数学史心得体会2

时间:2019-05-12 14:28:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学史心得体会2》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学史心得体会2》。

第一篇:数学史心得体会2

学习数学史的心得体会

学院:数学与信息科学 专业:数学与应用数学 姓名:张小胤

学习数学史对每一位数学工作者来讲都具有非常重要的意义,尤其是对于我们以后要从事数学知识的传播的人。我认为学习数学史的意义主要有以下三点:

一、每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,科学史的现实性还表现在为我们今日的科学研究提供经验教训和历史借鉴,以使我们明确科学研究的方向以少走弯路或错路。多了解一些数学史知识,同时,总结我国数学发展史上的经验教训,对我国当今数学发展不无益处。

二、“数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说”。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。许多历史学家通过数学这面镜子,了解古代其他主要文化的特征与价值取向。

三、当我学习过数学史后,自然会有这样的感觉:数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学

系学习的大部分内容则是17、18世纪的高等数学。这些数学教材已经过千锤百炼,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。通过对数学史的学习,可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。

第二篇:数学史学习心得 2(范文模版)

数学史学习心得

1007014149 李福建

数学是一门老师难教,学生难学的学科,学生觉得数学枯燥抽象。数学教学中适当穿插一些数学发展史知识,有助于改善数学枯燥的形象,使抽象的数学知识变得易于理解;有助于激发学生学习数学的兴趣,明确学习的目的;有助于培养学生多方面的素质。学习数学史给了我们深刻难忘的意义。

数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。

毫无疑问,数学的一切进展都不同程度的植根于实际的需要。但是理论一旦在实际的需要中被推动了,就不可避免的会使它自身获得发展的动力,并超越出直接使用的界限。这在应用学科和理论学科的发展历史中,经常出现这种情况。今天,在许多工程师和物理学家所写的有关近代数学的论文中,也是屡见不鲜的。

每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用,诸如费尔马猜想、哥德巴赫猜想等历史上的难题,长期以来一直是现代数论领域中的研究热点,数学传统与数学史材料可以在现实的数学研究中获得发展。国内外许多著名的数学大师都具有深厚的数学史修养或者兼及数学史研究,并善于从历史素材中汲取养分,做到古为今用,推陈出新。我国著名数学家吴文俊先生早年在拓扑学研究领域取得杰出成就,七十年代开始研究中国数学史,在中国数学史研究的理论和方法方面开创了新的局面,特别是在中国传统数学机械化思想的启发下,建立了被誉为“吴方法”的关于几何定理机器证明的数学机械化方法,他的工作不愧为古为今用,振兴民族文化的典范。科学史的现实性还表现在为我们今日的科学研究提供经验教训和历史借鉴,以使我们明确科学研究的方向以少走弯路或错路,为当今科技发展决策的制定提供依据,也是我们预见科学未来的依据。多了解一些数学史知识,也不会致使我们出现诸如解决三等分角作图、证明四色定理等荒唐事,也避免我们在费尔马大定理等问题上白废时间和精力。同时,总结我国数学发展史上的经验教训,对我国当今数学发展不无益处。

任何时候我们学习都有三个目的 ⑴提高知识量 ⑵提高思维能力 ⑶学会学习。在20岁之前,我们首先要提高思维能力,然后提高知识量,再次学会怎样去学习。我们的思维能力例如记忆力、形象思维能力、逻辑思维、抽象思维、想象力等都像我们的身体一样。如果我们科学地锻炼,我们会长的高一些,肌肉发达、收缩有力,跑得快,跳得高,铅球掷得远,有耐力。思维能在青少年时期正是成长、发育的最佳时期,正像我们的身体,过了20岁,再想锻炼的肌肉发达,体格健壮,长高些,已不可能了,最多只是健康些,抵抗疾病的能力力强一些。而过20岁以后,思维能力很难提高,最多只不过是知识量增加了而已。因此,我们年轻时,思维正像身体一样是锻炼的黄金时期,数学是锻炼思维的最好的一门学科,只有数学才有人敢说是“思维的体操”。可能这就是马克思在闲暇时把做学习当题当作业余爱好的原因吧!

初中考高中,高中考大学(文科、理科),考硕士研究生,博士研究生,国家公务员考试、成人高考,没有一场重大考试不考数学的。

思维能力的提高要以知识量为载体,正像锻炼发达的肌肉要有一定的强度和运动量,以强度和运动量为载体一样,提高思维能力以书本上的知识点为载体,所以第二重要的是书本的知识内容要掌握。

学会学习。我们的思维能力和知识量是有限的,如今,越来越发达,知识在膨胀,需要高精尖人才,再加上很多高科技成果不是一门学科上产生的,有时是几门学科基础上产生或产生于几门学科边缘,因此,现代社会所需人才的知识结构是:金字塔型的,即知识面广,各种学科的知识都要了解,但要有所专,要有主要研究方向,又称有博又专。这就要求我们在中学时代不能只学某几科,而要每门课都要学好,到大学才能专。1)、面对如此多的知识,不善于学习很难登上科学最高峰。2)、生活中或以后工作中都面对许许多多的信息,如果善于学习就会很快抓住要领,成为生活的强者。以前大学学的东西到工作中基本够用了,而现在知识更新如此之快,大学毕业后工作中还学习新知识,要跟上科**流,走在技术前沿,只有学会学习的人才会以不变应万变,永远不被时代落下,“站在巨人的肩上”。当今社会是一个学习型社会,要“终身学习”“活到老学到老”,而不是“一学永逸”。

数学是学习其他知识的基础,马克思说:一切科学只有成功地应用了数学,它的发展才算是完美的。一个伟大的物理学家就是一个伟大的数学家,要想学好物理、计算机、化学、生物、天文、地理等,几乎每一门学科要想学好,都用到数学知识,如果数学不好,那这些学科发展就会受到限制。历史上许多事例说明当这门学科无法向前发展时,因数学问题未解决,当数学问题一解决,这门学科产生了飞跃。20世纪中叶以来,数学自动产生了巨大的变化,特别是与计算机结合,使得数学在研究领域、研究方式和应用范围等方面得到空前拓展。当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是17、18世纪的高等数学。这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。

在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。科学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。

中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其渊源流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。由于各种复杂的原因,16世纪以后中国变为数学入超国,经历了漫长而艰难的发展历程才渐渐汇入现代数学的潮流。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。

学习数学史有利于培养学生正确的数学思维方式 ,现行的数学教材一般都是经过了反复推敲的,语言十分精练简洁.为了保持了知识的系统性,把教学内容按定义,定理,证明,推论,例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少.虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质,定理,然后用来解决问题的错误观点.所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过问题,猜想,论证,检验,完善,一步一步成熟起来的.影响了学生正确数学思维方式的形成.数学史的学习有利于缓解这个矛盾.通过讲解一些有关的数学历史,让学生在学习系统的数学知识的同时,对数学知识的产生过程,有一个比较清晰的认识,从而培养学生正确的数学思维方式.这样的例子很多,比如说微积分的产生:传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿,莱布尼兹在古希腊的“穷竭法”,“求抛物线弓形面积”等思想的启发下为了满足第一次工业革命的需要创造得到的,产生的初期对“无穷小”的定义比较含糊,也不像我们现在看到的这样严密,在数学家们的不断补充,完善下,经过几十年才逐步成熟起来的.数学史的学习可以引导学生形成一种探索与研究的习惯,去发现和认识在一个问题从产生到解决的过程中,真正创造了些什么,哪些思想,方法代表着该内容相对于以往内容的实质性进步.对这种创造过程的了解,可以使学生体会到一种活的,真正的数学思维过程,有利于学生对一些数学问题形成更深刻的认识,了解数学知识的现实来源和应用,而不是单纯地接受教师传授的知识,从而可以在这种不断学习,不断探索,不断研究的过程中逐步形成正确的数学思维方式.学习数学史有利于培养学生对数学的兴趣,激发学习数学的动机 动机是激励人,推动人去行动的一种力量,从心理学的观点讲,动机可分为两个部分;人的好奇心,求知欲,兴趣,爱好构成了有利于创造的内部动机;社会责任感构成了有利于创造的外部动机.兴趣是最好的动机.在日本中学生夺取国际IEA调查总分第一名的同时,却发现日本学生不喜欢数学的比例也是第一,这说明他们的好成绩是在社会,家长,学校的压力下获得的.中国的情况如何呢 尚无全面的报道,但河南省新乡市四所中学的高中生学习数学情况的调查发现:“我不喜欢数学,但为了高考,我必须学好数学”的学生占被调查者的比例高达62.21%,而对数学“很感兴趣”的只有23.12%.可见目前中学生的学习动机不明确,对数学的兴趣也很不够,这些都极大地影响了学习数学的效果.但这并不是因为数学本身无趣,而是它被我们的教学所忽视了.在数学教育中适当结合数学史有利于培养学生对数学的兴趣,克服动机因素的消极倾向.数学史中有很多能够培养学生学习兴趣的内容,主要有这几个方面:一是与数学有关的小游戏,例如巧拿火柴棒,幻方,商人过河问题等,它们有很强的可操作性,作为课堂活动或是课后研究都可以达到很好的效果.二是一些历史上的数学名题,例如七桥问题,哥德巴赫猜想等,它们往往有生动的文化背景,也容易引起学生的兴趣.还有一些著名数学家的生平,轶事,比如说一些年轻的数学家成材的故事,《标准》中提到的“从阿贝尔到伽罗瓦”,阿贝尔22岁证明一般五次以上代数方程不存在求根公式,伽罗瓦创建群论的时候只有18岁.还有法国数学家帕斯卡,16岁成为射影几何的奠基人之一,19岁发明原始计算器;德国数学家高斯19岁解决正多边形作图的判定问题,20岁证明代数基本定理,24岁出版影响整个19世纪数论发展,至今仍相当重要的《算术研究》;还有的是许多出生贫穷卑微的数学家通过自己的艰苦努力,最终在的数学研究上有骄人成绩的例子,如19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠做私人教师谋生,经过艰苦努力,终于在30岁时在数学上做出重要工作,一举成名.如果在教学中加入这些学生感兴趣又有知识性的内容,消除学生对数学的恐惧感,增加数学的吸引力,数学学习也许就不再是被迫无奈的了.最后,学习数学史可以提高学生的美学修养.数学是美的,无数数学家都为这种数学的美所折服.能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美.很多著名的数学定理,原理都闪现着美学的光辉.例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用.两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇,印度国王Bhaskara,美国第20任总统Carfield等都给出过它的明.1940年,美国数学家卢米斯在所著《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力.黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与著名的斐波那契数列有着十分密切的内在联系.同时,在感叹和欣赏几何图形的对称美,尺规作图的简单美,体积三角公式的统一美,非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口.

第三篇:数学史报告心得体会。

学习《数学史》心得体会

李景丽

2012年12月15日,河师大的王振平老师,给我们做了《数学史、数学文化与初中数学教学》的报告,王老师年轻有为,教风朴实、严谨,讲课亲切自然,也不刻意渲染,而是娓娓道来。通过这一天的听课,让我重新对数学史有了个清新、系统的认识。

通过学习让我更加深入地了解数学的发展历程,历经数学萌芽期、初等数学时期、变量数学时期、近代数学时期、现代数学时期,作为人类智慧的结晶,数学不仅是人类文化的重要组成部分,而且始终是推动人类文明进步的重要力量。

体会一:数学教学对学生的影响

日本数学教育家米山国藏说:“作为知识的数学,出校门不到两年,学生可能就忘了,唯有深深铭记在头脑中的是数学的精神,数学的思想、研究方法和着眼点等,这些随时随地发生作用。

数学家的传记、轶闻、故事可以启发学生的人格成长; 数学家的名言激励我们,在教学中,不要重结果而轻过程;重解题技能、技巧而轻普适性思考方法的概括;只讲逻辑而不讲思想。

数学文化的教育,给予学生一种宽广的视野,一种严密的思维,一种敏捷的作风,一种坚毅顽强的精神,一种刻苦钻研的品质,一种乐观向上的态度。

体会二:学习有趣的数学

在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德、托勒密、张衡、祖冲之等,他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。

也许大家觉得数学是一个很枯燥的学科,但是,我们把数学知识编成一些顺口溜会很好记忆,也感受一下数学中的乐趣。3.14***932384626可以这样:

山巅一寺一壶酒:3.14159 尔乐苦杀吾:26535 把酒吃:897 酒杀尔:932 杀不死:384 乐尔乐:626 体会三:学习之道在于悟

我们在教学中,多渗透数学史、数学文化,让学生也体会到数学的发展并非一帆风顺,它是众多数学先贤前赴后继、辛勤耕耘的奋斗过程,也是克服困难、战胜危机的斗争过程。使学生明白数学家在研究中也是会碰到困难的,那么我们在学习中碰到困难又有何畏惧的呢?要抱定有学好数学的恒心和信心。知道我们学习的数学,不仅是一种知识、一种语言、一种工具,更是一种生活态度。

第四篇:数学史

数学史读后感

寒假读了数学史,有很多感触。原来最简单的数字在诞生之前,也经历了那么多曲折,现在看起来很自然的数字0、无理数、负数等,在当时看来是那么奇怪。历史上经历了蛮长的过程才被接受,他们是许多学者前仆后继、辛勤耕耘的结果。

数学史上的三次危机,正是由于数学家们不怕困难,坚持真理,数学才得以继续发展。正如数学的发展过程一样,数学的学习过程也会遇到各种困难和挫折,但是我们要向祖冲之,陈景润、欧拉他们那样,孜孜不倦的学习,以顽强拼搏的精神和勇气,经过思考和探索获得只是。同时,我们也要学习数学家们敢于质疑和创新精神,善于思考。创新是发展的灵魂。在以后的学习中,不因困难而放弃,刻苦钻研。我的数学不太好,但是我不会放弃。虽然不会成为数学家,但是我一定会把数学学好,多写、多练。祖冲之的故事给了我很多感悟。

祖冲之(公元429——500年)是我国南北朝时代一位成绩卓著的科学家。他不仅在天文、数学等方面有过闻名世界的贡献,而且在机械制造等方面也有许多发明创造。他的发明为促进社会生产的发展,建立了不可磨灭 的功绩,受到了中国人民和世界人民的尊敬。刘徽发明了用分割的方法,求得圆周率的近似值3.14。他说用无限分割方法可以求得更加精确的数值,但是后来是由祖冲之求得了更加精确的数值。他的毅力和坚持是多么让人敬佩啊。相比之下,我们的那点困难又算的了什么呢。我们现在有如此优越的条件,更应该努力学习,不能因为一点小小的挫折,就倒下了,要坚持。要明确自己的目标,人正是因为有了清晰的目标和坚定的信仰,有了脚踏实地的行动,才能成功。以后要积极思考,发现问题,学习数学家创新的精神,如果没有欧几里得第五公设的怀疑就不会有非欧几何的产生,如果没有创新的勇气哪儿会有康托尔集合论的创立。

数学的发展只一个漫长而又曲折的过程,我们学习的只是很少的一部分,没有理由不好好学。这个过程正如人生一样,布满荆棘,但不能阻挡我们的前进。

第五篇:数学史

1学习数学史有何意义?研究数学史主要有那些形式?

与其他知识部门相比,数学是门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有的理论,而且总是包容原先的理论。人们也常常把现代数学比喻成一株茂密的大树,它包含着并且正在继续生长出越来越多的分支。

数学史不仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在更多的情况下是充满忧郁、徘徊,要经历艰难曲折,甚至会面临危机。数学史也是数学家们克服困难和战胜危机的斗争记录。对这种记录的了解可使我们从前人的探索与奋斗中汲取教益,获得鼓舞和增强信心。因此,可以说不了解数学史就不可能全面了解数学科学。

大类分为内史和外史。具体有编年史(随时间前后)、国别史(按不同国家区域)、学科史(按数学分科)、断代史(截开一个历史横断面,研究同一个时期内各个国家各个区域的数学情况)

2作为世界四大文明古国之一,中国在先秦时期有哪些主要的数学成就?

商高定理:又叫“勾股定理”。在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理。勾股定理是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。

《墨经》:诸子百家中阐述自然科学理论与学说最丰富的著作,包括光学、力学、逻辑学及几何学等各方面的知识,还包含了无限分割的思想。

《周髀算经》:《周髀(bì)算经》乃是算经的十书之一。原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用以及怎样引用到天文计算。

3刘徽是中国历史上。最重要的数学家之一,他的«九章算术注»对于中国传统数学体系的形成具有特别重要的意义。试阐述他的主要数学成就。

刘徽的数学成就大致为两方面:

一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:二是在继承的基础上提出了自己的创见。

用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;他从开方不论述了无理方根的存在。他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术;用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原 1

理,并解决了多种几何形、几何体的面积、体积计算问题。他在《九章算术•圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。

4宋元时期我国最杰出的数学家有哪些?试阐述他们的代表作和主要数学成就。

宋元时期数学,可以说是以算筹为主要工具的中国古代数学的极盛时期,出现了沈括、秦九韶、李治、杨辉、朱世杰等著名的数学家和他们编写的数学著作。如沈括的《梦溪笔谈》,秦九韶的《数学九章》等。这一时期数学家取得了很多具有世界意义的成就,特别是高次方程数值解法、天元术和四元术、大衍求一术、垛积术和招差术等。北宋沈括《梦溪笔谈》中曾经研究二阶级数求和问题,首创“隙积术”。南宋杨辉丰富和发展了隙积术的成果,提出

S=12+22+32+…+n2=1/6n(n+1)(2n+1)

S=1+3+6+10+…+n(n+1)/2=1/6n(n+1)(n+2)

之类的垛积公式。

5中国传统数学是世界数学发展长河的一支不容忽视的源头, 她有哪些重要特点?

一是追求实用,如《周髀算经》是我国最古老的天文学著作;二是注重算法,“问—答—术”的解题程序,“术”就是解答该类问题的程序化算法;三是寓理于算,如中国传统几何理论基础“出入相补”等原理。20世纪数学的发展有哪些显著的特点?

一是更高的抽象性,包括集合论观点(数学的研究对象是抽象集合)和公理化方法(数学的研究对象);二是更强的统一性,体现在几何与分析的统一、几何与代数的统一、几何分析和代数的统一;三是更深刻的基础性,体现在集合论悖论、三大学派(逻辑主义、直觉主义、形式主义)、数理逻辑体系;四是更广泛的应用性。20世纪应用数学的发展有哪些特点?

向人类几乎所有的知识领域渗透,纯粹数学几乎对所有的分支都获得应用;现代数学对生产技术的应用变得越来越直接,向外渗透产生了一些相对独立的学科,如数理统计、运筹学、控制论和信息论等。现代计算机的出现,对数学科学的发展有何影响?对您影响最大的现代数学的学科有哪些?为什么?对您影响最大的数学家有哪些人?为什么?

下载数学史心得体会2word格式文档
下载数学史心得体会2.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学史

    前言 一、数学史研究哪些内容? P1 答:数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。 二、历史上关于数学概念的定义有哪些? P5......

    数学史教学大纲(推荐)

    中央电大“人才培养模式改革和开放教育试点” 《数学简史》教学大纲 第一部分 大纲说明 一、课程的性质和任务 《数学简史》是中央广播电视大学“人才培养模式改革和开放教......

    《数学史》教学大纲

    《数学史》课程教学大纲 课程名称:数学史 英文名称:History of Mathematics 课程编码:0741122030 学时数:72 适用专业:数学与应用数学 一、课程的性质、目的和任务 数学史是数学......

    数学史论文

    数学史论文 ——中世纪的中国数学 院系:数信学院 班级:数教一班 姓名:韩军香 学号:20120503031 摘要:从公元476年西罗马帝国灭亡到14世纪文艺复兴长达1000多年的欧洲历史称为欧洲......

    数学史论文

    数 学 史 论 文 :课程论文 班级:09数学2班 内容古希腊数学发展史初探 【摘要】: “古希腊数学”只是一个习惯用语,它并不等同于希腊这个国家或地区所创造的数学,而是指包括希腊......

    数学史 勾股定理

    毕达哥拉斯定理小记 2014071137 朱燕 初等几何中最引人注目的,也是最著名最有用的一个定理,就是所谓的毕达哥拉斯定理:在任何直角三角形中,斜边上的正方形等于两条直角边上的正......

    数学史学习体会

    数学史学习体会 ——浅析古希腊及古代中国数学发展 摘要:古希腊数学的成就在世界上是首屈一指的,它为人类创造了巨大的精神财富。古希腊数学家注重推理,更多的依靠逻辑思维。而......

    古希腊数学史

    古希腊数学史古希腊的地理范围,除了现在的希腊半岛外,还包括整个爱琴海区域和北面的马其顿和色雷斯、意大利半岛和小亚细亚等地。 公元前5、6世纪,特别是希、波战争以后,雅典取......