第一篇:大一高等数学学习心得
大一高等数学学习心得
转眼之间大一已经过去了一半,高数的学习也有了一学期,仔细一想,高数也不是传说中的那么可怕,当然也没有那么容易,前提是的自己真的用心了。
记得刚开学的时候,我对高数还是很害怕的,我虽然上课认真听讲,但我还是不大明白,当然那是由于刚开始的课程确实是很抽象的,很难以高中时的解题思维理解,但后来学的就不是那么的吃力了,再加上我的勤奋看书。
对于高数的学习大多数人都认为应该课前预习、上课认真听讲、课后复习。但那只能是理想的状态下,事实是不允许我们那样做的。由于我的数学还算有点功底,一直以来,我只做到了其中的一点半,而且成绩还算过得去,因此,我认为对于高数的学习,我们应该上课认真听讲,时课后复习。我们主要应该在课堂上认真听讲,理解解题方法,我们现在所需要的是方法,是思维,而不仅仅是例题本身的答案,我们学习高数不是为了将来能计算算术,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。
在课后复习时,再根据例题好好体会解体的方法,一定要琢磨透。至于您的方法我觉得还不错,容易的快速过,困难的花点时间耐心讲解。只是我们每学期都要放弃后边的一部分内容,是否可以考虑相对放弃一些前面简单的,而加快进度讲完后面的一些内容。
第二篇:高等数学学习心得
高等数学学习心得
机制1班 陈涛
经过半年的高等数学的学习,对于高等数学有些心得与体会。
首先高等数学是我第一次接触,明显感觉到它与初中及高中时候学习的初等数学有很大的不同。对于初等数学,我们是为了中考以及高考才努力学习,学习初等数学,只需要做大量的习题,熟练解题的步骤,就可以在考试中获得十分可观的分数。但是对于高等数学,我们以前学习初等数学的方法以及认识已经不再适用于高等数学的学习。
学习高等数学是为了诸多研究性专业与学科打好基础,它是研究科学问题的最重要的工具,毫不夸张的说高等数学就是一门研究性的学科,学习高等数学我们要抱着科学严谨的态度。对于高等数学我们要多思考,多理解,从根本上去探索它的定义,它的意义。学习初等数学的题海战术已不再适用于高等数学。如果对于高等数学的某个定义你不理解,做再多的题也很难去寻找这个定义的根本,就算你通过做大量的题熟悉某一类题目的解题方法,但将题目类型稍微改变一下,估计你就无计可施了。所以,我们要从根本上理解它的定义,因为不管题目如何变换,它始终不会离开定义。所以理解定义是学习高等数学的关键,是高等数学的基础。
兴趣也是学习高等数学的关键。学习高等数学必须要有兴趣,很多人说高等数学很难很枯燥,就是因为没有产生兴趣,兴趣是学习最好的导师,只要你有兴趣,那么你自然会努力学习这门课程,就不会感觉到乏味与困难。兴趣是你学习高等数学的动力,有了兴趣你就会勇于在高等数学的海洋中探索。
在这半年的学习中,我们学习了高等数学中的函数、极限、导数、微积分等概念。首先在函数的学习中,我们主要学习了一些关于函数的基本概念以及函数性质。其次,我们学习了极限,在极限的学习过程中,我们学习了两个重要极限以及介值定理。在求极限的过程中我们学习等价替换等方法求极限,为我们解决了求极限问题的障碍。在学习极限之后,我们学习了导数。明白了引出导数的原因,以及导数存在的意义。在导数的学习中,我们学习了隐函数的导数;导数的定义;洛必达法则求极限的方法;求曲线的切线方程;函数的一些利用导数求出的一些性质,例如单调性,凹凸性;微分在近似计算中的应用;麦克劳林公式,中值定理证明以及导数的应用等方面的知识。导数是高等数学非常重要的组成部分,在高等数学中与许多概念都有关联。紧接着导数我们学习的是积分,积分是高等数学重要的组成部分之一,积分是由平面图形的面积提出的,它在物理学中也有极多的应用。在积分的学习中,我们学习许多关于定积分与不定积分概念与计算方法以及(不)定积分中的性质,并且在定积分中有诸多例如奇偶性,周期性等重要性质,这是我们学习的重要部分。在积分中还有一些性质需要我们注意,比如反常积分,变上限积分函数,还有利用积分求极限,还有一点非常重要的应用需要我们注意,利用积分求面积求体积。在这学期最后我们学习了我感觉是本学期最难一部分,微分方程。在课堂听课的过程中我发现了许多同学对这方面的学习与理解有困难,我也感觉到这章的学习比前几章要吃力的多。微分方程这章的定义比较深奥,这是导致许多同学无法理解的重要原因。其次这章的学习过程中,题目的类型过多,以及书本上讲的过于狭隘,我们在计算过程中十分容易碰壁。对于许多题目无从下手。
经过这半年的学习我对数学有了更深刻的认识,数学是最严谨的语言,它只有错与对,永远不会出现模棱两可的概念。数学也是我最喜欢的学科,因为数学题目会给我惊喜,没当解出一题,自豪与满足感便会充满全身。这般的学习也让我对数学的学习有了更详细的计划,让我对数学的学习有了更浓厚的兴趣。
第三篇:高等数学学习心得
高等数学学习心得
040930117 通过对高等数学一年的学习,在这里很荣幸和大家分享一下高数的学习心得。首先,我想说一下高数在大学的重要性,看过教学计划的同学就会知道,高数的学分是你大学四年里最高的,可以毫不夸张的说如果你高数的学分拿不到,你的学位证书也就不用想了。一般来说,如果你大一高数挂了,要想重修过还是很痛苦的。所以希望大家无论如何,一定要把高数考好。记得开学时有位老师告诉我,专业课可以挂,但高数一定不能。说这句话,并不是说专业课不重要,只是为了说明考好高数的重要性。
其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦(注意!!)。可能之前会听到家长或者老师会说,到了大学就可以好好玩了。不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。而且,大学其实并不比高中轻松(这句话大家一定注意)。
下面我来介绍一下,大学高数的一些学习方法:
第一,还是老生常谈,那就是课前预习,而且,我觉得在大学课前预习显得比以前任何时候都重要。因为,大学课程的进程可不是一般的快。希望大家能保持课时比老师快两节,练习比老师快一节。最低限度,是不能落下(其实,这个要求也不低,但希望大家一定不能落下)。
第二,要好好利用课堂时间,对于预习中不明白的地方,注意听讲,而对于自己觉得简单的地方,大家就可以做些相关练习了。有一点大家需要注意,不明白的问题一定不要积压,要及时的问同学或者老师(建议是老师,但前提是你对这道题目要有一定的思考),经常问老师题目对你的好处是很大的,因为考试的题目一般都是你们的老师出的,所以老师在给你讲题的时候会不知不觉的给你透漏考试的一些信息,同时,万一考试时你出了状况,结果考了个五十几分,如果老师对你有不错的印象,她是可以把你送过的。
第三,就是你所需要做的题目,可以说只要你能把课本习题和老师上课讲的所有的题都弄会,考试是完全没有问题的,其他的题目就完全没有必要了,这里就不像高中要做大量的其他习题,但大家要注意,课本的题是有一定难度的。希望大家认真对待,不要气馁,不懂就问。这里的最低限度就是课本例题、练习册,一定不能再少了。想拿高分的同学,一定要多做题(范围也就是课本和老师讲的题),特别是向拿奖学金的同学。
第四,希望大家把学习时间一定要给足了,只靠考前突击,高数是没办法过的,除非你是天才。强烈建议大家去自习室,养成晚自习的习惯。宿舍的学习环境并不好,如果就想在宿舍学习,那么你必须先把桌子收拾干净,这样可以很好的提高你的注意力,原因大家应该体会的到。
好了,说的不少了,希望大家能有所收获,预祝大家取得优异的成绩。
第四篇:大一高等数学竞赛策划
大一高等数学竞赛策划
一、目的及意义
高等数学是理工科基础中的基础,也是学科建设的基础。与物理、物化、工
程力学、传输原理、电工学等几乎所有理工科课程有关。03级实践证明98%的同学由于高等数学底子薄弱听不懂课程,导致最后强烈要求将统计热力学改为考查课。而且在许多理工类论文的研究突破点上,高等数学及其数学思维功不可没。它与考研息息相关,且与英语两门决定考研大局。
通过竞赛激发同学学习兴趣,大一时就打好坚实的数学基础,为以后其它知
识学习提供必备的学习工具。03,04级挂科的同学也可以参加,这样可以帮助他们发现学习中的漏洞及时弥补提高整体通过率。还可以为形成考研队伍起到引导、启发作用。而且在教学上起到检验教学的目的,并且通过竞赛活动希望达到教学相长的作用。但最重要的还是希望这次活动为材料系学科建设形成具有特色的模式进行抛砖引玉,为培养具有后劲人才打下基础。
为此学习部组织本次由学习部出题,批卷的高数竞赛活动。并且考完后由学习部组织同学对试题进行详细讲解以及对其它疑问知识的解答。
三、命题及考试方式
① 试题特点:满分为150分,选择题12题,每题5分。填空题4题,每题4分。
解答题6题,分别8、10、10、12、12、14分。基础题共106分,压轴题44分,且采取多题把关的方式。
② 命题小组:组长:阙永生
成员:李娜、高翠萍、靳冰花、刘文杰
③ 监考小组:总监:孙强督察:马建军(辅导员)
成员:阙永生、魏冰、靳冰花、刘文杰
④ 批卷小组:组长:阙永生
成员:李娜、高翠萍、靳冰花、刘文杰
四、考试安排
时间:12月24日上午9:00 ~ 11:00(考生8:40进入考场)
地点:13#129
五、奖励方式
一等奖1 名、二等奖1名、三等奖1名、鼓励奖5名
具体奖励办法:一等奖80元、二等奖50元、三等奖20元、鼓励奖每人钢笔1支、一等奖、二等奖、三等奖荣誉证书各一份
六、经费操作
①
②
③
④
⑤ 奖品费用总计约为225元。试卷用纸30元。光荣榜用纸3元。命题人员活动经费每人8元(共40元)。总计:298元
材料系学习部
2005年10月10日
第五篇:大一高等数学总结
第一讲 函数、连续与极限
一、理论要求
1.函数概念与性质
函数的基本性质(单调、有界、奇偶、周期)
几类常见函数(复合、分段、反、隐、初等函数)
2.极限 极限存在性与左右极限之间的关系
夹逼定理和单调有界定理
会用等价无穷小和罗必达法则求极限
3.连续 函数连续(左、右连续)与间断
理解并会应用闭区间上连续函数的性质(最值、有界、介值)
二、题型与解法 A.极限的求法(1)用定义求
(2)代入法(对连续函数,可用因式分解或有理化消除零因子)
(3)变量替换法
(4)两个重要极限法
(5)用夹逼定理和单调有界定理求
(6)等价无穷小量替换法
(7)洛必达法则与Taylor级数法
(8)其他(微积分性质,数列与级数的性质)
1.(等价小量与洛必达)
2.已知
(洛必达)
3.(重要极限)
4.已知a、b为正常数,(变量替换)
5.解:令6.(变量替换)
7.已知在x=0连续,求a
解:令
(连续性的概念)
三、补充习题(作业)
1.(洛必达)
2.(洛必达或Taylor)
第二讲 导数、微分及其应用
一、理论要求 1.导数与微分 导数与微分的概念、几何意义、物理意义
会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)
会求平面曲线的切线与法线方程
2.微分中值定理 理解Roll、Lagrange、Cauchy、Taylor定理
会用定理证明相关问题
3.应用 会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图
会计算曲率(半径)
二、题型与解法
A.导数微分的计基本公式、四则、复合、高阶、隐函数、参数方程求导
算
1.决定,求
2.决定,求
解:两边微分得x=0时,将
x=0代入等式得y=1
3.决定,则
B.曲线切法线问5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足题
f(1+sinx)-3f(1-sinx)=8x+o(x)。求f(x)在(6,f(6))处的切线方程。
解:需求,等式取
x->0的极限有:f(1)=0
C.导数应用问题
6.已知,求点的性质。
解:令,故为极小值点。
7.,求单调区间与极值、凹凸区间与拐点、渐进线。
解:定义域
8.求函数的单调性与极值、渐进线。
解:,D.幂级数展开问10.求题
解:
=E.不等式的证明
11.设,证:1)令
2)令F.中值定理问题
12.设函数
具有三阶连续导数,且,求证:在(-1,1)上存在一点
证:
其中
将x=1,x=-1代入有
两式相减:
13.,求证:
证:
令
令
(关键:构造函数)
三、补充习题(作业)
1.2.曲线
3.4.证明x>0时, 证:令