统进行建模。Flexsim已被大小不同的企业成功地运用。使用Flexsim可解决的3个基本问题)服务问题要求以最低可能成本在适当的时间制造适当产品。
3)物流问题-要求以最低可能成本在适当的时间,适当的地点,获得适当的产品。二 实验内容及目的在这一个实验中,我们将研究三种产品离开一个生产线进行检验的过程。有三种不同类型的临时实体将按照正态分布间隔到达。临时实体的类型在类型1、2、3三个类型之间均匀分布。当临时实体到达时,它们将进入暂存区并等待检验。有三个检验台用来检验。一个用于检验类型1,另一个检验类型2,第三个检验类型3。检验后的临时实体放到输送机上。在输送机终端再被送到吸收器中,从而退出模型。本实验的目的是学习以下内容:
如何建立一个简单布局
如何连接端口来安排临时实体的路径
如何在Flexsim实体中输入数据和细节
如何编译模型
如何操纵动画演示
如何查看每个Flexsim实体的简单统计数据 三 Flexsim软件概念学习
在开始建立此模型前,先来理解一些本软件的基本术语将会有帮助。
1、Flexsim实体:Flexsim实体模拟仿真中不同类型的资源。暂存区实体就是一个例子,它扮演储存和缓冲区的角色。暂存区可以代表一队人、CPU上一个空闲过程的队列、工厂中地面上的一个储存区或客户服务中心的一队等待的呼叫等等。另一个Flexsim实体例子是处理器实体,它模拟一段延迟或一个处理过程的时间。这个实体可以代表工厂中的一台机器、一个正在给客户服务的银行出纳员、一个邮政分检员,等等。Flexsim实体放在对象库栅格中。对栅格进行了分组管理,默认显示最常用的实体。
2、临时实体:临时实体是流经模型的实体。临时实体可以表示工件、托盘、装配件、文件、集装箱、电话呼叫、订单或任何移动通过仿真过程的对象。临时实体可以被加工处理,也可以由物料处理设备传输通过模型。在Flexsim中,临时实体由发生器产生,在流经模型之后被送到吸收器中。
3、临时实体类型:临时实体类型是一个放在临时实体上的标志,它可以代表条形码号、产品类型或工件号等等。在临时实体寻径中,Flexsim使用实体类型作为引用。
4、端口:每个Flexsim实体的端口数没有限制,通过端口它们可以与其它的实体通信。有三种端口类型:输入端口、输出端口和中间端口。输入和输出端口用于临时实体的寻径。例如,一个邮件分拣员依靠包裹上的目的地把包裹分放到几个输送机中的一个上面。为了在Flexsim中进行仿真,连接处理器实体上的输出端口到几个输送机实体的输入端口,这意味着当一个处理器(或邮件分拣员)完成临时实体(包裹)的处理后,就通过它的一个输出端口将其发送到一个特定的输送机上。中间端口用来建立从一个实体到另一个实体的引用。中间端口的一个惯常用法是引用可移动实体,如从设备、暂存区或输送机等引用操作员、叉车、或者起重机。
5、模型视图:: Flexsim 应用3D建模环境。建模时默认的模型视图叫做正投影视图。你也可以在一个更真实的透视视图中查看模型。尽管透视视图表达的更真实,但是通常在正投影视图中更容易建立模型布局。当然,任一视图都可以用来建立和运行模型。Flexsim允许根据需要打开多个视图视窗。不过请记住,当打开多个视窗时会增加对计算机资源的需求。
6、实体属性
每个Flexsim实体的属性都是相同的。在属性中有4个分页:视景、常规、标签和统计。每个分页包含所选的Flexsim实体的附属信息。
(1)常规属性:常规属性分页包含实体的常用信息,如名称、类型、位置、端口连接、显示标记和使用者描述
(2)视景属性:视景分页允许建模人员指定视觉特性,如3D形状、2D形状、3D纹理、颜色、位置、尺寸、转角和用户绘图代码。位置、尺寸和转角反映实体的当前属性。建模人员可在相关字段中修改这些属性值,也可以在模型界面视窗中用鼠标来改变这些属性。
(3)标签属性:标签分页显示用户定义的给实体指定的标签。标签是建模人员用来存放临时数据的一种机制。一个标签有两部分,名称和标签值。名称可以任意命名,标签值可以是数字或文字数字(包含文字和数字的字符串)。如需添加一个纯数字标签,点击底部的 “添加数字标签”按钮。同样地,如果需要一个标签保存数字和字母,则点击“添加字符串标签”按钮。然后可用该表修改此标签的名称和标签值。也可以在模型运行中动态地更新、创建或删除标签。此分页将显示所有标签和它们的当前值。所有信息在模型运行中实时显示。这些信息对建模人员测试逻辑、调试模型很有帮助。
(4)统计属性:统计分页显示实体上收集到的默认统计信息。此信息在模型运行中动态地更新显示。当选择此分页时,将出现4个附属分页。
(5)统计常规属性:显示实体的当前数量、停留时间、状态和吞吐量等基于时间的统计结果。“设置”选项允许用户确定显示在当前数量和停留时间图表中的数据个数。
(6)统计状态属性:状态属性图表显示实体的各种状态占总时间的百分比。状态图表在模型运行中动态地更新。也可选择常规属性统计分页中的图表按钮,即可显示带有图表视图的独立视窗。
(7)统计当前数量属性:当前数量属性图表显示实体当前数量随时间的变化。要生成此图表需打开 “统计收集”。当前容量图表在模型运行中被动态更新。从常规属性统计分页中选择图表按钮,将显示带有此图表视图的独立视窗。
(8)统计停留时间属性:停留时间属性图表显示一个临时实体停留时间的柱状图。要生成此柱状图需打开 “统计收集”。
7、实体参数
实体的参数根据所选的实体不同将稍有区别。由于每个实体在模型中都有特定的功能,因此必须使参数个性化以允许建模人员能够尽可能灵活地应用这些实体。所有实体的有些分页是相似的,而另一些分页对该实体则是非常特殊的。关于每个实体所有参数的特定定义可参见Flexsim实体库。双击一个实体可访问该实体的参数。四
建模步骤
建立第一个模型
步骤1:从库里拖出一个发生器放到正投影视图中
步骤2:把其余的实体拖到正投影视图视窗中,步骤3:连接端口
步骤4:指定到达速率
步骤5:设定临时实体类型和颜色 步骤6:设定暂存区容量
步骤7:为暂存区指定临时实体流选项 步骤8:为处理器指定操作时间 步骤9:编译
步骤10:重置模型 步骤11:运行模型 步骤12:模型导航
步骤13:查看简单统计数据 步骤14:保存模型 建立模型2 请首先装载前一课建立的模型1,然后开始建立模型2。步骤1:装载模型1并编译
步骤2:向模型中添加一个分配器和两个操作员 步骤3:连接中间和输入/输出端口
步骤4:编辑暂存区临时实体流设置使用操作员 步骤5: 编译、保存模型,和测试运行 步骤6:为检测器的预置时刻配置操作员 步骤7:断开输送机到吸收器的端口间连接 步骤8:添加运输机
步骤9: 调整暂存区的临时实体流参数来使用叉车 步骤10:运行模型 步骤11:输出分析 建立模型 2 进阶
要开始建立进阶模型2,需要从上一课中装载模型2。步骤1:装载模型2并编译
步骤2:将模型另存为“Model 2 Extra Mile”,并打开统计收集选项
步骤3:添加一个记录器来显示暂存区的当前数量
步骤4:调整记录器的参数来显示暂存区的满意的曲线图 步骤5:设定记录器的显示选项 步骤6:调整图形的视景属性
步骤7:添加一个记录器来显示暂存区的停留时间柱状图 步骤8:为每个操作员添加一个状态饼图 步骤9:给模型添加3D文本
步骤10:编译、重置、保存和运行