第一篇:二级减速器 课程设计 轴的设计
轴的设计
图1传动系统的总轮廓图
一、轴的材料选择及最小直径估算
根据工作条件,小齿轮的直径较小(选用45钢,正火,硬度HB=
。),采用齿轮轴结构,按扭转强度法进行最小直径估算,即
直径轴段开有键槽,还要考虑键槽对轴的强度影响。
值由表26—3确定:
1、高速轴最小直径的确定
=112
初算轴径,若最小由轴器,设有一个键槽。则,因高速轴最小直径处安装联,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不得相差太大,否则难以选择合适的联轴器,取,为电动机轴直径,由前以选电动机查表6-166:,综合考虑各因素,取
2、中间轴最小直径的确定
。,因中间轴最小直径处安装滚动轴承,取为标准值
3、低速轴最小直径的确定
。,因低速轴最小直径处安装联轴器,设有一键槽,则见联轴器的选择,查表6-96,就近取联轴器孔径的标准值,参。
二、轴的结构设计
1、高速轴的结构设计
图2(1)、各轴段的直径的确定
:最小直径,安装联轴器
:密封处轴段,根据联轴器轴向定位要求,以及密封圈的标准查表6-85(采用毡圈密封),:滚动轴承处轴段,:过渡轴段,取 :滚动轴承处轴段,滚动轴承选取30208。(2)、各轴段长度的确定
:由联轴器长度查表6-96得,取
:由箱体结构、轴承端盖、装配关系确定 :由滚动轴承确定
:由装配关系及箱体结构等确定 :由滚动轴承、挡油盘及装配关系确定 :由小齿轮宽度
2、中间轴的结构设计
确定,取
图3(1)、各轴段的直径的确定 :最小直径,滚动轴承处轴段,:低速级小齿轮轴段,滚动轴承选30206 :轴环,根据齿轮的轴向定位要求 :高速级大齿轮轴段 :滚动轴承处轴段(2)、各轴段长度的确定 :由滚动轴承、装配关系确定 :由低速级小齿轮的毂孔宽度:轴环宽度
确定
确定
:由高速级大齿轮的毂孔宽度 :由滚动轴承、挡油盘及装配关系等确定
3、低速轴的结构设计
图4(1)、各轴段的直径的确定 :滚动轴承处轴段 :低速级大齿轮轴段,滚动轴承选取30210
:轴环,根据齿轮的轴向定位要求 :过渡轴段,考虑挡油盘的轴向定位 :滚动轴承处轴段
:密封处轴段,根据联轴器的轴向定位要求,以及密封圈的标准(采用毡圈密封)
:最小直径,安装联轴器的外伸轴段(2)、各轴段长度的确定
:由滚动轴承、挡油盘及装配关系确定 :由低速级大齿轮的毂孔宽:轴环宽度
确定
:由装配关系、箱体结构确定 :由滚动轴承、挡油盘及装配关系确定
:由箱体结构、轴承端盖、装配关系确定 :由联轴器的毂孔宽
确定
轴的校核
一、校核高速轴
1、轴上力的作用点位置和支点跨距的确定
齿轮对轴的力作用点按简化原则应在齿轮宽度的中点,轴上安装的30208轴承,从表6-67可知它的负荷作用中心到轴承外端面的距离为,支点跨距速级小齿轮作用点到右支点,距B,高的距离为A
为
图5
2、计算轴上的作用力
如图4—1,求
:
;
3、计算支反力并绘制转矩、弯矩图(1)、垂直面
图6
;
图7(2)、水平面
图8
; ;
;
图9(3)、求支反力,作轴的合成弯矩图、转矩图
图10
1轴的弯矩图
图11
1轴的转矩图
(4)、按弯扭合成应力校核轴的强度
进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面C)的强度,因为是单向回转轴,所以扭转应力视为脉动循环应力,折算系数。
已选定轴的材料为45钢正火处理,由表26-4查得因此,严重富裕。,二、校核中间轴
1、轴上力的作用点位置和支点跨距的确定
轴上安装30206轴承,它的负荷作用中心到轴承外端面距离为,跨距,高速级大齿轮的力作用点C到左支点A的距离,低速级小齿轮的力作用点D到右支点B的距离用点之间的距离轴的受力简图为:。
。两齿轮力作
图12
2、计算轴上作用力
齿轮2:
;
齿轮3:;
3、计算支反力
(1)、垂直面支反力
图13 由,得
由,得
由轴上合力校核:,计算无误
(2)、水平面支反力
图14 由,得
由,得
由轴上合力校核:,计算无误
(3)、总支反力为
(4)、绘制转矩、弯矩图
a、垂直面内弯矩图 C处弯矩
D处弯矩
图15
b、水平面内弯矩图 C处弯矩
D处弯矩
图16 c、合成弯矩图
图17 d、转矩图
图18(5)、弯扭合成校核
进行校核时,通常只校核轴上承受最大弯矩和转矩的截面(即截面D)的强度。去折算系数为
已选定轴的材料为45钢正火处理,由表26-4查得。,因此
三、校核低速轴
1、轴上力的作用点位置和支点跨距的确定
齿轮对轴的力作用点按简化原则应在齿轮宽度的中点,轴上安装的30210轴承,从表12—6可知它的负荷作用中心到轴承外端面的距离为,支点跨距,低速级大齿轮作用点到右支点B的距离为A为,距
图19
2、计算轴上的作用力
如图4—15,求
: ;
3、计算支反力并绘制转矩、弯矩图(1)、垂直面
图20
;
图21(2)、水平面
图22
; ;
;
图23(3)、求支反力,作轴的合成弯矩图、转矩图
图24
图25(4)、按弯扭合成应力校核轴的强度
校核危险截面C的强度,因为是单向回转轴,所以扭转应力视为脉动循环应力,折算系数。
已选定轴的材料为45钢正火处理,由表26-4查得因此,强度足够。,则传动系统轮廓图为
图26
第二篇:二级减速器课程设计
目 录
一.设计任务书……………………………………………………1 二.传动方案的拟定及说明………………………………………3 三.电动机的选择…………………………………………………3 四.计算传动装置的运动和动力参数……………………………4 五.传动件的设计计算……………………………………………5 六.轴的设计计算…………………………………………………14 七.滚动轴承的选择及计算………………………………………26 八.箱体内键联接的选择及校核计算……………………………27 九.连轴器的选择…………………………………………………27 十.箱体的结构设计………………………………………………29
十一、减速器附件的选择……………………………………………30
十二、润滑与密封……………………………………………………31
十三、设计小结………………………………………………………32
十四、参考资料………………………………………………………33
第三篇:二级减速器的课程设计
二级减速器的课程设计 减速器, 课程, 设计
第一章 二级斜齿轮减速器结构及其计算
3.1 设计任务
设计带式运输机的减速传动装置;
(1)已知条件:运输带工作拉力F=5100N,运输带工作速度V=1.1m/s,卷筒直径D=350mm.(2)传动装置简图,如下:
图 3-3.1
(3)相关情况说明
工作条件:一班制连续单向运转,载荷平稳,室内工作有粉尘;
使用寿命:十年(大修期三年);
生产条件:中等规模机械厂,可加工7-8级精度齿轮。
动力来源:电力,三相交流(220/380V);
运输带速度允许误差 5%。3.2传统方法设计设计过程
1.总体传动方案
初步确定传动系统总体方案如图3-3.1所示。二级圆柱斜齿轮减速器(展开式)。传动装置的总效率ηa
=0.972×0.983×0.99×0.98=0.86;
η =0.97为齿轮的效率(齿轮为8级精度),η =0.98为轴承的效率(磙子轴承),η =0.99为弹性联轴器的效率,=0.98为刚性联轴器
2.电动机的选择
电动机所需工作功率为: P0=Pw/ηa=5.61/0.86=6.5kw 卷筒轴工作转速为n=60.02r/min,经查表按推荐的传动比合理范围,二级圆柱斜齿轮减速器传动比i =8~40,则总传动比合理范围为i =8~40,电动机转速的可选范围为n =i ×n=(8~40)×60.02=480~2400r/min。综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比,选定型号为Y160M—6的电动机,额定功率为7.5kW,额定电流17.0A,满载转速n =970 r/min,同步转速1000r/min。
3.传动装置的总传动比和传动比分配
(1)总传动比
由选定的电动机满载转速n 和工作机主动轴转速n,可得传动装置总传动比为i =n /n=
970/60.02=16.16(2)传动装置传动比分配 i=i =16.16为减速器的传动比。(3)分配减速器各级传动比
考虑润滑条件,为使两级大齿轮直径相近,查的i1=4.85,i2=i/i1=3.33
4.传动装置运动和动力参数的计算
(1)各轴转速
Ⅰ轴 nI=n =970r/min Ⅱ轴 nII=nI/ i1=200 r/min Ⅲ轴 nIII=nII/ i2=60.06 r/min
卷筒轴 nIV=nIII=60.06
(2)各轴输入功率
Ⅰ轴 PI=P0×η3=6.5×0.99=6.44 kW Ⅱ轴 PII=PI×η1×η2=6.44×0.97×0.98=6.12 kW Ⅲ轴 PIII=PII×η1×η2=6.12×0.97×0.98=5.82 kW 卷筒轴 PIV= PIII×η2× =5.82×0.98×0.98=5.59 kW
(3)各轴输入转矩
电动机轴输出转矩 T0=9550×P0/ n =63.99 N.m
Ⅰ轴 TI=T0×η3=63.35 N.m Ⅱ轴 TII=TI×i1×η1×η2=292.07 N.m Ⅲ轴 TIII=TII×i2×η1×η2=924.55 N.m
卷筒轴 TIV= TIII×η2× =887.94 N.m
5.齿轮的设计计算
(一)高速级齿轮传动的设计计算 1.齿轮材料,热处理及精度
考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮
(1)齿轮材料及热处理
小齿轮材料为45钢(调质),齿面硬度为240HBS,大齿轮材料为45钢(常化),齿面硬
度为200HBS,2.初步设计齿轮传动的主要尺寸
因为硬齿面齿轮传动,具有较强的齿面抗点蚀能力,故先按齿根弯曲疲劳强度设计,再校
核持面接触疲劳强度。
(1)计算小齿轮传递的转矩T1=63.35N•m
(2)确定齿数z 因为是硬齿面,故取z1=25,z2=i1 z1=4.85×25=121 传动比误差 i=u=z2/ z1=121/25=4.84 Δi=(4.85-4.84)/4.85=0.21% 5%,允许
(3)初选齿宽系数
按非对称布置,由表查得 =1
(4)初选螺旋角
初定螺旋角 =12(5)载荷系数K 载荷系数K=KA K V K K =1×1.17×1.4×1.37=2.24
(6)齿形系数Y 和应力修正系数Y 查得Y =2.58 Y =2.16 Y =1.599 Y =1.81
(7)重合度系数Y 端面重合度近似为 =1.69,重合度系数为Y =0.684
(8)螺旋角系数Y
纵向重合度系数 =1.690,Y =0.89
(9许用弯曲应力
安全系数由表查得S =1.25 工作寿命两班制,7年,每年工作300天
小齿轮应力循环次数N1=60nkt =60×271.47×1×7×300×2×8=5.473×10 大齿轮应力循环次数N2=N1/u=5.473×10 /6.316=0.866×10 查图得寿命系数 ,;实验齿轮的应力修正系数 ,查图取尺寸系数
许用弯曲应力
比较 , 取
(10)计算模数
按GB/T1357-1987圆整为标准模数,取
(11)初算主要尺寸 初算中心距 ,取a=355mm
修正螺旋角 分度圆直径 齿宽 ,取 , ,齿宽系数(12)验算载荷系数
圆周速度 查得 按,查得,又因,查图得,则K=1.6,又Y =0.930,Y =0.688。从而得
满足齿根弯曲疲劳强度。3.校核齿面接触疲劳强度(1)载荷系数,,(2)确定各系数 材料弹性系数 查表得 节点区域系数 查图得 重合度系数 查图得 螺旋角系数(3)许用接触应力 试验齿轮的齿面接触疲劳极限 , 寿命系数 查图得,;工作硬化系数 ;
安全系数 查表得 ;尺寸系数 查表得,则许用接触应力为:
取
(4)校核齿面接触强度,满足齿面接触疲劳强度的要求。
(二)低速级齿轮传动的设计计算 1.齿轮材料,热处理及精度
考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮
(1)齿轮材料及热处理
大小齿轮材料为45钢。调质后表面淬火,齿面硬度为40~50HRC。经查图,取 = =
1200MPa,= =370Mpa。
(2)齿轮精度
按GB/T10095-1998,选择6级,齿根喷丸强化。
2.初步设计齿轮传动的主要尺寸
因为硬齿面齿轮传动,具有较强的齿面抗点蚀能力,故先按齿根弯曲疲劳强度设计,再校
核持面接触疲劳强度。
(10)计算小齿轮传递的转矩 = kN•m
(11)确定齿数z 因为是硬齿面,故取z =33,z =i z =3.92×33=129 传动比误差 i=u=z / z =129/33=3,909
Δi= =0.28% 5%,允许(12)初选齿宽系数
按非对称布置,由表查得 =0.6
(13)初选螺旋角
初定螺旋角 =12(14)载荷系数K 使用系数K 工作机轻微冲击,原动机均匀平稳,所以查表得K =1.25 动载荷系数K 估计齿轮圆周速度v=0.443m/s 查图得K =1.01;齿向载荷分布系数K 预估齿宽b=80mm 查图得K =1.171,初取b/h=6,再查图得K =
1.14
齿间载荷分配系数 查表得K =K =1.1 载荷系数K=K K K K =1.25×1.01×1.1×1.14=1.58
(15)齿形系数Y 和应力修正系数Y 当量齿数 z =z /cos =19/ cos =35.26
z =z /cos =120/ cos =137.84 查图得Y =2.45 Y =2.15 Y =1.65 Y =1.83
(16)重合度系数Y 端面重合度近似为 =【1.88-3.2×()】cos =【1.88-3.2×(1/33+1/129)】×cos12
=1.72 =arctg(tg /cos)=arctg(tg20 /cos12)=20.41031
=11.26652 因为 = /cos,则重合度系数为Y =0.25+0.75 cos / =0.669
(17)螺旋角系数Y 轴向重合度 = =1.34,取为1
Y =1- =0.669(18)许用弯曲应力
安全系数由表查得S =1.25 工作寿命两班制,7年,每年工作300天
小齿轮应力循环次数N1=60nkt =60×43.09×1×7×300×2×8=8.687×10
大齿轮应力循环次数N2=N1/u=8.687×10 /3.909=2.22×10 查图得寿命系数 ,;实验齿轮的应力修正系数 ,查图取尺寸系数
许用弯曲应力
比较 , 取
(10)计算模数
按GB/T1357-1987圆整为标准模数,取
(11)初算主要尺寸
初算中心距 ,取a=500mm
修正螺旋角 分度圆直径 齿宽 ,取 , ,齿宽系数(12)验算载荷系数
圆周速度 查得 按,查得,又因,查图得,则K=1.611,又Y =0.887,Y =0.667。从而得
满足齿根弯曲疲劳强度。3.校核齿面接触疲劳强度(5)载荷系数,,(6)确定各系数 材料弹性系数 查表得 节点区域系数 查图得 重合度系数 查图得 螺旋角系数(7)许用接触应力 试验齿轮的齿面接触疲劳极限 寿命系数 查图得,;工作硬化系数 ;
安全系数 查表得 ;尺寸系数 查表得,则许用接触应力为:
取
(8)校核齿面接触强度,满足齿面接触疲劳强度的要求。二.具体二级齿轮减速器轴的方案设计
(1)高速轴I材料为20CrMnTi,经调质处理,硬度为241~286HBS,查得对称循环弯曲许用应力。按扭转强度计算,初步计算轴径,取
由于轴端开键槽,会削弱轴的强度,故需增大轴径5%~7%,取最小轴径
(2)轴II材料为45钢,经调质处理,硬度为217~255HBS,查得对称循环弯曲许用应力。
按扭转强度计算,初步计算轴径,取,取安装小齿轮处轴径
(3)轴III材料为40Cr,经调质处理,硬度为241~286HBS,查得对称循环弯曲许用应力。
按扭转强度计算,初步计算轴径,取
由于轴端开键槽,会削弱轴的强度,故需增大轴径5%~7%,取最小轴径
轴I,轴II,轴III的布置方案与具体尺寸分别如图2—8,图2—9,图2—10所示。
图2—8
图2—9
图2—10
第三节 轴承的选择及寿命计算
(一)第一对轴承 齿轮减速器高速级传递的转矩
具体受力情况见图3—1(1)轴I受力分析 齿轮的圆周力 齿轮的径向力 齿轮的轴向力(2)计算轴上的支反力 经计算得垂直面内
图3—1
水平面内(3)轴承的校核 初选轴承型号为32014 轻微冲击,查表得冲击载荷系数 ① 计算轴承A受的径向力
轴承B受的径向力 ②计算附加轴向力 查表得3000型轴承附加轴向力
则 轴承A,轴承B ③计算轴承所受轴向载荷
由于,即B轴承放松,A轴承压紧
由此得 ④计算当量载荷 轴承A e=0.43,则 , 轴承B e=0.43,则 ⑤轴承寿命 计算 因,按轴承B计算
(二)第二对轴承 齿轮减速器低速级传递的转矩
具体受力情况见图3—2(1)轴II受力分析 齿轮的圆周力 齿轮的径向力 齿轮的轴向力(2)计算轴上的支反力 经计算得垂直面内
水平面内(3)轴承的校核 初选轴承型号为32928 轻微冲击,查表得冲击载荷系数 ①计算轴承A受的径向力 轴承B受的径向力 ②计算附加轴向力 查表得3000型轴承附加轴向力
则 轴承A,轴承B ③计算轴承所受轴向载荷 由于,即B轴承放松,A轴承压紧
由此得 ④计算当量载荷 轴承A e=0.36,则 , 轴承B e=0.36,则
⑤轴承寿命 计算 因,按轴承A计算
图3—2
(三)第三对轴承 具体受力情况见图3—3(1)轴III受力分析 齿轮的圆周力 齿轮的径向力 齿轮的轴向力
(2)计算轴上的支反力 经计算得垂直面内
水平面内(3)轴承的校核 初选轴承型号为32938 轻微冲击,查表得冲击载荷系数 ①计算轴承A受的径向力 轴承B受的径向力 ②计算附加轴向力 查表得3000型轴承附加轴向力
则 轴承A,轴承B ③计算轴承所受轴向载荷,即B轴承放松,A轴承压紧由此得 ④计算当量载荷 轴承A e=0.48,则 , 轴承B e=0.48,则 ⑤轴承寿命 计算 因,按轴承B计算
图3—3
由于
试设计一带式输送机减速器的斜齿圆柱齿轮传动。已知输入功率P1=40kW,小齿轮转速n1=960r/min,齿数比u=3.2,由电动机驱动,工作寿命15年(设每年工作300天),两班制,带式输送机工作平稳,转向不变,试设计此传动。
[解]
1.选精度等级、材料及齿数
1)材料及热处理仍按直齿轮传动例题:大、小齿轮都选用硬齿面。由表1选得大、小齿轮的材料均为40Cr,并经调质及表面淬火,齿面硬度为48~55HRC;
2)精度等级仍选7级精度;
3)仍选小齿轮齿数z1=24,大齿轮齿数z2=77;
4)初选螺旋角β=14°
2.按齿面接触强度设计
齿面接触强度计算公式为:
1)确定公式内的各计算数值
(1)试选Kt=1.6。
(2)由图10查取区域系数ZH=2.433。
(3)由图8查得端面重合度
εα1=0.78,εα2=0.87,则 εα=εα1+εα2=1.65。
(4)许用接触应力 =1041.5 MPa。
2)计算
(1)试算小齿轮分度圆直径d1t
mm =60.49 mm
(2)计算圆周速度
(3)计算齿宽b及模数mnt
h=2.25 mnt=5.51mm b/h=9.88
(4)计算纵向重合度εβ
(5)计算载荷系数K
已知使用系数 =l。
根据v=3.04m/s,7级精度,由图5查得动载系数 =l.11;
由表4查得接触强度计算用的齿向载荷分布系数 =1.41; 由图6查得弯曲强度计算的齿向载荷分布系数 =1.37。
由表3查得齿间载荷分配系数 = =1.2。
故载荷系数
(6)按实际的载荷系数校正所算得的分度圆直径
(7)计算模数mn
3.按齿根弯曲强度设计
由式
1)确定计算参数
(1)计算载荷系数
(2)根据纵向重合度 =1.713,从图9查得螺旋角影响系数Yβ=0.8。
(3)计算当量齿数
(4)查取齿形系数
由表5查得YFa1=2.592;YFa2=2.2l1
(5)查取应力校正系数
由表5查得Ysa1=1.596;Ysa2=1.774
(6)计算大、小齿轮的 并加以比较
小齿轮的数值大。
2)设计计算
对比计算结果,由齿面接触疲劳强度计算的法向模数mn略大于由齿根弯曲疲劳强度计算的法向模数,按表12,取标准模数mn=2.5mm,可满足弯曲强度。为满足接触疲劳强度,按接触强度算得的分度圆直径d1=63.83mm,由
,取z1=25,则z2=uz1=80。
4.几何尺寸计算
1)计算中心距
将中心距圆整为135mm。
2)按圆整后的中心距修正螺旋角
因β改变不多,故参数εα,Kβ,ZH等不必修正。
3)计算大、小齿轮的分度圆直径
4)计算齿轮宽度
圆整后取B2=58mm;B1=63mm。
5.结构设计
以大齿轮为例。因齿轮齿顶圆直径>16Omm,而又小于5OOmm,故以选用腹板式结构为宜。其它有关尺寸按图11荐用的结构尺寸设计(尺寸计算从略),并绘制大齿轮零件图(从略)。
第四篇:二级减速器课程设计心得体会
导语:这是我第一次用汇编语言来设计一个小程序,历时一周终于完成,其间有不少感触。以下是小编整理二级减速器课程设计心得体会的资料,欢迎阅读参考。
首先就是借鉴.鲁迅先生曾说过要“拿来”,对,在这次课程设计中,就要“拿来”不少子程序,比如将ascii码转换成bcd码,将bcd码转换成压缩bcd码,将压缩bcd码转换成ascii码等,这些子程序的设计是固定的,因此可以直接从指导资料中调用,至于设置光标的子程序,只需要修改几个参数就可以,这大大方便了我的设计,为我节省了很多的时间。还有就是指导老师提供的资料很重要.这次课程设计的大部分程序,都可以在李老师提供的资料中找到,这对我的程序设计很有帮助,从这些资料中,我可以看出这个时钟程序的基本流程,修改一些程序就可以实现这个时钟的基本功能,添加一些程序就可以实现这个时钟的附加功能,可以说,如果没有李老师提供的源程序,我将面临很大的困难。
一、设计的目的和意义
ⅱ设计的目的:
1、熟悉巩固所学的理论知识与实践技能。
2、学习掌握工程初步设计的基本技能。
3、培养学生查阅技术资料的能力,培养学生综合运用所学理论知识和实践知识独立完成课题的工作能力。
ⅱ、设计的意义:
数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用。数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
因此,我们此次设计数字钟就是为了了解数字中的原理,从而学会制作数字钟。而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及使用方法。且由于数字钟包括组合逻辑电路和时序电路。通过它可以进一步学习和掌握各种组合逻辑电路和时序电路的原理与
二、设计原理
数字电子钟由信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、整点报时电路等组成。秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用555构成的振荡器加分频器来实现。将标准秒脉冲信号送入“秒计数器”,该计数器采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。“分计数器”也采用60进制计数器,每累计60分,发出一个“时脉冲”信号,该信号将被送到“时计数器”。“时计数器”采用24进制计数器,可以实现一天24h的累计。译码显示电路将“时、分、秒”计数器的输出状态经七段显示译码器译码,通过六位led显示器显示出来。整点报时电路是根据计时系统的输出状态产生一个脉冲信号,然后去触发音频发生器实现报时。校时电路是来对“时、分、秒”显示数字进行校对调整。
第五篇:机械设计课程设计展开式二级直齿圆柱齿轮减速器的轴的设计
7.1 输入轴的设计计算
1.求轴上的功率,转速和转矩
由前面算得Pr/min,T125.48Nm 12.74kw,n110252.求作用在齿轮上的力
已知高速级小齿轮的分度圆直径为:d170mm
Ft2T1225.4810005096Nd170
FrFttan5096Ntan20o1855N3.初步确定轴的最小直径
现初步估算轴的最小直径。选取轴的材料为45钢,调质处理。据[2]表15-3,取A0112,于是得:dminA03P115.54mm d1因为轴上应开键槽,所以轴径应增大5%得d16.317mm,又此段轴与大带轮装配,综合考虑两者要求取dmin25mm,查知带轮宽B75mm故此段轴长取73mm。
4.轴的结构设计
(1)拟定轴上零件的装配方案
通过分析比较,得出输入轴示意图
(2)据轴向定位的要求确定轴的各段直径和长度 1)第一段是与带轮连接的其d125mm l173mm
2)第二段用于安装轴承端盖,轴承端盖的e21mm(由减速器及轴的结构设计而定)。根据轴承端盖的拆卸及便于对轴承添加润滑油的要求,取端盖与第一段右端的距离为38mm。故取l260mm,因其右端面需制出一轴肩故取d230mm。
3)初选轴承,因为有轴向力故选用深沟球轴承,参照工作要求并据d230mm,查表初选6207号轴承,其尺寸为dDB35mm72mm17mm故d335mm,取l344mm。又右边采用轴肩定位取d448mm所以l475mm。
4)因为该轴是齿轮轴,故齿轮段轴径为d548mm,l550mm。齿轮左端与左轴承之间用套筒定位,已知齿轮宽度为50mm为使套筒端面可靠地压紧齿轮,此轴段应略短于齿轮宽度,且继续选用6207轴承,则此处故取d635mm,l643mm。
(3)轴上零件的周向定位
带轮与轴之间的定位采用平键连接。按
d125由表查得平键截面bh87键槽用键槽铣刀加工长为63mm。同时为了保证带轮与轴之间配合有
H7良好的对中性,故选择带轮与轴之间的配合为
n6(4)确定轴上圆角和倒角尺寸
参考[2]表15-2取轴端倒角为245.其他轴肩处圆倒角见图。7.2 中间轴的设计计算
1.求轴上的功率,转速和转矩
由前面的计算得P22.60kw,n2266.23r/min,T293.25Nm 2.求作用在齿轮上的力
已知中间轴大小齿轮的分度圆直径为 d2174mm,d368mm
Ft12T21071.84Nmd2
Fr1Ft1tan1071.84Ntan200390.12Nm 同理可解得: Ft22T22742.65Nmd3
Fr2Ft2tan2742.65Nmtan200998.24Nm 3.初步确定轴的最小直径
现初步估算轴的最小直径。选取轴的材料为45钢,调质处理.据[2]表15-3,取A0112,于是得:dminA03P223.934mm T2 因为轴上应开2个键槽,所以轴径应增大5% 故dmin25.13mm,又此段轴与轴承装配,故同时选取轴承,因为轴承上承受径向力,故选用深沟球轴承,参照工作条件可选6206号其尺寸为:dDB30mm62mm16mm故d130mm右端用套筒与齿轮定位,套筒长度取24mm所以l144mm。
4.轴的结构设计
(1)拟定轴上零件的装配方案
通过分析比较,得出中间轴示意图
(2)据轴向定位的要求确定轴的各段直径和长度
1)第二段为高速级大齿轮,由前面可知其宽度为45mm,为了使套筒端面与大齿轮可靠地压紧此轴段应略短于齿轮轮毂宽度。故取l240mm,d238mm。
2)第三段为大小齿轮的轴向定位,此段轴长度应由同轴条件计算得l36mm,d350mm。
3)第四段为低速级小齿轮的轴向定位,由其宽度为73mm可取l470mm,d438mm。
4)第五段为轴承同样选用深沟球轴承6206号,左端用套筒与齿轮定位,取套筒长度为24mm则 l544mm,d530mm。
(3)轴上零件的周向定位
两齿轮与轴之间的定位均采用平键连接。按d2由表查得平键bhL10832,按d4查得平键截面bhL10863其与轴的配合均为H7。轴承与轴之间的周向定位是用过渡配合实现的,此处选轴的直径尺寸公差n6为m6。
(4)确定轴上圆角和倒角尺寸
参考[2]表15-2取轴端倒角为245.个轴肩处圆倒角见图。7.3 输出轴的设计计算
1.求轴上的功率,转速和转矩
由前面算得P32.47kw,n395.42r/minT3247.32Nm 2.求作用在齿轮上的力
已知低速级大齿轮的分度圆直径为 d4190mm
Ft2T32603.37Nmd4
FrFttan200947.55Nm3.初步确定轴的最小直径
现初步估算轴的最小直径。选取轴的材料为45钢,调质处理,据[2]表15-3,取A0112,于是得:dminA03P333.14mm T3同时选取联轴器型号。联轴器的计算转矩TcaKAT3查[2]表14-1取KA1.3。则TcaKAT31.3247.32Nm321.516Nm
按计算转矩应小于联轴器的公称转矩的条件查[5]P99表8-7可选用LT7型弹性柱销联轴器。其公称转矩为500Nm。半联轴器孔径d40mm,故取d140mm半联轴器长度L112mm,半联轴器与轴配合的毂孔长度为82mm。4.轴的结构设计
(1)拟定轴上零件的装配方案
通过分析比较,得出输出轴示意图
(2)据轴向定位的要求确定轴的各段直径和长度
1)为满足半联轴器的轴向定位,第一段右端需制出一轴肩故第二段的直径d246mm;左端用轴端挡圈定位取轴端挡圈直径D65mm。半联轴器与轴配合的毂孔长为84mm,为保证轴端挡圈只压在联轴器上而不压在轴上,故第一段长度应比L1略短一些,现取l182mm。
2)第二段是固定轴承的轴承端盖e21mm。据d246mm和方便拆装可取l275mm。
3)初选轴承,因为有轴向力故选用深沟球轴承,参照工作要求d246mm。查
表选6210型号其尺寸为dDB50mm90mm20mm,故l320mm由于右边是轴肩定位,d462mm,l464mm。
4)第五段轴肩定位,取d568mm,l512mm。
4)取安装齿轮段轴径为d660mm,已知齿轮宽为68mm取l664mm。齿轮右边为轴套定位,轴肩高h5mm则此处d750mm,取l751mm。(3)轴上零件的周向定位
齿轮,半联轴器与轴之间的定位均采用平键连接。按d1由表查得平键截面bh128键槽用键槽铣刀加工长为70mm。选择半联轴器与轴之间的配合为H7,齿轮与轴的连接用平键bh1811键槽用键槽铣刀加工长为56mm。齿k6H7轮与轴之间的配合为轴承与轴之间的周向定位是用过渡配合实现的,此处选
n6轴的直径尺寸公差为m6。(4)确定轴上圆角和倒角尺寸
参考[2]表15-2取轴端倒角为245.个轴肩处圆倒角见图。