第一篇:减速器中间轴设计报告
机械设计大作业
轴系设计报告
02015732 曾祥
东南大学机械工程学院
指导老师:钱瑞明 2017.11.16
东南大学机械工程学院 曾祥
目录
减速器中间轴的设计............................................................................................................2一、二、三、轴系基本尺寸的设计计算...............................................................................2 减速器中间轴的绘制.......................................................................................8 心得体会.......................................................................................................18
减速器中间轴设计
东南大学机械工程学院 曾祥
减速器中间轴的设计
一、轴系基本尺寸的设计计算
1.选择轴的材料
由题意轴的材料为45调质钢,查表19.1,硬度为217~255 HBS,对称循环弯曲许用应力[σ-1]=180Mpa。2.初步计算轴径
根据式(19.3),查表19.3,A取115,得
dminA3P20115346.6mm n300因为轴上开有两个键槽,直径增大10%~15%,轴的直径为52mm,为了更好的选取合适的轴承,轴的直径取55mm。3.轴的机构设计
1)拟定轴上齿轮、轴承、轴承盖等零件的装配方向、顺序和相互关系,轴上零件的布置方案如图一所示。2)轴上零件的定位和轴的主要尺寸的确定参见图一(第8页)a)最小轴径为两端安放轴承的部位,初步选定30211圆锥滚子轴承面对面布置,其尺寸dDB为55mm100mm21mm,即两端与轴承配合的轴径为55mm。左端轴承采用端盖轴套轴向定位,配合轴段长度l125mm,右侧轴承采用轴套端盖轴向定位。
减速器中间轴设计
东南大学机械工程学院 曾祥
取齿轮2安装段直径dg158mm,配合选b)
H7,配合轴段长度应该比齿轮2略宽,取r6l298mm,为了便于安装,左侧端面采用锥面导向结构,齿轮2右侧和齿轮3左侧通过轴肩轴向定位固定,齿轮3安装段直径同样选dg258mm,配合选
H7,配合轴段r6长度应该比齿轮3略宽,取l3118mm,为了便于安装,左侧端面采用锥面导向结构,由题目要求轴肩宽20mm,轴肩高度hc)
0.07d,取h6mm,轴环直径dr67mm
齿轮2距箱体内壁20mm,左侧轴承距箱体内壁5mm,则轴套1长25mm。齿轮3距箱体内壁15mm,右侧轴承距箱体内壁5mm,则轴套2长20mm。
d)齿轮2、3轴向定位采用平键,查GB/T 1095-2003,其尺寸分别为16mm10mm90mm、16mm10mm110mm
e)3)轴承盖总厚取42mm。
轴结构的工艺性
取轴端倒角为245,按规定确定各轴肩的圆角半径,键槽位于同一轴线。
4.按弯扭合成校检轴的强度
1)中间轴转矩的计算
2)T2T39.55106P/n=9.5510620/300636666.67Nmm
画出轴空间受力简图(图2a)将轴上的力分解为垂直面(图b)和水平面受力(图c),集中力取齿轮的中点和圆锥滚子轴承中心垂线与轴的交点。
3)轴上受力分析
减速器中间轴设计
东南大学机械工程学院 曾祥
Fr2Ft2Fa2l1l2Fa3Ft3Fr3l3
图 2a
Fr2Fa2FvaFa3Fr3Fvb
图 2b 70414.86Nmm64912.85Nmm3795.27Nmm93273.32Nmm
图2c
减速器中间轴设计
东南大学机械工程学院 曾祥
Ft2FhaFt3Fhb
图2d 15991.63Nmm430026.93Nmm
图2e 齿轮2的圆周力
Ft22T22T22636666.673001.22N d2z2mn2/cos2835/cos12齿轮2的径向力
tanntan20Fr2Ft23001.221116.76N cos2cos12齿轮的轴向力
减速器中间轴设计
东南大学机械工程学院 曾祥
Fa2Ft2tan23001.22tan12637.93N
齿轮3的圆周力
Ft32T22T22636666.678406.28N d3z3mn3/cos3256/cos8齿轮2的径向力
tanntan20Fr3Ft38406.283089.70N cos3cos8齿轮的轴向力
Fa3Ft3tan38406.28tan81181.43N
4)计算作用于轴上的支反力 水平面支反力
FhbFt2l1Ft3(l1l2)5196.70Nmm l1l2l3FhaFt2Ft3Fhb208.36Nmm
垂直面反力
Fr2(l2l3)Fa2d2d3Fa3Fr3l322l1l2l3Fva845.77Nmm
FvbFr2Fr3Fva1127.17Nmm
5)计算轴的弯矩,并画出弯矩图 齿轮2中心水平面处弯矩为
MHg2l1Fha76.75208.3615991.63Nmm
齿轮2中心垂直面处弯矩为(最大)
d2835】76.75845.77【637.93】22cos12
-64912.85Nmm【70414.86】Mvg2l1Fva【Fa2齿轮3中心水平面处弯矩为
减速器中间轴设计
东南大学机械工程学院 曾祥
MHg3l3Fhb82.755196.70430026.93Nmm
齿轮3中心垂直面处弯矩为(最大)
d3256】82.751127.17【1181.43】 22cos8-93273.32Nmm【3795.27】Mvg3l3Fvb【Fa36)分别画出垂直面水平面的弯矩图(图c、e);求两处合成弯矩(两者方向遵循矢量叠加原理,在此只需要大小,方向不予计算给出)
Mg2Mvg22MHg2272207.93NmmMg3Mvg32MHg32440026.22Nmm
7)8)画扭矩图(图f)校核轴的强度
只校核危险截面(承受最大弯矩和扭矩的截面)和轴径较小的截面。轴单向转动,转矩为脉动循环,取0.7,实心轴取0,考虑键槽影响,d乘以0.875,则有
Mg32(T)2440026.222(0.7636666.67)2c47.91MPa0.1d30.1(0.87558)3
故轴安全。9)轴承寿命计算 圆锥滚子轴承
1Fr1Fva2Fha2871.06N Fr2Fvb2Fhb25317.54N
FAFa3Fa2543.5N查表17.7,e1.5tan
1.5tan150.402,查表17.5,Y1.49
减速器中间轴设计
东南大学机械工程学院 曾祥
Fs1Fr1292.30N 2YFr21784.41N2Y Fs2Fa1FAFs22327.91N Fa2Fs21784.41N
e1.5tan1.5tan150.402,Fa1X10.40,Y11.49;X21,Y20P1fp(X1Fr1Y1Fa1)1.1(0.40871.061.492327.91)4198.71NFr12.67e,Fa2Fr20.34e
P2fp(X2Fr2Y2Fa2)1.1(0.405317.5401784.41)2339.72N
查GB/T 297-1994,30211的Cr=90.8kN,则
16670C10L10h()31.57106h
nP
1二、减速器中间轴的绘制
中间轴2D、3D图绘制如下
减速器中间轴设计
东南大学机械工程学院 曾祥
图3
减速器中间轴设计
东南大学机械工程学院 曾祥
图 1
减速器中间轴设计
东南大学机械工程学院 曾祥
减速器中间轴设计
东南大学机械工程学院 曾祥
图4 轴3D俯视图
图5轴3D左视图
减速器中间轴设计
东南大学机械工程学院 曾祥
图 6 轴3D正视图
图7
减速器中间轴设计
东南大学机械工程学院 曾祥
轴3D装配图
图8
轴装配3D主视图
减速器中间轴设计
东南大学机械工程学院 曾祥
图9
轴装配3D左视图
减速器中间轴设计
东南大学机械工程学院 曾祥
图10
轴装配3D俯视图
减速器中间轴设计
东南大学机械工程学院 曾祥
图11
轴装配3D轴测图
减速器中间轴设计
东南大学机械工程学院 曾祥
三、心得体会
经过一个多月的设计绘图,我终于把减速器中间轴画好。其中碰到很多困难,比如solidworks不会用,轴上零件定位固定装置的选用问题。设计环节遇到问题时,我通过参考教材p406例题以及参考资料一步步地解决。技术上遇到问题,通过借阅相关书籍熟练掌握了solidworks的基本用法。
轴的设计是综合性很强的一个项目,不仅仅要考虑轴的长度,还要考虑轴上零件定位固定、轴的强度、轴承的选用及寿命。运算量最大的部分就是通过弯扭合成检验轴的强度,弯矩图、扭矩图、强度理论这些都是材料力学的重要知识,在计算遇到困难时我会查询材料力学相关资料来完成扭矩图弯矩图的绘制,最后完成轴强度的校验。在参考课本上例题计算弯矩时,发现了例题上一个不太精确的取值。P406例题19.1选用7211C滚动轴承,属于角接触轴承,接触角为15,但是在计算轴承跨距时忽略了接触角的影响,直接把滚子中心坐垂线与轴线交点作为受力中心,精度不高的情况下可以这样做,但是为了提高计算精度,我选用圆柱滚子轴承30211,采用面对面布置并且考虑接触角的影响,减小了误差。
这次设计任务提高了我对轴承代号、选用和寿命的计算的能力,熟悉了轴的设计和强度校核,同时学会了solidworks的简单应用,不仅为期末考试减少了复习任务,还提高了机械设计的能力。
减速器中间轴设计
第二篇:二级减速器 课程设计 轴的设计
轴的设计
图1传动系统的总轮廓图
一、轴的材料选择及最小直径估算
根据工作条件,小齿轮的直径较小(选用45钢,正火,硬度HB=
。),采用齿轮轴结构,按扭转强度法进行最小直径估算,即
直径轴段开有键槽,还要考虑键槽对轴的强度影响。
值由表26—3确定:
1、高速轴最小直径的确定
=112
初算轴径,若最小由轴器,设有一个键槽。则,因高速轴最小直径处安装联,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不得相差太大,否则难以选择合适的联轴器,取,为电动机轴直径,由前以选电动机查表6-166:,综合考虑各因素,取
2、中间轴最小直径的确定
。,因中间轴最小直径处安装滚动轴承,取为标准值
3、低速轴最小直径的确定
。,因低速轴最小直径处安装联轴器,设有一键槽,则见联轴器的选择,查表6-96,就近取联轴器孔径的标准值,参。
二、轴的结构设计
1、高速轴的结构设计
图2(1)、各轴段的直径的确定
:最小直径,安装联轴器
:密封处轴段,根据联轴器轴向定位要求,以及密封圈的标准查表6-85(采用毡圈密封),:滚动轴承处轴段,:过渡轴段,取 :滚动轴承处轴段,滚动轴承选取30208。(2)、各轴段长度的确定
:由联轴器长度查表6-96得,取
:由箱体结构、轴承端盖、装配关系确定 :由滚动轴承确定
:由装配关系及箱体结构等确定 :由滚动轴承、挡油盘及装配关系确定 :由小齿轮宽度
2、中间轴的结构设计
确定,取
图3(1)、各轴段的直径的确定 :最小直径,滚动轴承处轴段,:低速级小齿轮轴段,滚动轴承选30206 :轴环,根据齿轮的轴向定位要求 :高速级大齿轮轴段 :滚动轴承处轴段(2)、各轴段长度的确定 :由滚动轴承、装配关系确定 :由低速级小齿轮的毂孔宽度:轴环宽度
确定
确定
:由高速级大齿轮的毂孔宽度 :由滚动轴承、挡油盘及装配关系等确定
3、低速轴的结构设计
图4(1)、各轴段的直径的确定 :滚动轴承处轴段 :低速级大齿轮轴段,滚动轴承选取30210
:轴环,根据齿轮的轴向定位要求 :过渡轴段,考虑挡油盘的轴向定位 :滚动轴承处轴段
:密封处轴段,根据联轴器的轴向定位要求,以及密封圈的标准(采用毡圈密封)
:最小直径,安装联轴器的外伸轴段(2)、各轴段长度的确定
:由滚动轴承、挡油盘及装配关系确定 :由低速级大齿轮的毂孔宽:轴环宽度
确定
:由装配关系、箱体结构确定 :由滚动轴承、挡油盘及装配关系确定
:由箱体结构、轴承端盖、装配关系确定 :由联轴器的毂孔宽
确定
轴的校核
一、校核高速轴
1、轴上力的作用点位置和支点跨距的确定
齿轮对轴的力作用点按简化原则应在齿轮宽度的中点,轴上安装的30208轴承,从表6-67可知它的负荷作用中心到轴承外端面的距离为,支点跨距速级小齿轮作用点到右支点,距B,高的距离为A
为
图5
2、计算轴上的作用力
如图4—1,求
:
;
3、计算支反力并绘制转矩、弯矩图(1)、垂直面
图6
;
图7(2)、水平面
图8
; ;
;
图9(3)、求支反力,作轴的合成弯矩图、转矩图
图10
1轴的弯矩图
图11
1轴的转矩图
(4)、按弯扭合成应力校核轴的强度
进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面C)的强度,因为是单向回转轴,所以扭转应力视为脉动循环应力,折算系数。
已选定轴的材料为45钢正火处理,由表26-4查得因此,严重富裕。,二、校核中间轴
1、轴上力的作用点位置和支点跨距的确定
轴上安装30206轴承,它的负荷作用中心到轴承外端面距离为,跨距,高速级大齿轮的力作用点C到左支点A的距离,低速级小齿轮的力作用点D到右支点B的距离用点之间的距离轴的受力简图为:。
。两齿轮力作
图12
2、计算轴上作用力
齿轮2:
;
齿轮3:;
3、计算支反力
(1)、垂直面支反力
图13 由,得
由,得
由轴上合力校核:,计算无误
(2)、水平面支反力
图14 由,得
由,得
由轴上合力校核:,计算无误
(3)、总支反力为
(4)、绘制转矩、弯矩图
a、垂直面内弯矩图 C处弯矩
D处弯矩
图15
b、水平面内弯矩图 C处弯矩
D处弯矩
图16 c、合成弯矩图
图17 d、转矩图
图18(5)、弯扭合成校核
进行校核时,通常只校核轴上承受最大弯矩和转矩的截面(即截面D)的强度。去折算系数为
已选定轴的材料为45钢正火处理,由表26-4查得。,因此
三、校核低速轴
1、轴上力的作用点位置和支点跨距的确定
齿轮对轴的力作用点按简化原则应在齿轮宽度的中点,轴上安装的30210轴承,从表12—6可知它的负荷作用中心到轴承外端面的距离为,支点跨距,低速级大齿轮作用点到右支点B的距离为A为,距
图19
2、计算轴上的作用力
如图4—15,求
: ;
3、计算支反力并绘制转矩、弯矩图(1)、垂直面
图20
;
图21(2)、水平面
图22
; ;
;
图23(3)、求支反力,作轴的合成弯矩图、转矩图
图24
图25(4)、按弯扭合成应力校核轴的强度
校核危险截面C的强度,因为是单向回转轴,所以扭转应力视为脉动循环应力,折算系数。
已选定轴的材料为45钢正火处理,由表26-4查得因此,强度足够。,则传动系统轮廓图为
图26
第三篇:圆柱齿轮减速器设计开题报告
一、选题的依据及意义:
齿轮减速器是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩,以满足工作需要,在某些场合也用来增速,称为增速器。其特点是减速电机和大型减速机的结合。无须联轴器和适配器,结构紧凑。负载分布在行星齿轮上,因而承载能力比一般斜齿轮减速机高。满足小空间高扭矩输出的需要。广泛应用于大型矿山,钢铁,化工,港口,环保等领域。与K、R系列组合能得到更大速比。按照齿形分为圆柱齿轮减速器、圆锥齿轮减速器和圆柱—圆锥齿轮减速器;二级圆柱齿轮减速器就是按其分类来命名的。圆柱齿轮减速器的设计是按传统方法进行的。设计人员按照各种资料、文献提供的数据,结合自己的设计实验,并对已有减速器做一番对比,初步定出一个设计方案,然后对这个方案进行一些验算,如果验算通过了,方案便被肯定了。显然,这个方案是可采用的。但这往往使设计的减速器有很大的尺寸富余量,造成财力、物力和人力的极大浪费。因此,优化圆柱齿轮减速器势在必行。
圆柱齿轮传动与普通定轴齿轮传动相比较,具有质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点,这些已被我国越来越多的机械工程技术人员所了解和重视。由于在各种类型的圆柱齿轮传动中均有效的利用了功率分流性和输入、输出的同轴性以及合理地采用了内啮合,才使得其具有了上述的许多独特的优点。圆柱齿轮传动不仅适用于高速、大功率而且可用于低速、大转矩的机械传动装置上。它可以用作减速、增速和变速传动,运动的合成和分解,以及其特殊的应用中;这些功用对于现代机械传动发展有着重要意义。因此,圆柱齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器、和航空航天等工业部门均获得了广泛的应用。对这种减速器进行优化设计,必将获得可观的经济效益。
选做这个毕业设计,一方面对于减速器的内部结构和工作原理也有一定的了解和基础,其次通过对圆柱齿轮减速器这一毕业课题设计可以巩固我大学4年来所学的专业知识,对于我也是一种检验。可以全面检验我大学所学的知识是否全面,是否能灵活运用到实际生活工作中。在做的过程中我还可以不断学习和拓宽视野和思路,做到理论与实际相结合的运用。最重要的是对于即将离校走向社会的我是一种挑战,培养我独立思考,树立全局观念,为以后的我奠定坚实的基础。
二、国内外研究概况及发展趋势(含文献综述):
随着时代进步,科技与时俱进,对于齿轮的传动越来越多的科技因素在起 着主导地位。世界上一些工业发达国家,如日本、德国、英国、美国和俄罗斯等,对齿轮传动的应用,生产和研究都十分重视,在结构优化、传动性能,传动功率、转矩和速度等方面均处于领先地位,并出现一些新型的圆柱传动技术,如封闭圆柱齿轮传动、圆柱齿轮变速传动和微型圆柱齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。圆柱齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20世纪60年代以来,我国才开始对圆柱齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。
近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的齿轮传动技术有了迅速的发展。国内减速器行业重点骨干企业的产品品种、规格及参数覆盖范围近几年都在不断扩展,产品质量已达到国外先进工业国家同类产品水平。纵观国内减速器行业的现状,为保持行业的健康可持续发展在充分肯定行业不断发展、进步的同时,更应看到存在的问题,并积极研究对策,采取措施,力争在较短时间内能有所进展。目前,同外减速器行业存在的比较突出的问题是,行业整体新产品开发能力弱、工艺创新及管理水平低,企业管理方式较为粗放,相当比例的产品仍为中低档次、缺乏有国际影响力的产品品牌、行业整体散、乱情况依然较为严重。基于此,推进行业优势企业间的购并、整合,尽快形成有着一定的市场影响力的品牌、有较大规模的和实力、有较强产品研发和技术支持能力的这样若干个集团型企业,如此放能在与国外同行的竞争中保持一定的优势并不断得以发展。
国内减速器行业重点骨干企业的产品品种、规格及参数覆盖范围近几年都在不断扩展,产品质量已达到国外先进工业国家同类产品水平,完全可承担起为国民经济各行业提供传动装置配套的重任,部分产品还出口至欧美及东南亚地区。
目前,国内各类通用减速器的标准系列已达数百个,基本可满足各行业对通用减速器的需求。在第一代通用硬齿面齿轮减速器及圆弧圆柱蜗杆减速器系列产 2 品的基础上,由西安重型机械研究落开发并完成标准化的新一代圆柱及圆锥——圆柱齿轮减速器及圆弧圆柱蜗杆减速器业已投方市场。新一代减速器的突出特点为不仅在产品性能参数上进一步进行于优化,而且在系列设计上完全遵从模块化的设计原则,产品造型更加美观,更宜于组织批量生产,更适应现代工业不断发展而对基础件产品提出的愈来愈高的配套要求。此外,南京高精齿轮股份有限公司也推动了PR系列的模块式齿轮减速器系列产品。但总体而言,国内同外减速器系列产品的开发及更新工作近几年进展缓慢,与国外同行在此方面的差距有拉大的趋势。而且与市场的需求也很不适应,西安重型机械研究所及国内其他单位今年已着手开始这方面的开发级标准化工作。
在通用减速器的制造方面,国内目前生产厂家数目众多,如对各种类型的圆柱齿轮机圆锥——圆柱齿轮或者齿轮——蜗杆减速器系列产品,国内主要厂家有南京高精齿轮股份有限公司、宁波东力传动设备有限公司、江阴齿轮箱制造有限公司、江苏泰星减速器有限公司、江苏金象减速机有限公司、山西平遥减速机厂等。对象蜗杆减速器,目前国内主要生产圆弧圆柱蜗杆减速器、锥面包络圆柱蜗杆减速器、平面二次包络环面蜗杆减速器等多种类型,主要生产厂家有江苏金象减速机有限公司、首钢机械制造公司、杭州减机厂、杭州万杰减速剂有限公司、天津万新减速机厂、上海浦江减速机有限公司等,对各种通用圆柱齿轮减速器、包括标准的NGW系列圆柱齿轮减速器,也包括各类回转圆柱减速器及封闭式圆柱齿轮检录其等,主要生产厂家有荆州巨鲸动机械有限公司、洛阳中重齿轮箱有限公司、西安重型机械研究所、石家庄科一重工有限公司、内蒙兴华机械厂等。
在各类专用传动装置的开发机制造方面,国内近几年取得的明显的进展,如重庆齿轮箱有限责任公司生产的MDH28型磨机边缘驱动传动装置,其最大功率已达7000KW,传动转矩达5000KN.m,总重46吨,生产的1700热连轧主传动齿轮箱子的最大模数为30,重量达180吨。由杭州前进齿轮箱有限公司生产的gwc70/76型1.2万吨及装箱船用齿轮箱,传动功率已达6250KW。(转载中国锻压网)由南京高精齿轮股份有限公司及重庆齿轮箱有限公司生产的里磨系列齿轮箱最大功率已达3800KW,由西安重型机械研究所、洛阳重重齿轮箱有限公司、荆州巨鲸传动机械有限公司等开发制造的重载圆柱齿轮箱系列产品在矿山、冶金、建材、煤炭及水电等行业也都得到了广泛应用,其中西安重型机械研究所开发的水泥行业辊压机悬挂系列圆柱齿轮箱的输入功率已达1250KW,用于铝造轧 机的圆柱齿轮箱有司责任公司、杭州前进出论箱有限公司、西安重型机械研究所开发的风力发电增速箱系列产品也逐步取代进口产品,广泛应用于国内风电行业。在大型齿圈的制造方面,国内目前最大直径为9.936米,净重达80吨的齿圈已由中信重机制造完成,并用于武钢集团年产500万吨氧化球生产线,至此用于大型烧结机、磨机、回转窑的大型驱动装置以及用于转炉及烧结设备的大型柔性传动装置国内均可圈套供货,而无需再行进口。
在其他类型新产品的开发方面,行业企业也取得了不少成果,如西安重型机械研究所开发的工程车辆变速箱和风机及泵用差动节能调速装置、洛阳中重齿轮箱有限公司的大型矿井提升机圆柱齿轮箱、江苏金象减速机公司的磨机驱动齿轮箱、北京太富力传动有限公司的大型三环传动齿轮箱及传动装置等,也都受到了市场的欢迎并得以广泛应用。
在行业企业的产能扩展及技术改造方面,近几年呈现出跨越式的发展,这一方面得益于近几年市场强劲需求的拉动,另一方面也是受企业扩大生产规模、提升加工制造水平、进而提升企业竞争力的主观愿望的驱动,国内主要产品厂家近二年购进的关键加工设备,如大型磨齿机、镗铣床、技工中心及热处理设备等,累计超过200余台(套),预计行业产能扩大一倍以上,技改工作的开展固然有提审行业企业规模和生产集中度及竞争力的客观效果,但由于仍存在行业企业数量多、规格小及水平参差不齐等实际问题,因之随着市场需求的回落和国外同行厂商大规模进入国内市场,行业竞争必将进一步加剧,这也必将促进行业企业间的购并、整合甚至转型。
据有关资料介绍,人们认为目前齿轮传动技术的发展方向如下:
(1)标准化、多品种 目前世界上已经有50多个渐开线圆柱齿轮传动系列设计;而且还演化出多种形式的圆柱减速器、差速器和圆柱变速器等多种产品。
(2)硬齿面、高精度 圆柱传动机构中的齿轮广泛采用渗碳和氮化等化学热处理。齿轮制造精度一般均在6级以上。显然,采用硬齿面、高精度有利于进一步提高承载能力,使齿轮尺寸变得更小。
(3)高转速、大功率 圆柱齿轮传动机构在高速传动中,如在高速汽轮中已获得日益广泛的应用,其传动功率也越来越大。
大规格、大转矩 在中低速、重载传动中,传递大转矩的大规格的圆柱齿轮传 动已有了较大的发展。
三、研究内容及实验方案:
在圆柱齿轮传动的设计时,应该根据设计任务书所要求该圆柱传动的要求(原始数据及设计技术要求),进一步分析该传动所需的使用要求、工作状况和所需齿轮的机械特性,首先应了解和掌握该圆柱齿轮传动的已知条件;通常,已知的其原始数据为输入功率、输入转速、传动比、工作特性和载荷工况等。
建立优化设计模型,优化问题的数学是实际优化设计问题的数学抽象。在明确设计变量、约束条件、目标函数之后,优化设计问题就可以转化成一般数学问题。采用惩罚函数法对设计参数进行约束优化,以中心距最小为目标进行优化设计,并与常规设计进行比较。进而绘制出减速器装配图及主要零件图。
二级圆柱齿轮减速器的优化设计的一般原则是:
(1)各级传动的承载能力大致相等(可以最大性能的发挥减速器的承载能力);
(2)在一定承载能力下,减速器具有最小的外形尺寸和重量;(3)各级传动中大齿轮的浸油深度大致相等。
四、目标、主要特色及工作进度
1、设计目标:
设计出的圆柱齿轮减速器:其输入功率P=6.2kW,输入转速n1=1450r/min,总传动比i=16.5,齿轮的宽度系数φa=0.4,工作寿命10年,每年工作300天。结构紧凑、传动功率较高,采用惩罚函数法,以中心距最小为目标进行减速器优化设计
2、圆柱齿轮减速器主要特色:
1、重量轻、体积小,结构紧凑、承载能力大
2、传动效率高
3、传动功率范围大,可以实现运动的合成与分解
4、运动平稳、抗冲击和振动的能力较强
5、采用硬齿面技术,使用寿命长,使用性广。
3、工作进度:
1.收集资料、开题报告、外文翻译
3.05-3.25
第1周—第3周 2.建立优化设计的数学模型
3.26-4.8
第4周—第6周 3.编写优化设计程序、计算
4.11-4.24
第 7周—第9周 4.减速器常规设计计算、结果分析
4.25-5.6
第10周—第12周 5.绘制减速器装配图及主要零件图
5.9-5.20
第13周—第14周 6.撰写毕业设计论文
5.21-5.31
第15周—第16周 7.答辩准备及论文答辩
6.1-6.2
第17周
五、参考文献
[1]、璞良贵,纪名刚主编.机械设计.第八版.北京:高等教育出版社,2007 [2]、孙靖民主编.机械优化设计.第三版.北京:机械工业出版社,2005 [3]、方世杰,綦耀光主编.机械优化设计.北京:机械工业出版社,1997.2 [4]、王昆等主编.机械设计课程设计手册.北京:机械工业出版社,2004 [5]、Carrol, R., and Johnson, G.,“Optimal design of compact spur gear sets”, ASME Journal of mechanisms, transmissions and automation in design.Vol.106, No.1, March 1984, pp.95-101
第四篇:《主减速器设计》
第三章
主减速器设计
一、主减速器结构方案分析
主减速器的结构形式主要是根据齿轮类型、减速形式的不同而不同。
主减速器的齿轮主要有螺旋锥齿轮、双曲面齿轮、圆柱齿轮和蜗轮蜗杆等形式。
1.螺旋锥齿轮传动
螺旋锥齿轮传动(图5-3a)的主、从动齿轮轴线垂直相交于一点,齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,所以它工作平稳、能承受较大的负荷、制造也简单。但是在工作中噪声大,对啮合精度很敏感,齿轮副锥顶稍有不吻合便会使工作条件急剧变坏,并伴随磨损增大和噪声增大。为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。
图5—3 主减速器齿轮传动形式
a)螺旋锥齿轮传动 b)双曲面齿轮传动 c)圆柱齿轮传动 d)蜗杆
传动
2.双曲面齿轮传动
双曲面齿轮传动(图5-3b)的主、从动齿轮的轴线相互垂直而不相交,主动齿轮轴线相对从动齿轮轴线在空间偏移一距离E,此距离称为偏移距。由于偏移距E的存在,使主动齿轮螺旋角1大于从动齿轮螺旋角2(图5—4)。根据啮合面上法向力相等,可求出主、从动齿轮圆周力之比
F1cos1F2cos2
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com(5-1)
图5-4双曲面齿轮副受力情况
式中,F1、F2分别为主、从动齿轮的圆周力;β
1、β2分别为主、从动齿轮的螺旋角。
螺旋角是指在锥齿轮节锥表面展开图上的齿线任意一点A的切线TT与该点和节锥顶点连线之间的夹角。在齿面宽中点处的螺旋角称为中点螺旋角(图5—4)。通常不特殊说明,则螺旋角系指中点螺旋角。
双曲面齿轮传动比为
i0sF2r2r2cos2F1r1r1cos1
(5-2)式中,i0s为双曲面齿轮传动比;r1、r2分别为主、从动齿轮平均分度圆半径。
螺旋锥齿轮传动比i0L为
i0Lr2r1
(5-3)令Kcos2cos,则i0sKi0L。由于1>2,所以系数K>1,一般
1为1.25~1.50。这说明:
1)当双曲面齿轮与螺旋锥齿轮尺寸相同时,双曲面齿轮传动有更大的传动比。
2)当传动比一定,从动齿轮尺寸相同时,双曲面主动齿轮比相应的螺旋锥齿轮有较大的直径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。
3)当传动比一定,主动齿轮尺寸相同时,双曲面从动齿轮直径比相应的螺旋锥齿轮为小,因而有较大的离地间隙。
另外,双曲面齿轮传动比螺旋锥齿轮传动还具有如下优点: 1)在工作过程中,双曲面齿轮副不仅存在沿齿高方向的侧向滑动,而且还有沿齿长方向的纵向滑动。纵向滑动可改善齿轮的磨合过程,使其具有更高的运转平稳性。
2)由于存在偏移距,双曲面齿轮副使其主动齿轮的1大于从动齿轮的2,这样同时啮合的齿数较多,重合度较大,不仅提高了传动平稳性,而且使齿轮的弯曲强度提高约30%。
3)双曲面齿轮传动的主动齿轮直径及螺旋角都较大,所以相啮合轮齿的当量曲率半径较相应的螺旋锥齿轮为大,其结果使齿面的接触【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com 强度提高。
4)双曲面主动齿轮的变1大,则不产生根切的最小齿数可减少,故可选用较少的齿数,有利于增加传动比。
5)双曲面齿轮传动的主动齿轮较大,加工时所需刀盘刀顶距较大,因而切削刃寿命较长。6)双曲面主动齿轮轴布置在从动齿轮中心上方,便于实现多轴驱动桥的贯通,增大传动轴的离地高度。布置在从动齿轮中心下方可降低万向传动轴的高度,有利于降低轿车车身高度,并可减小车身地板中部凸起通道的高度。
但是,双曲面齿轮传动也存在如下缺点:
1)沿齿长的纵向滑动会使摩擦损失增加,降低传动效率。双曲面齿轮副传动效率约为96%,螺旋锥齿轮副的传动效率约为99%。
2)齿面间大的压力和摩擦功,可能导致油膜破坏和齿面烧结咬死,即抗胶合能力较低。3)双曲面主动齿轮具有较大的轴向力,使其轴承负荷增大。
4)双曲面齿轮传动必须采用可改善油膜强度和防刮伤添加剂的特种润滑油,螺旋锥齿轮传动用普通润滑油即可。
由于双曲面齿轮具有一系列的优点,因而它比螺旋锥齿轮应用更广泛。
一般情况下,当要求传动比大于4.5而轮廓尺寸又有限时,采用双曲面齿轮传动更合理。这是因为如果保持主动齿轮轴径不变,则双曲面从动齿轮直径比螺旋锥齿轮小。当传动比小于2时,双曲面主动齿轮相对螺旋锥齿轮主动齿轮显得过大,占据了过多空间,这时可选用螺旋锥齿轮传动,因为后者具有较大的差速器可利用空间。对于中等传动比,两种齿轮 传动均可采用。
3.圆柱齿轮传动
圆柱齿轮传动(图5—3c)一般采用斜齿轮,广泛应用于发动机横置且前置前驱动的轿
车驱动桥(图5—5)和双级主减速器贯通式驱动桥。
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
图5—5 发动机横置且前置前驱动轿车驱动桥 4.蜗杆传动
蜗杆(图5—3d)传动与锥齿轮传动相比有如下优点:
1)在轮廓尺寸和结构质量较小的情况下,可得到较大的传动比(可大于7)。
2)在任何转速下使用均能工作得非常平稳且无噪声。3)便于汽车的总布置及贯通式多桥驱动的布置。4)能传递大的载荷,使用寿命长。5)结构简单,拆装方便,调整容易。
但是由于蜗轮齿圈要求用高质量的锡青铜制作,故成本较高;另外,传动效率较低。
蜗杆传动主要用于生产批量不大的个别重型多桥驱动汽车和具有高转速发动机的大客车上。
主减速器的减速形式可分为单级减速、双级减速、双速减速、单双级贯通、单双级减速配以轮边减速等。
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
1.单级主减速器
单级主减速器(图5—6)可由一对圆锥齿轮、一对圆柱齿轮或由蜗轮蜗杆组成,具有结构简单、质量小、成本低、使用简单等优点。但是其主传动比i0不能太大,一般i0≤7,进一步提高i0将增大从动齿轮直径,从而减小离地间隙,且使从动齿轮热处理困难。
单级主减速器广泛应用于轿车和轻、中型货车的驱动桥中。
2.双级主减速器
双级主减速器(图5—7)与单级相比,在保证离地间隙相同时可得到大的传动比,i0一般为7~12。但是尺寸、质量均较大,成本较高。它主要应用于中、重型货车、越野车和大客车上。
整体式双级主减速器有多种结构方案:第一级为锥齿轮,第二级为圆柱齿轮(图5—8a);第一级为锥齿轮,第二级为行星齿轮;第一级为行星齿轮,第二
图5—6 单级主减速器 级为锥齿轮(图5—8b);第一级为圆柱齿轮,第二级
为锥齿轮(图5—8c)。
对于第一级为锥齿轮、第二级为圆柱齿轮的双级主减速器,可有纵向水平(图5—8d)、斜向(图5—8e)和垂向(图5—8f)三种布置方案。
纵向水平布置可以使总成的垂向轮廓尺寸减小,从而降低汽车的质心高度,但使纵向尺寸增加,用在长轴距汽车上可适当减小传动轴长度,但不利于短轴距汽车的总布置,会使传动轴过短,导致万向传动轴夹角加大。垂向布置使驱动桥纵向尺寸减小,可减小万向传动轴夹角,但由于主减速器壳固定在桥壳的上方,不仅使垂向轮廓尺寸增大,而且降低了桥壳刚度,不利于齿轮工作。这种布置可便于贯通式驱动桥的布置。斜向布置对传动轴布置和提高桥壳刚度有利。
在具有锥齿轮和圆柱齿轮的双级主减速器中分配传动比时,圆柱齿轮副和锥齿轮副传动
比的比值一般为1.4~2.O,而且锥齿轮副传动比一般为1.7~3.3,这样可减小锥齿轮啮合时的轴向载荷和作用在从动锥齿轮及圆柱齿轮上的载荷,同时可使主动锥齿轮的齿数适当增多,使其支承轴颈的尺寸适当加大,以改善其支承刚度,提高啮合平稳性和工作可靠性。
3.双速主减速器
双速主减速器(图5—9)内由齿轮的不同组合可获得两种传动比。它与普通变速器相配合,可得到双倍于变速器的挡位。双速主减速器的高低挡减速比是根据汽车的使用条件、发动机功率及变速器各挡速【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com 比的大小来选定的。大的主减速比用于汽车满载行驶或在困难道路上行驶,以克服较大的行驶阻力并减少变速器中间挡位的变换次数;小的主减速比则用于汽车空载、半载行驶或在良好路面上行驶,以改善汽车的燃料经济性和提高平均车速。
图5-7双级主减速器
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
图5-8双级主减速器布置方案
双速主减速器可以由圆柱齿轮组(图5-9a)或行星齿轮组(图5-9b)构成。圆柱齿轮式双速主减速器结构尺寸和质量较大,可获得的主减速比较大。只要更换圆柱齿轮轴、去掉一对圆柱齿轮,即可变型为普通的双级主减速器。行星齿轮式双速主减速器结构紧凑,质量较小,具有较高的刚度和强度,桥壳与主减速器壳都可与非双速通用,但需加强行星轮系和差速器的润滑。
图5—9 双速主减速器 a)圆柱齿轮式 b)行星齿轮式
1-太阳轮 2-齿圈 3-行星齿轮架 4-行星齿轮
5-接合齿轮
对于行星齿轮式双速主减速器,当汽车行驶条件要求有较大的牵引力时,驾驶员通过操纵机构将啮合套及太阳轮推向右方(图示位置),接合齿轮5的短齿与固定在主减速器上的接合齿环相接合,太阳轮1就与主减速器壳联成一体,并与行星齿轮架3的内齿环分离,【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com 而仅与行星齿轮4啮合。于是,行星机构的太阳轮成为固定轮,与从动锥齿轮联成一体的齿圈2为主动轮,与差速器左壳联在一起的行星齿轮架3为从动件,行星齿轮起减速作用,其减速比为(1+a),a为太阳轮齿数与齿圈齿数之比。在一般行驶条件下,通过操纵机构使啮合套及太阳轮移到左边位置,啮合套的接合齿轮5与固定在主减速器壳上的接合齿环分离,太阳轮1与行星齿轮4及行星齿轮架3的内齿环同时啮合,从而使行星齿轮无法自转,行星齿轮机构不再起减速作用。显然,此时双速主减速器相当于一个单级主减速器。
双速主减速器的换挡是由远距离操纵机构实现的,一般有电磁式、气压式和电一气压综合式操纵机构。由于双速主减速器无换挡同步装置,因此其主减速比的变换是在停车时进行的。双速主减速器主要在一些单桥驱动的重型汽车上采用。
4.贯通式主减速器
贯通式主减速器(图5-10,图5-1 1)根据其减速形式可分成单级和双级两种。单级贯通式主减速器具有结构简单,体积小,质量小,并可使中、后桥的大部分零件,尤其是使桥壳、半轴等主要零件具有互换性等优点,主要用于轻型多桥驱动的汽车上。根据减速齿轮形式不同,单级贯通式主减速器又可分为双曲面齿轮式及蜗轮蜗杆式两种结构。双曲面齿轮式单级贯通式主减速器(图5-lOa)是利用双曲面齿轮副轴线偏移的特
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
图5—10 单级贯通式主减速器 a)双曲面齿轮式 b)蜗轮蜗杆式
点,将一根贯通轴穿过中桥并通向后桥。但是这种结构受主动齿轮最少齿数和偏移距大小的
限制,而且主动齿轮工艺性差,主减速比最大值仅在5左右,故多用于轻型汽车的贯通式驱
动桥上。当用于大型汽车时,可通过增设轮边减速器或加大分动器速比等方法来加大总减速
比。蜗轮蜗杆式单级贯通式主减速器(图5—10b)在结构质量较小的情况下可得到较大的 速比。它使用于各种吨位多桥驱动汽车的贯通式驱动桥的布置。另外,它还具有工作平滑无
声、便于汽车总布置的优点。如蜗杆下置式布置方案被用于大客车的贯通式驱动桥中,可降 低车厢地板高度。
对于中、重型多桥驱动的汽车,由于主减速比较大,多采用双级贯通式主减速器。根据齿轮的组合方式不同,可分为锥齿轮一圆柱齿轮式和圆柱齿轮一锥齿轮式两种形式。锥齿轮一圆柱齿轮式双级贯通式主减速器(图5—11a)可得到较大的主减速比,但是结构高度尺寸大,主动锥齿轮工艺性差,从动锥齿轮采用悬臂式支承,支承刚度差,拆装也不方便。圆柱齿轮一锥齿轮式双级贯通式主减速器(图5—11b)的第一级圆柱齿轮副具有减速和贯通的作用。有时仅用作贯通用.将其速比设计为1。在设计中应根据中、后桥锥齿轮的布置、旋转方向、双曲面齿轮的偏移方式以及圆柱齿轮副在锥齿轮副前后的布置位置等因素来确定
锥齿轮的螺旋方向,所选的螺旋方向应使主、从动锥齿轮有相斥的轴【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com 向力。这种结构与前者
相比,结构紧凑,高度尺寸减小,有利于降低车厢地板及整车质心高度。
图5—11 双级贯通式主减速器 a)锥齿轮一圆柱齿轮式 b)圆柱齿轮一锥齿轮式
1-贯通轴 2-轴间差速器
5.单双级减速配轮边减速器
在设计某些重型汽车、矿山自卸车、越野车和大型公共汽车的驱动桥时,由于传动系总传动比较大,为了使变速器、分动器、传动轴等总【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
成所受载荷尽量小,往往将驱动桥的速比分配得较大。当主减速比大于12时,一般的整体式双级主减速器难以达到要求,此时常采用轮边减速器(图5—12)。这样,不仅使驱动桥的中间尺寸减小,保证了足够的离地间隙,图5—12 轮边减速器
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
a)圆柱行星齿轮式 b)圆锥行星齿轮式 c)普通外啮合圆柱齿轮式
1-轮辋 2-环齿轮架 3-环齿轮 4-行星齿轮 5-行星齿轮架 6-行星齿轮轴 7-太阳轮 8-锁紧螺母 9、10-螺栓 11-轮毂 12-接合轮 13-操纵机构 14-外圆锥齿轮 15-侧盖
而且可得到较大的驱动桥总传动比。另外,半轴、差速器及主减速器从动齿轮等零件由于所受载荷大为减小,使它们的尺寸可以减小。但是由于每个驱动轮旁均设一轮边减速器,使结构复杂,成本提高,布置轮毂、轴承、车轮和制动器较困难。
圆柱行星齿轮式轮边减速器(图5-12a)可以在较小的轮廓尺寸条件下获得较大的传动比,且可以布置在轮毂之内。作驱动齿轮的太阳轮连接半轴,内齿圈由花键连接在半轴套管上,行星齿轮架驱动轮毂。行星齿轮一般为3~5个均匀布置,使处于行星齿轮中间的太阳轮得到自动定心。圆锥行星齿轮式轮边减速器(图5-1 2b)装于轮毂的外侧,具有两个轮边减速比。当换挡用接合轮12位于图示位置时,轮边减速器位于低挡;当接合轮被专门的操纵机构1 3移向外侧并与侧盖1 5的花键孔内齿相接合,使半轴直接驱动轮边减速器壳及轮毂时,轮边减速器位于高挡。
普通外啮合圆柱齿轮式轮边减速器,根据主、从动齿轮相对位置的不同,可分为主动齿轮上置和下置两种形式。主动齿轮上置式轮边减速器主要用于高通过性的越野汽车上,可提高桥壳的离地间隙;主动齿轮下置式轮边减速器(图5-12c)主要用于城市公共汽车和大客车上,可降低车身地板高度和汽车质心高度,提高了行驶稳定性,方便了乘客上、下车。
二、主减速器主、从动锥齿轮的支承方案
主减速器中必须保证主、从动齿轮具有良好的啮合状况,才能使它们很好的工作。齿轮的正确啮合,除与齿轮的加工质量、装配调整及轴承、主减速器壳体的刚度有关以外,与齿轮的支承刚度密切相关。
1.主动锥齿轮的支承
主动锥齿轮的支承形式可分为悬臂式支承和跨置式支承两种。悬臂式支承结构(图5-13a)的特点是在锥齿轮大端一侧采用较长的轴颈,其上安装两个圆锥滚子轴承。为了减小悬臂长度倪和增加两支承间的距离b,以改善支承刚度,应使两轴承圆锥滚子的大端朝外,使作用在齿轮上离开锥顶的轴向力由靠近齿轮的轴承承受,而反向轴向力则由另一轴承承受。为了尽可能地增加支承刚度,支承距离b应大于2.5倍的悬臂长度a,且应比齿轮节圆直径的70%还大,另外靠近齿轮的轴径应不小于尺寸a。为了方便拆装,应使靠近齿轮的轴承【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com 的轴径比另一轴承的支承轴径大些。靠近齿轮的支承轴承有时也采用圆柱滚子轴承,这时另一轴承必须采用能承受双向轴向力的双列圆锥滚子轴承。支承刚度除了与轴承形式、轴径大小、支承间距离和悬臂长度有关以外,还与轴承与轴及轴承与座孔之间的配合紧度有关。
图5—13 主减速器锥齿轮的支承形式
a)主动锥齿轮悬臂式 b)主动锥齿轮跨置式 c)从动锥齿轮
悬臂式支承结构简单,支承刚度较差,用于传递转矩较小的轿车、轻型货车的单级主减速器及许多双级主减速器中。
跨置式支承结构(图5-13b)的特点是在锥齿轮的两端均有轴承支承,这样可大大增加支承刚度,又使轴承负荷减小,齿轮啮合条件改善,因此齿轮的承载能力高于悬臂式。此外,由于齿轮大端一侧轴颈上的两个相对安装的圆锥滚子轴承之间的距离很小,可以缩短主动齿轮轴的长度,使布置更紧凑,并可减小传动轴夹角,有利于整车布置。但是跨置式支承必须在主减速器壳体上有支承导向轴承所需要的轴承座,从而使主减速器壳体结构复杂,加工成本提高。另外,因主、从动齿轮之间的空间很小,致使主动齿轮的导向轴承尺寸受到限制,有时甚至布置不下或使齿轮拆装困难。跨置式支承中的导向轴承都为圆柱滚子轴承,并且内外圈可以分离或根本不带内圈。它仅承受径向力,尺寸根据布置位置而定,是易损坏的一个轴承。
在需要传递较大转矩情况下,最好采用跨置式支承。2.从动锥齿轮的支承
从动锥齿轮的支承(图5-13c),其支承刚度与轴承的形式、支承间的距离及轴承之间的分布比例有关。从动锥齿轮多用圆锥滚子轴承支承。为了增加支承刚度,两轴承的圆锥滚子大端应向内,以减小尺寸c+d。为了使从动锥齿轮背面的差速器壳体处有足够的位置设置加强肋以增强支承稳定性,c+d应不小于从动锥齿轮大端分度圆直径的70%。为了使载荷能尽量均匀分配在两轴承上,应尽量使尺寸c等于或大于尺寸d。在具有大的主传动比和径向尺寸较大的从动锥齿轮的主减速器中,为了限制从动锥齿轮因受轴向力作用而产生偏移,在从动锥齿轮的外缘背面加设辅助支承(图5-14)。辅助支承与从动锥齿【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com 轮背面之间的间隙,应保证偏移量达到允许极限时能制止从动锥齿轮继续变形。主、从动齿轮受载变形或移动的许用偏移量如图5-15所示。
图5—14 从动锥齿轮辅助支承 图5—15 主、从动锥齿轮的许用偏移量
三、主减速器锥齿轮主要参数的选择
主减速器锥齿轮的主要参数有主、从动锥齿轮齿数z1和z2、从动锥齿轮大端分度圆直径D2和端面模数ms主、从动锥齿轮齿面宽b1和b2、双曲面齿轮副的偏移距E、中点螺旋角、法向压力角等。
1.主、从动锥齿轮齿数z1和z2
选择主、从动锥齿轮齿数时应考虑如下因素: 1)为了磨合均匀,z1、z2之间应避免有公约数。
2)为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不少于 40。
3)为了啮合平稳、,噪声小和具有高的疲劳强度,对于轿车,z1一般不少于9;对于货 车,z1一般不少于6。
4)当主传动比主。较大时,尽量使z1取得少些,以便得到满意的离地间隙。
5)对于不同的主传动比,z1和z2应有适宜的搭配。2.从动锥齿轮大端分度圆直径D2和端面模数m。
对于单级主减速器,D2对驱动桥壳尺寸有影响,D2大将影响桥壳离地间隙;D2小则
影响跨置式主动齿轮的前支承座的安装空间和差速器的安装。
D2可根据经验公式初选
D2KD23Tc【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com(5-4)式中,为D2从动锥齿轮大端分度圆直径(mm);KD2为直径系数,一般为13.0~15.3;Tc
为从动锥齿轮的计算转矩(N·m),TcminTce,Tcs(见本节计算载荷确定部分)。
ms由下式计算
msD2z2
(5-5)式中,ms为齿轮端面模数。
同时,ms还应满足
msKm3Tc
(5-6)式中,Km为模数系数,取0.3~0.4。
3.主、从动锥齿轮齿面宽b1和b2
锥齿轮齿面过宽并不能增大齿轮的强度和寿命,反而会导致因锥齿轮轮齿小端齿沟变窄引起的切削刀头顶面宽过窄及刀尖圆角过小。这样,不但减小了齿根圆角半径,加大了应力集中,还降低了刀具的使用寿命。此外,在安装时有位置偏差或由于制造、热处理变形等原因,使齿轮工作时载荷集中于轮齿小端,会引起轮齿小端过早损坏和疲劳损伤。另外,齿面过宽也会引起装配空间的减小。但是齿面过窄,轮齿表面的耐磨性会降低。
从动锥齿轮齿面宽b2推荐不大于其节锥距A2的0.3倍,即b2≤0.3A2,而b2应满足b2≤10ms,一般也推荐b2=0.155D2。对于螺旋锥齿轮,b1一般比b2大10%。
4.双曲面齿轮副偏移距E E值过大将使齿面纵向滑动过大,从而引起齿面早期磨损和擦伤;E值过小,则不能发挥双曲面齿轮传动的特点。一般对于轿车和轻型货车E≤0.2D2且E≤40%A2;对于中、重型货车、越野车和大客车,E≤(0.10~0.12)D2,且E≤20%A2。另外,主传动比越大,则E也应越大,但应保证齿轮不发生根切。
双曲面齿轮的偏移可分为上偏移和下偏移两种。由从动齿轮的锥顶向其齿面看去,并使主动齿轮处于右侧,如果主动齿轮在从动齿轮中心线的上方,则为上偏移;在从动齿轮中心线下方,则为下偏移。如果主动齿轮处于左侧,则情况相反。图5-16a、b为主动齿轮轴线下偏移情况,图5-16c、d为主动齿轮轴线上偏移情况。
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
图5—16 双曲面齿轮的偏移和螺旋方向 a)、b)主动齿轮轴线下偏移 c)、d)主动齿轮轴线上偏移
5.中点螺旋角
螺旋角沿齿宽是变化的,轮齿大端的螺旋角最大,轮齿小端的螺旋角最小。
弧齿锥齿轮副的中点螺旋角是相等的,双曲面齿轮副的中点螺旋角是不相等的,而且1>2,1与2之差称为偏移角(图5-4)。
选择时,应考虑它对齿面重合度F、轮齿强度和轴向力大小的影响。越大,则F也越大,同时啮合的齿数越多,传动就越平稳,噪声越低,而且轮齿的强度越高。一般F应不小于1.25,在1.5~2.0时效果最好。但是过大,齿轮上所受的轴向力也会过大。
汽车主减速器弧齿锥齿轮螺旋角或双曲面齿轮副的平均螺旋角一般为35°~40°。轿车选仔较大的值以保证较大的F,使运转平稳,噪声低;货车选用较小值以防止轴向力过大,通常取35°。
6.螺旋方向
从锥齿轮锥顶看,齿形从中心线上半部向左倾斜为左旋,向右倾斜为右旋。主、从动锥旨轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方向影响其所受轴向力的方向。当变速导挂前进挡时,应使主动齿轮的轴向力离开锥顶方向,这样可使主、从动齿轮有分离趋势,号止轮齿卡死而损坏。
7.法向压力角
法向压力角大一些可以增加轮齿强度,减少齿轮不发生根切的最少齿数。但对于小尺寸的齿轮,压力角大易使齿顶变尖及刀尖宽度过小,并使齿轮端面重合度下降。因此,对于轻负荷工作的齿轮一般采用小压力角,可使齿轮运转平稳,噪声低。对于弧齿锥齿轮,轿车:
货车:为20°;重型货车:为22°一般选用14°30′或16°;30′。对于双曲面齿轮,大齿轮轮齿两侧压力角是相同的,但小齿轮轮齿两侧的压力角是不等的,选取平均压力角时,轿车为19°或【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
20°,货车为20°。或22°30′。
四、主减速器锥齿轮强度计算
(一)计算载荷的确定
汽车主减速器锥齿轮的切齿法主要有格里森和奥利康两种方法,这里仅介绍格里森齿制锥齿轮计算载荷的三种确定方法。
(1)按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩Tce
TceKdTemaxki1ifi0n
(5-7)式中,为计算转矩(N·m);其它见表4-1的注释。
(2)按驱动轮打滑转矩确定从动锥齿轮的计算转矩
TcsrrG2m2imm
(5-8)式中,Tcs为计算转矩(N·m);其它见表4-1的注释。
(3)按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩TcF
TcFFtrrimmn
(5-9)式中,TcF为计算转矩(N·m);Ft为汽车日常行驶平均牵引力(N);其它见表4-1的注释。
用式(5-7)和式(5-8)求得的计算转矩是从动锥齿轮的最大转矩,不同于用式(5-9)求得的日常行驶平均转矩。当计算锥齿轮最大应力时,计算转矩Tc取前面两种的较小值,即TcminTce,Tcs;当计算锥齿轮的疲劳寿命时,Tc取TcF。
主动锥齿轮的计算转矩为
TzTci0G
(5-10)式中,Tz为主动锥齿轮的计算转矩(N·m);i0为主传动比;G为主、从动锥齿轮间的传动效率。计算时,对于弧齿锥齿轮副,G取95%;对于双曲面齿轮副,当i0>6时,G取85%,当i0≤6时,G取90%。
(二)主减速器锥齿轮的强度计算 在选好主减速器锥齿轮主要参数后,可根据所选择的齿形计算锥齿轮的几何尺寸,而后根据所确定的计算载荷进行强度验算,以保证锥齿轮有足够的强度和寿命。
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com 轮齿损坏形式主要有弯曲疲劳折断、过载折断、齿面点蚀及剥落、齿面胶合、齿面磨损等。下面所介绍的强度验算是近似的,在实际设计中还要依据台架和道路试验及实际使用情况等来检验。
1.单位齿长圆周力
主减速器锥齿轮的表面耐磨性常用轮齿上的单位齿长圆周力来估算
pFb2
(5-11)式中,p为轮齿上单位齿长圆周力;F为作用在轮齿上的圆周力;b2为从动齿轮齿面宽。
按发动机最大转矩计算时
p2kdTemaxkigifnD1b2103
(5-12)式中,ig为变速器传动比;D1为主动锥齿轮中点分度圆直径(mm);其它符号同前。
按驱动轮打滑转矩计算时
prr2G2m2D2b2imm
(5-13)式中符号同前。
许用的单位齿长圆周力[p]见表5-1。在现代汽车设计中,由于材质及加工工艺等制造质量的提高,[p]有时高出表中数值的20%~25%。
表5—1 单位齿长圆周力许用值[p]
2.轮齿弯曲强度
锥齿轮轮齿的齿根弯曲应力为
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
w2Tk0kskm103kvmsbDJw
(5-14)式中,w为锥齿轮轮齿的齿根弯曲应力(MPa);T为所计算齿轮的计算转矩(N·m),对于从动齿轮,TminTce,Tcs和TcF,对于主动齿轮,T还要按式(5-10)换算;k0为过载系数,一般取1;ks为尺寸系数,它反映了材料性质的不均匀性,与齿轮尺寸及热处理等因素有关,当ms≥1.6mm时,ks=(ms/25.4)0.25,当ms<1.6mm时,ks=0.5;km为齿面载荷分配系数,跨置式结构:悬臂式结构:km=1.0~1.1,km=1.10~1.25;kv为质量系数,当轮齿接触良好,齿距及径向跳动精度高时,kv=1.0;b为所计算的齿轮齿面宽(mm);D为所讨论齿轮大端分度圆直径(mm);.jw为所计算齿轮的轮齿弯曲应力综合系数,取法见参考文献[10]。
上述按minTce,Tcs计算的最大弯曲应力不超过700MPa;按TcF计算的疲劳弯曲应力不应超过210MPa,破坏的循环次数为6106。
3.轮齿接触强度
锥齿轮轮齿的齿面接触应力为
jcpD12TZk0kmkfkvbjj103
(5-15)式中,j为锥齿轮轮齿的齿面接触应力(MPa);D1为主动锥齿轮大端分度圆直径(mm);b取b1和b2的较小值(mm);ks为尺寸系数,它考虑了齿轮尺寸对淬透性的影响,通常取1.0;kf为齿面品质系数,它取决于齿面的表面粗糙度及表面覆盖层的性质(如镀铜、磷化处理等),对于制造精确的齿轮,kf取1.0;cp为综合弹性系数,钢对钢齿轮,cp取232.6N/mm,jj为齿面接触强度的综合系数,取法见参考文献12[10];k0、km、kv见式(5-14)的说明。
上述按minTce,Tcs计算的最大接触应力不应超过2800MPa,按TcF计算的疲劳接触应力不应超过1750MPa。主、从动齿轮的齿面接触应力是相同的。
五、主减速器锥齿轮轴承的载荷计算
1.锥齿轮齿面上的作用力
锥齿轮在工作过程中,相互啮合的齿面上作用有一法向力。该法向力可分解为沿齿轮切线方向的圆周力、沿齿轮轴线方向的轴向力及垂直于齿轮轴线的径向力。
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com(1)齿宽中点处的圆周力.齿宽中点处的圆周力F为
F2TDm2
(5-16)
式中,T为作用在从动齿轮上的转矩;Dm2为从动齿轮齿宽中点处的分度圆直径,由式(5-17)确定,即
Dm2D2b2sin2(5-17)式中,D2为从动齿轮大端分度圆直径;b2为从动齿轮齿面宽;2为从动齿轮节锥角。
由F1Fcos1cos可知,对于弧齿锥齿轮副,作用在主、从动22齿轮上的圆周力是相等的;对于双曲面齿轮副,它们的圆周力是不等的。
(2)锥齿轮的轴向力和径向力图5-1 7为主动锥齿轮齿面受力图。其螺旋方向为左旋,从锥顶看旋转方向为逆时针。FT为作用在节锥面上的齿面宽中点A处的法向力。在A点处的螺旋方向的法平面内,FT分解成两个相互垂直的力FN和Ff。FN垂直于OA且位于∠OOA所在的平面,Ff位于以OA为切线的节锥切平面内。Ff在此切平面内又可分解成沿切线方向的圆周力F和沿节锥母线方向的力Fs。F与Ff之间的夹角为螺旋角,FT与Ff之间的夹角为法向压力角。这样有
FFTcoscos
(5-18)
FNFTsinFtancos
(5-19)
FsFTcossinFtan
(5-20)于是作用在主动锥齿轮齿面上的轴向力Faz和径向力Frz分别为
FazFNsinFscos
(5-21)
FrzFNcosFssin
(5-22)若主动锥齿轮的螺旋方向和旋转方向改变时,主、从动齿轮齿面上所受的轴向力和径向力见表5-2。
表5-2 齿面上的轴向力和径向力
轴承上的载荷确定后,很容易根据轴承型号来计算其寿命,或根据寿命要求来选择轴承型号。
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
六、锥齿轮的材料
驱动桥锥齿轮的工作条件是相当恶劣的,与传动系其它齿轮相比,具有载荷大、作用时间长、变化多、有冲击等特点。它是传动系中的薄弱环节。锥齿轮材料应满足如下要求:
1)具有高的弯曲疲劳强度和表面接触疲劳强度,齿面具有高的硬度以保证有高的耐磨性。
2)轮齿芯部应有适当的韧性以适应冲击载荷,避免在冲击载荷下齿根折断。
3)锻造性能、切削加工性能及热处理性能良好,热处理后变形小或变形规律易控制。
4)选择合金材料时,尽量少用含镍、铬元素的材料,而选用含锰、钒、硼、钛、钼、硅等元素的合金钢。
汽车主减速器锥齿轮目前常用渗碳合金钢制造,主要有20CrMnTi、20MnVB、20MnTiB、22CrNiMo和l 6SiMn2WMoV等。
渗碳合金钢的优点是表面可得到含碳量较高的硬化层(一般碳的质量分数为0.8%一1.2%),具有相当高的耐磨性和抗压性,而芯部较软,具有良好的韧性,故这类材料的弯曲强度、表面接触强度和承受冲击的能力均较好。由于较低的含碳量,使锻造性能和切削加工性能较好。其主要缺点是热处理费用高,表面硬化层以下的基底较软,在承受很大压力时可能产生塑性变形,如果渗透层与芯部的含碳量相差过多,便会引起表面硬化层剥落。
为改善新齿轮的磨合,防止其在运行初期出现早期的磨损、擦伤、胶合或咬死,锥齿轮在热处理及精加工后,作厚度为0.005~0.020mm的磷化处理或镀铜、镀锡处理。对齿面壶行应力喷丸处理,可提高25%的齿轮寿命。对于滑动速度高的齿轮,可进行渗硫处理以击高耐磨性。渗硫后摩擦因数可显著降低,即使润滑条件较差,也能防止齿面擦伤、咬死习胶合。
【中文word文档库】-专业海量word文档免费下载:http://www.xiexiebang.com
第五篇:减速器设计心得[推荐]
在这次减速器设计过程中,理论基础知识把握得不牢固,在设计中难免会出现这样那样的题目,如:在选择计算标准件的时候可能会出现误差,假如是联系紧密或者循序渐进的计算误差会更大,在查表和计算上精度不够正确;其次:在确定设计方案,选择电动机方面就被“卡住了”,拖了好久,同学在这方面的知识比较缺乏,幸好得到了老师的指点,找到了方法,把题目解决了;再次,在轴的设计方面也比较薄弱,联轴器的选择,轴的受力分析等方面都碰到了困难,在同学的帮助下逐步解决了。这些都暴露出了前期我在这些方面知识的欠缺和经验的不足。对于我来说,收获最大的是方法和能力;那些分析和解决题目的能力。在整个课程设计的过程中,我发现我们学生在经验方面十分缺乏,空有理论知识,没有理性的知识;有些东西可能与实际脱节。总体来说,我觉得像课程设计这种类型的作业对我们的帮助还是很大的,它需要我们将学过的相关知识系统地联系起来,从中暴露出自身的不足,以待改进!
本次的课程设计,培养了我综合应用机械设计课程及其他课程的理论知识和理论联系实际,应用生产实际知识解决工程实际题目的能力;在设计的过程中还培养出了我们的团队精神,同学们共同协作,解决了很多个人无法解决的题目;在今后的学习过程中我们会更加努力和团结。
但是由于水平有限,难免会有错误,还看老师批评指正
课程设计心得体会
作为一名机械设计制造及自动化大四的学生,我觉得能做这样的课程设计是十分有意义。在已度过的三年大学生活里我们大多数接触的是专业基础课。我们在课堂上把握的仅仅是专业基础课的理论面,如何往面对现实中的各种机械设计?如何把我们所学到的专业基础理论知识用到实践中往呢?我想做类似的大作业就为我们提供了良好的实践平台。在做本次课程设计的过程中,我感慨最深确当属查阅了很多次设计书和指导书。为了让自己的设计更加完善,更加符合工程标准,一次次翻阅机械设计书是十分必要的,同时也是必不可少的。我们做的是课程设计,而不是艺术家的设计。艺术家可以抛开实际,尽情在幻想的世界里翱翔,我们是工程师,一切都要有据可依.有理可寻,不切实际的构想永远只能是构想,永远无法升级为设计。记得我曾经设计了一个很“艺术化”的减速器箱盖吊钩,然后找老师询问,结果马上被老师否定了,由于这样的设计,理论上可用,实际上加工困难,增加产品本钱。所以我们工程师搞设计不要以为自己是艺术家,除非是外形包装设计。
作为一名专业学生把握一门或几门制图软件同样是必不可少的,固然本次课程设计没有要求用 auto CAD制图,但我却在整个设计过程中都用到了它。用cad制图方便简洁,易修改,速度快,我的设计,大部分尺寸都是在cad上设计出来的,然后按这尺寸画在图纸上。这样,有了尺寸就能很好的控制图纸的布局。
另外,课堂上也有部分知识不太清楚,于是我又不得不边学边用,时刻巩固所学知识,这也是我作本次课程设计的第二大收获。整个设计我基本上还满足,由于水平有限,难免会有错误,还看老师批评指正。希看答辩时,老师多提些题目,由此我可用更好地了解到自己的不足,以便课后加以弥补。
1.理论和实践同等重要。理论能指导实践,使你能事半功倍,实践能上升成为理论,为以后的设计打下基础。从校门走出后,一定要重视实践经验的积累,要多学多问。师德培训心得学习体会
经过学校的师德培训,以及对《教学纲要》的解读,心里颇有感触。切合实际,适时而为是我们当前教育教学中所面临的首要任务。高尚的德行是教师为人师之核心,一些道德失范的教师实际上是失去了教师本质的人。虽然中西方的师道存在较大的差异,但对教师职业道德都很重视。在我国,自古以来对教师的职业道德都有很高的要求,强调为人师表、以身立教,以及对学生的人格感化。西方则一贯强调通过教师的道德、人格感化学生。赫尔巴特指出:“教学如果没有进行道德教育,只是一种没有目的的手段”,这要求教师的日常教育教学行为要具有“教育性”。现代教育的培养目标发生了很大的变化,要求教师不仅要做到“传授知识”,而且还要通过传授知识去实现学生“人格的建设性变化”,这就意味着教师对学生的发展负有更全面的责任。因此,对教师专业素质的要求不只是知识与技能的发展,还要提高教师内在的专业品质,即实现教师个体专业技能与专业精神在知行范畴和道德范畴的高度统一。可见,做教师难,做一个符合标准师德的教师更难。官方给予教师的称号是“人类灵魂的工程师”、“园丁”,已经到了神的境界,其实我们压根儿就是人。
师德建设作为提高教师道德的系统工程,对促进教师专业发展是具有特殊而重要的意义。从师德建设与教师专业发展的密切关系来看,实现师德建设与教师专业发展的一体化是必要的。现在,教师在专业发展中技术至上的倾向仍占优势,加以社会竞争如此激烈,现实如此残酷,如何使师德建设与教师专业发展相结合,是我们一直探讨的话题。教师的专业发展是具有阶段性,在不同的阶段教师面临不同的发展任务,其发展水平、需求、心态、信念也各不相同。所以,我觉得教师专业道德的发展与教师专业发展的阶段特征也应该是有阶段性的,同时也受到教师专业实践与整体专业水平所制约。比如,新入职的教师和学生发生“矛盾与冲突”,很可能是由于教师专业知识与专业能力不足引起的。因此,师德建设要适应教师专业发展的阶段特征,确定师德建设的目标,在内容、方法上也要有所侧重。因此,师德教育作为师德建设的一个重要组成部分,应与教师专业实践相结合。尽管教师专业发展的途径众多,但是都不能代替教师在学校教育教学场景中的日常专业实践。师德主要表现在教师的专业实践当中,专业实践也是教师师德建设的重要途径。教师的许多优良品质是在专业实践中形成与发展的,专业道德规范只有在专业实践中才能内化为教师的专业品质。道德具有实践性与情境性的特征,不同的教育教学情境会呈现出不同的道德现象与道德问题,教师在实际工作中究竟会如何做,在专业实践中能不能主动按照教师专业道德规范履行自己的职责,这与他本人的实践经验有着极大的关系。因此,师德教育要与教师日常的专业发展紧密结合,让教师在专业实践过程中,通过对道德现象、道德问题,甚至是道德冲突的认识、解释与诠释来提高师德修养与能力。脱离教师专业实践的师德教育难以深入教师心灵,更难以激起教师内在的道德需要。所以师德培训不能这样的说教,更不能一刀切,一培训就一哄上,其实现实已经告诉我们这样的师德培训是没有效果的,这样做有自欺欺人,掩耳盗铃之嫌疑。
最后,说一句,要成为真正的机械工程师,不是一步就能完成的,要慢慢积累,路慢慢其修远兮,吾将上下而求索!