第一篇:学习特种焊接有感
学习特种焊接有感
焊接作为先进制造技术的重要组成部分在国民经济的发展和国家建设中发挥了重要的作用。焊接技术的优秀成果在航空、核能、船舶、电力、电子、海洋钻探、高程建筑等领域得到广泛的应用。
随着科学技术的发展和技术的进步,焊接已经逐渐脱离了单纯工艺和技术的层面而走向科学的范畴,并且在与其他科学知识的不断碰撞和交融中,展现出来旺盛的生命力。新材料的不断产生、新能源的不断开发和新结构的不断涌现,对焊接技术提出了新的挑战。由此传统的焊接技术以满足不了工程的应用,随着材料和技术的发展,焊接技术也得到了发展。
这学期有幸跟着张老师学习了《特种先进连接方法》,不仅接触认识了先进的焊接技术,还学到了课本意外做人做事的道理,下面就学习《特种先进连接方法》的一点个人认识简单地叙述一下,有不对之处还望张老师纠正。
这学期学习的特种焊接包括:激光焊、电子束焊、超塑性焊接和超塑成行/扩散连接、摩擦焊、爆炸焊、微连接技术等。特种先进连接方法简单地说是由于热源形式不同于传统,焊接质量高,焊接设备昂贵的特点才成为特种焊接!
一、激光焊接(laser beam welding,简称LBW)是利用高能量密度的激光束作为热源的一种高度精密的焊接方法。激光焊接的基本过程就是使经光学系统聚焦后具有高功率密度的激光束照射到被焊材料表面,利用该材料对光能的吸收来对其进行加热、熔化,在经过冷却结晶而形成焊接接头的一种熔化焊过程。激光焊接技术及激光焊接接头大致具有以下多方面的优点:
1:焊缝组织多为极细的树枝晶,接头的综合力学性能优良。○ 2:○激光焊接过程存在着净化效应,焊缝中有害杂质含量较低,有更好的抗气孔和抗裂纹能力。
3:焊接线能量小,焊道窄,焊缝深宽比大,热影响区极窄,工件收缩和变形较小。○4:焊接生产效率高,可进行精确焊接并易于实现生产过程的自动化。○5:较易实现异种材料和非对称接头的焊接。○6:可焊到性较好,能够焊接其他焊接方法难以焊到的位置。○
二、电子束焊(electronic beam welding,简称EBW)是一种高功率密度的焊接方法。它利用空间定向告诉运动的电子束,撞击工件表面后,将部分动能转化成热能,使被焊金属熔化,冷却凝固后形成焊缝。电子束撞击工件时,其动能的95%可转化为焊接所需的热能,功率密度可高达106/cm2以上,焦点处的最高温度高达59000C左右。
电子束焊的分类。按被焊工件所处环境的真空度可分为:高真空电子束焊、低真空电子束焊、非真空电子束焊。按电子枪固定方式可分为:动枪式电子束焊、定枪式电子束焊。按电子枪加速高压的高低可分为:高压电子束焊(60~150kv)、中压电子束焊(40~60kv)、低压电子束焊(低于40kv).用电弧焊方法能焊接的金属,一般都能够用电子束焊。电子束焊是一种高功率密度的熔焊方法,同其他形式的熔焊方法相比,具有以下优点: 1:加热的功率密度大。与偶遇电子束的功率密度大,加热集中,热效率高,焊缝接头热输○入量小,所以适宜于难熔金属及热敏感性强的金属材料的焊接。2:焊缝深宽比大 ○3:○熔池周围气氛纯度高。真空电子束焊是在真空中进行的,排除了大气中有害气体对熔化金属的影响,特别适宜喊焊接化学活泼性强、纯度高、极易被大气污染的金属焊接。4:规范参数调节范围广、适应性强。○电子束焊虽有以上诸多优点,但也存在了很多缺点限制了该方法的普遍推广: 1:电子束焊机结构复杂,控制设备精度高,因此成套设备价格很高。○
2:○电子束焊的焊缝接头需进行专门设计和制作加工,接头间隙需严格控制,这就使接头制备的加工费用较高 3:○由于电子束焦点直径很小,焊缝宽度很窄,因此电子束与工件接缝的对准稍有偏差就可能使焊缝偏离工件接缝造成焊接缺陷。
4:焊接时有X射线产生,屏蔽该射线比较困难,且使整机成本增加.○由以上优缺点可知,从事电子束焊操作的技术人员要求认真、细心。且在这种岗位不宜工作太久的。
三、摩擦焊(friction welding,简称FRW)是一种固态热压焊,是利用焊件接触面之间的相对摩擦运动和流动所产生的热量,使界面及附近区域达到热塑状态并在压力作用下产生适当的宏观塑性变形而形成接头。
摩擦焊的分类。根据焊件的相对运动形式分:连续驱动摩擦焊、惯性摩擦焊、相位控制摩擦焊、摩擦堆焊、线性摩擦焊、轨道摩擦焊、径向摩擦焊、搅拌摩擦焊。按照工艺特点可分为:普通摩擦焊、低温摩擦焊、超塑性摩擦焊、气体保护摩擦焊、感应加热摩擦焊、导电加热摩擦焊、封闭摩擦焊、钎层摩擦焊、嵌入摩擦焊、第三体摩擦焊、水下摩擦焊。传统的摩擦焊通常是指连续驱动摩擦焊、惯性摩擦焊、相位控制摩擦焊、摩擦堆焊、线性摩擦焊,它们的共同特点是依靠两个待焊件之间的相对摩擦运动产生热量。搅拌摩擦焊、嵌入摩擦焊、第三体摩擦焊、摩擦堆焊等是依靠搅拌头与待焊件之间的相对摩擦运动产生热量而实现焊接,通常称为新型摩擦焊。
摩擦焊的热影响区小,不会产生通常熔化焊的焊接缺陷,焊接生产率高,产品质量稳定,成品率高,由此越来越受到制造业的重视。此外摩擦焊还有以下优点:
1:生产成本地。不用填充材料,不用保护气体,厚件边缘不用加工破口,不必进行去除氧○化膜,不苛求装配精度,不需事先打底焊。2接头质量高 ○3:安全环保。整个焊接过程中无熔化、无辐射、无污染等有害物质。○4:便于机械化、自动化操作。○摩擦焊当然也有不足之处,摩擦焊常见的缺陷有以下四点: 1:○“灰斑”缺陷。“灰斑”是一种焊接缺陷在断口上的表现形式,它在断口上一般表现为暗灰色平斑状,无金属光泽,具有明显的沿焊缝断裂的特征,宏观上表现为脆性断裂。2:焊接裂纹。主要出现在焊合区边缘飞边缺口部位、焊合区内部、近缝区及飞边上。○3:未融合。一般产生与焊接接头的焊合面上,其表面宏观特征呈现氧化颜色。○4:淬硬组织。焊接淬火钢时,摩擦时间短,冷却速度快会在接头中形成淬硬组织。另外,○摩擦焊接头中还会出现焊缝脱碳、过热组织、脆性合金层等缺陷。
四、爆炸焊 爆炸焊(explosive welding,简称EXW)是一种固态焊接,它是以炸药为能源,利用炸药爆炸时产生的冲击波使两层或多层同种或异种材料高速倾斜碰撞而焊合在一起的方法。爆炸焊能使物理性能(熔点、热膨胀特性、硬度等)有明显差异、用普通焊接方法无法实现焊接的金属焊合在一起,并且能获得高强度的焊接接头。由此爆炸焊的优点有以下几点:
1:可实现同种材料的焊接,也可实现异种材料的焊接 ○2:可以焊接的尺寸范围很宽。○3:可以进行双层、多层的复合板的焊接,也可以用于各种金属的对接、搭接与点接。○4:爆炸焊工艺比较简单,不需要复杂的设备,能源丰富,投资少,应用方便。○5:爆炸焊不需要填充金属,可节省贵重的稀缺金属。○6焊接表面不需要很复杂的清理。○
鉴于爆炸焊有以上优点,其主要用途有三点
1:改善材料的综合力学性能和物理/化学性能(如耐腐蚀、耐磨损等性能)○2:作为特殊功能材料使用(如热敏双金属)○,充分发挥金属物理性能的复合材料 3:作为稀贵金属的代用品,节约稀贵金属,降低成本。○当然爆炸焊是以炸药为能源的,因此爆炸焊具有一定的危险性,爆炸时所产生的噪音和气浪对周围环境有一定的影响。爆炸焊大多在野外、露天进行,机械化程度低,劳动条件差。因此应用有限。
五、微连接技术
微连接技术是决定电子信息产品最终质量的关键技术,在微电子元器件制造和电子产品组装中广泛应用。其具有如下特点: 1:○由于连接接头的尺寸极其微小,在传统焊接中被忽视或不起作用的因素却成为决定质量和可焊性的关键因素。
2:微电子材料、结构及性能的特殊性,要求采用特殊的连接方法。○由于电子行业的不断飞速发展,我个人感觉微电子技术要求会越来越高,应用也越来越广泛。
此外还学习了超塑性的焊接。超塑性是指材料在一定的内部条件和外部条件下,呈现出异常低的流变抗力、异常高的流变性能的现象。超塑性焊接是一种新的材料固态焊接方法。材料处于超速状态时,可以在低应力下实现大德塑性流变,并且具有强烈的激活状态,非常有利于实现待连接面的密和、破坏及界面两侧原子的互扩散而实现的固态连接,即超塑性固态焊接(superplastic solid-state welding,简称SSW).超塑性焊接还可以与塑性成型同步而同时完成零部件的成形与焊接,所以超塑性焊接具有的明显的技术优势,使其具有很好的工业应用前景,已成为近年来固态焊接非常活跃的领域。
学习特种焊接后,总体感觉这些焊接方法优于传统的焊接方法,适应于要求高,难用一般方法焊接的焊件焊接。广泛的应用于航空航天、石油化工、宇航等领域。由于新材料的不断出现,科技的不断发展,新的焊接方法将不断的出现,日新月异。
在此谢过这学期以来张老师对我们文化课和做人的教导,在以后的路上谨记张老师的教育:做人优于做事。
参考文献:张柯柯 涂益民 《特种先进连接方法》 哈尔滨工业大学出版社
第二篇:特种焊接论文
激光焊和电子束焊接
学 院:材 料 科 学 与 工 程 学 院
专 业:金 属 材 料 科 学 与 工 程
姓 名:黎 琦
学 号:20100800411
激光焊和电子束焊接
摘要: 本文通过对特种焊接方法中的激光焊和电子束焊接两种方法的原理、特点、设备、工艺及应用等方面的简介,让大家对特种焊接技术得到一个完整的认识。在焊接这个领域中,特种焊接技术是在近年来得到高速的发展。它不仅给焊接技术的发展带来巨大的推动力,也对许多相关产业产生相当深远的影响
关键词:焊接技术 发展
日新月异
1.引言 焊接作为先进制造技术的重要组成部分在国民经济的发展和国家建设中发挥了重要的作用。焊接技术的优秀成果在航空、核能、船舶、电力、电子、海洋钻探、高程建筑等领域得到广泛的应用。随着科学技术的发展和技术的进步,焊接已经逐渐脱离了单纯工艺和技术的层面而走向科学的范畴,并且在与其他科学知识的不断碰撞和交融中,展现出来旺盛的生命力。新材料的不断产生、新能源的不断开发和新结构的不断涌现,对焊接技术提出了新的挑战。由此传统的焊接技术以满足不了工程的应用,随着材料和技术的发展,焊接技术也得到了发展,越来越多的焊接方法得到应用——特种焊接。
2.激光焊
2.1激光焊的基本原理(1)激光焊接的基本过程
使用经光学系统聚焦后具有高功率密度的激光束照射到焊接材料表面,利用材料对光能的吸收来对其进行加热、熔化,再经过冷却结晶而形成焊接接头的一种熔化焊过程。(2)激光焊机理
按激光器输出能量的方式不同,激光焊分为脉冲激光焊和连续激光焊,按激光聚焦后光斑上功率密度的不同,激光焊可分为传热焊和深熔焊。1)激光传热焊
采用的激光器光斑上的功率密度小于105W时,激光将金属表面加热到熔点与沸点之间,焊接时,金属材料表面将所吸收的激光能转变为热能,是金属表面温度升高而熔化,然后通过热传导方式把热能传向金属内部,使熔化区逐渐扩大,凝固后形成焊点或焊缝,其熔深轮廓近似为半球形。
特点是:激光光斑上的功率密度小,很大一部分光被金属表面所反射,光的吸收率较低,焊接熔深浅,焊接速度慢。主要用于薄、小零件的焊接加工。2)激光深熔焊
当激光光斑上的功率密度足够大时(大于等于106W/cm2),金属在激光的照射下被迅速加热,其表面温度在极短的时间内升高到沸点,是金属熔化和汽化。当金属汽化时,所产生的金属蒸汽以一定的速度离开熔池,金属蒸汽的溢出对熔化的液态金属产生一个附加压力,使熔池金属表面向下凹陷,在激光光斑下产生一个凹坑。当光束在小孔底部继续加热汽化时,所产生的金属蒸汽一方面压迫坑底的液态金属是小坑进一步加深,另一方面,向坑外飞出的蒸汽将熔化的的金属挤向熔池四周。这个过程连续进行下去,便在液态金属中形成一个细长的空洞。当光束能力所产生的金属蒸汽的反冲压力与液态金属的表面张力和重力平衡后,小孔不再继续加深,形成一个深度稳定的孔而进行焊接,因此称之为激光深熔焊。(3)激光焊过程中的几种效应
小孔效应、等离子体屏蔽效应、等离子体的负面效应、壁聚焦效应、净化效应
2.2激光焊接的设备组成
激光器、光学系统、激光加工机、辐射参数传感器、工艺介质输送系统、工艺参数传感器、控制系统、准直用He-Ne激光器
其中激光焊接设备主要由激光器、导光系统、焊接机和控制系统组成。2.3激光焊接的工艺特点
按焊接熔池形成的机理区分,激光焊接有两种基本模式:热导焊和深熔焊,前者所用激光功率密度较低(105~106W/cm2),工件吸收激光后,仅达到表面熔化,然后依靠热传导向工件内部传递热量形成熔池。这种焊接模式熔深浅,深宽比较小。后者激光动车密度高(106~107W/cm2),工件吸收激光后迅速熔化乃至气化,熔化的金属在蒸汽压力作用下形成小孔激光束可直照孔底,使小孔不断延伸,直至小孔内的蒸气压力与液体金属的表面张力和重力平衡为止。小孔随着激光束沿焊接方向移动时,小孔前方熔化的金属绕过小孔流向后方,凝固后形成焊缝(图1)。这种焊接模式熔深大,深宽比也大。在机械制造领域,除了那些微薄零件之外,一般应选用深馆焊。
深熔焊过程产生的金属蒸气和保护气体,在激光作用下发生电离,从而在小孔内部和上方形成等离子体。等离子体对激光有吸收、折射和散射作用,因此一般来说熔池上方的等离子体会削弱到达工件的激光能量。并影响光束的聚焦效果、对焊接不利。通常可辅加侧吹气驱除或削弱等离子体。小孔的形成和等离子体效应,使焊接过程中伴随着具有特征的声、光和电荷产生,研究它们与焊接规范及焊缝质量之间的关系,和利用这些特征信号对激光焊接过程及质量进行监控,具有十分重要的理论意义和实用价值。
由于经聚焦后的激光束光斑小(0.1~0.3mm),功率密度高,比电弧焊(5×102~104W/cm2)高几个数量级,因而激光焊接具有传统焊接方法无法比拟的显著优点:加热范围小,焊缝和热影响区窄,接头性能优良;残余应力和焊接变形小,可以实现高精度焊接;可对高熔点、高热导率,热敏感材料及非金属进行焊接;焊接速度快,生产率高;具有高度柔性,易于实现自动化。
激光焊与电子束焊有许多相似之处,但它不需要真空室,不产生X射线,更适合生产中推广应用。激光焊接实际上已取得了电子束焊接20年前的地位,成为高能束焊接技术发展的主流。
2.4激光焊接在工业中的应用情况(1)激光焊接在国外汽车工业中的应用 1)白车身激光焊接
汽车工业中的在线激光焊接大量用在白车身冲压零件的装配和连接上。主要应用包括车顶盖激光焊、行李箱盖激光钎焊及车架激光焊接。
另一项比较重要的车身激光焊接应用,是车身结构件(包括车门、车身侧围框架及立柱等)的激光焊接。采用激光焊的原因是可提高车身强度,并可解决一些部位难以实施常规电阻点焊的难题。2)不等厚激光拼焊板
车身制造采用不等厚激光拼焊板可减轻车身重量、减少零件数量、提高安全可靠性及降低成本。3)齿轮及传动部件焊接
20世纪80年代末,克莱斯勒公司的Kokomo分公司购进九台6kWCO2激光器,用于齿轮激光焊接,生产能力提高40%。90年代初,美国三大汽车公司投入40多台激光器用于传动部件焊接。奔驰公司经研究利用激光焊接代替电子束焊接,因为前者焊缝热影响区小。美国福特汽车公司用4。7kWCO2激光器焊接车轮钢圈,钢圈厚1mm,焊接速度为2。5m/min。该公司还采用带有视觉系统的激光焊接机,将六根轴与锻压出来的齿轮焊在一起,成为轿车自动变速器的齿轮架部件,生产率为200件/h。
(2)光纤激光焊在造船及海洋工程方面的应用
目前,许多轮船都是先制造出许多独立的局部组件结构单元,再在水中的船台上一个个进行组装。采用激光焊技术制造海洋建筑物局部组件非常合适,因为它结合了焊接切割自动化技术与激光技术。与弧焊方法相比,采用该技术可以大大提高生产率。
造船中,采用光纤激光技术,可以无需进行焊接边缘预处理和焊前或焊后热处理就能将部件焊接在一起。与弧焊相比,激光焊的焊接接头窄,热影响区小,而且没有传统弧焊方法中出现的由于弧吹或电极磨损引起的焊接缺陷。所以,接头采用光纤激光焊,可以实现新的焊接结构设计,这在以前是不可能实焊接接头比弧焊焊接接头更加经济, 质量更好。
(3)激光焊在飞机制造中的应用
激光束焊具有能量密度高,热影响区小,空间位置转换灵活,可在大气环境下焊接,焊接变形极小等优点。它主要应用于飞机大蒙皮的拼接以及蒙皮与长桁的焊接,以保证气动面的外形公差。另外在机身附件的装配中也大量使用了激光束焊接技术,如腹鳍和襟翼的翼盒,结构不再是应用内肋条骨架支撑结构和外加蒙皮完成,而是应用了先进的钣金成形技术后,采闲激光焊接技术在三维空间完成焊接拼合,不仅产品质量好,生产效率高,而且工艺再现性好,减重效果明显。
近年来激光焊也多见于薄壁零件的制造中,如进气道、波纹管、输油管道、变截面导管和异型封闭件。这些零件的传统焊接方法多采用微弧等离子弧焊,或者是小电流钨极氩弧焊。随着钛合金材料的大量使用,即便采用了这些低线能量的焊接技术,仍然由于薄壁材料引起的焊接变形超出公差范围和焊接缺陷的无法修复等原因,导致传统焊接工艺面临淘汰的命运。激光束焊接配以局部保护措施,[4]非常适合焊接薄壁钛合金壳体零件。(4)复合激光焊的应用
复合激光焊技术结合了激光焊和传统气体保护焊(GMAW)两者的优点,激光焊能在较小的热输入量和小的焊接热影响区(HAZ)情况下获得较大的熔深;所附加的气保焊(GMAW)可以大大扩展接头根部间隙的大小,改善表面状态和杂质的允许量;提高根部间隙填充和成形质量以及加强对焊接冶金的控制。(5)激光焊在医学上的应用
激光焊是用激光来加热, 所以它可以穿透透明介质, 能够焊到透明介质容器的里边去。这是其他焊接方法难以做到的。这种方法也被利用到医学里边,比方讲我们有些患者视网膜脱落,视网膜是在眼球的后面,视网膜脱落以后眼睛就会失明。现在就用激光的办法,透过眼球焊到眼球后面,把这个视网膜和眼球焊起来。这个已经是很成功的手术了
3.电子束焊接
3.1电子束焊接的基本原理
电子束焊接的工作原理是:在真空条件下。从电子枪中发射的电子束在高电压(通常为20~300kV)加速下,通过电磁透镜聚焦成高能量密度的电子束。当电子束轰击工件时,电子的动能转化为热能,焊区的局部温度可以骤升到6000℃以上。使工件材料局部熔化实现焊接。3.2 电子束焊接特点
由于高能量密度的电子束流集中作用的结果,使电子束焊接熔池“小孔”形成机理与其他熔化焊有所不同。电子束焊接过程是,高压加速装置形成的高功率电子束流,通过磁透镜会聚,得到很小的焦点(其功率密度可达104~109W/cm2),轰击置于真空或非真空的焊件时,电子的动能迅速转变为热能,熔化金属,实现金属焊接的目的。电子束焊接的特点可概括如下:
(1)电子束斑点直径小,加热功率密度大,焊接速度快,热影响区小;
(2)可获得深宽比大的焊缝,焊接厚件时可以不开坡口一次成形;(3)多数构件是在真空条件下焊接,焊缝纯洁度高;
(4)规范参数易于调节,工艺适应性强;
(5)适于焊接多种金属材料;
(6)焊接热输入低,焊接热变形小。但是电子束焊接方法也有一些不足,如:
(1)电子束焊机结构复杂,控制设备精度高,所需费用高;
(2)焊接前对接头加工、装配要求严格,以保证接头位置准确、间隙小而且均匀;
(3)真空电子束焊接时,被焊工件尺寸和形状常常受到工作室的限制,每次装卸工件要求重新抽真空;
(4)冷却过程中快速凝固,引起焊接缺陷,如气孔、焊接脆性等;
(5)电子束易受杂散电磁场的干扰,影响焊接质量;
(6)电子束焊接时产生的X射线需要严加防护,以保证操作人员的健康和安全。
3.3.电子束焊接的分类
1)、根据焊件所处真空度的差异可分为:
(1)高真空电子束焊接(真空度为10-4~10-1Pa):该方法电子散射小,作用在工件上的功率密度高,穿透深度大,焊缝深
宽比大,适宜于活性金属、难熔金属及质量要求高的工件焊接,应用最为广泛。
(2)低真空电子束焊接(真空度为10-1~10Pa)。与高真空电子束焊相比,电束较宽,工作距离较大,真空系统简单,生产效率高,成本低。减弱了焊接时金属的蒸发等。
(3)非真空电子束焊接(无真空工作室):在大气压力的环境中焊接,电束散射宽,焊缝较宽、深宽比小,可焊大尺寸的工件。焊接时,束流进入大气前先经过充满氦的气室,而后与氦气一起进入大气。
2)、根据电子枪加速电压又可分为:
(1)高压电子束焊接:加速电压大于120千伏,束斑直径小,功率密度大,工作距离长,焊缝的深宽比大,焊缝精密,变形小,适用于单道焊缝的大厚度板材和难熔、热敏材料的焊接。
(2)中压电子束焊接:加速电压范围为40~100千伏,满足除极薄材料外的一般厚度材料的焊接,可用局部真空室满足大型件的焊接。
(3)低压电子束焊接:加速电压低于40千伏,功率密度小,工作距离短,焊缝稍宽,畸变稍大,适用于焊缝深宽比小的薄板焊接。3)、按电子束对材料的加热机制分
(1)热传导焊接:作用在工件表面的功率密度<105W/cm2,电子束转化的热能通过热传导使工件熔化,熔化金属不产生显著的蒸发。
(2)深熔焊接:作用在工件表面的功率密度>105W/cm2,金属被熔化并伴有强烈的蒸发,形成熔池小孔,电子束穿入小孔内部与金属直接作用,焊缝深宽比大。3.4 电子束焊接的工艺
电子束焊接是一种利用电子束作为热源的焊接工艺。电子束发生器中的阴极加热到一定的温度时逸出电子,电子在高压电场中被加速,通过电磁透镜聚焦后,形成能量密集度极高的电子束,当电子束轰击焊接表面时,电子的动能大部分转变为热能,使焊接件的结合处的金属熔融,当焊件移动时,在焊件结合处形成一条连续的焊缝。对于真空电子束焊机,要焊接的工件置于真空室中,一般装夹在可直线移动或旋转的工作台上。焊接过程可通过观察系统观察。3.5电子束焊接在工业上的应用:
1)、飞机和航天飞行器
电子束已被用来将钛锻件焊接成新型直升机的转翼,现代战斗机的机翼箱等。发动机上一些其他部件如透平罩、压缩机箱体以及飞机的燃料驱动系统和着陆起落架等也都采用了电子束焊接。
由于电子束焊接的变形和热影响区小,已被用于航天飞机发动机的装配焊接,如主燃烧室、热气歧管、高(低)压燃料涡轮泵、高(低)压氧化剂涡轮泵、燃料预燃烧室、氧化剂预燃烧器等间的焊接。2)、发电设备
电子束焊接以其独有的优点正在发电设备的制造方面取代传统的焊接方法。如美国、日本等国家都已使用真空电子束焊接取代埋弧焊工艺焊接汽轮机定子和汽轮机导向叶片。使用埋弧焊需要几天才能完成的焊接,使用电子束焊接后仅需几个小时就能完成。3)、汽车工业
使用电子束焊接方法焊接汽车后桥,省去了坡口的制作的准备。由于在真空条件下施焊,电子束焊接大大地清除了产生气孔、裂纹、夹渣等这些缺陷的可能,强度得到了保证,获得了极佳的经济效益。此外,真空电子束焊接还用来焊接汽车驱动轮、扭矩变换器、行星齿轮支座、飞轮、滑叉等,都取得了前所未有的效果。4)、电子元器件
随着现代工业对电子线路和元器件的要求越来越高,电子束焊在电子行业发挥着越来越重要的作用。真空电子束用来焊接密封晶体管已取代钎代焊焊接晶体管连接接头。有些电子线路和元器件要求其焊缝在焊完后继续保持在真空密封装置内,焊缝不得有腐蚀性杂质,电子束焊接正是满足这种要求的最有效方法。5)、机械基础件
电子束也用来焊接有特殊要求的机械基础件,如轴、轴承、齿轮、金属带锯、双金属带等。对于硬度极高的金属的切断,使用电子束,可将高速钢型材焊在柔韧的载体带上。适当选择高速钢型材宽度,使得铣锯齿时,齿间,即断裂危险区位于柔韧性载体带上,这样,就能使高速钢齿尖达到最佳硬度,带锯能在最佳经济效益下实现最大负荷。6)、核工业产品
电子束焊接最早应用于核工业产品部件,近些年来,在这一领域得到更充分的发展。如:一种核工业多种用途的真空电子束焊机,在离子推进系统中,它应用于难熔、耐蚀金属的焊接和不同金属之间的连接,焊缝无裂纹和泄漏,变形也相当小。4.结束语
学习特种焊接后,总体感觉这些焊接方法优于传统的焊接方法,适应于要求高,难用一般方法焊接的焊件焊接。广泛的应用于航空航天、石油化工、宇航等领域。由于新材料的不断出现,科技的不断发展,新的焊接方法将不断的出现,日新月异。
第三篇:特种焊接技术
1.摩擦焊:在轴向压力与转矩作用下,利用焊接接触面之间的相对运动及塑性流动所产生的摩擦热及塑性变形热,使被焊接面的金属达到热塑化的状态,通过两侧材料间的相互扩散和动态再结晶实现连结的一种焊接方法
2.激光焊是以聚焦的激光束作为能源轰击焊件所产生的热量进行焊接的方法。
3.电子束焊是高能量密度的焊接方法,它利用空间定向高速运动的电子束,撞击工件表面后,将部分动能转化为热能,使被焊金属熔化,冷却结晶后形成焊缝
4.扩散焊是金属或非金属在固态下靠相互扩散完成焊接的方法,这种焊接方法可以精确地控制焊件的尺寸,使焊接件的表面形状规则
5.冷压焊是在室温下进行的,焊件在强大的外界压力下,工件表面的氧化膜破裂并被塑性流动的金属挤向焊接件外部,使纯金属紧密接触,达到原子间结合,最后形成牢固的焊接接头。分为搭接和对接冷压焊
6.热压焊是在工件加热条件下施加压力,使被焊界面金属产生塑性变形,形成界面金属原子间的结合。
7.超声波焊是利用超声波的能量进行焊接的一种方法,它是在被焊工件上先施加一定的压力,然后利用高频的机械振动,使接触面之间产生相对摩擦运动,将金属表面的氧化膜破坏,从而实现焊接的过程。
8.铝热剂焊是利用金属氧化物和铝(还原剂)之间的氧化还原反应所产生的热量,进行熔焊金属母材、填充接头而完成焊接的一种方法。
1.摩擦焊的优缺点?
优:接头质量高;适于各类同种或异种材质的连结;生产效率高;焊接尺寸精度高,成本低;设备易于机械化,自动化,操作简单;节能环保;缺:①旋转摩擦焊仅适合焊接高强度回转体构件,焊接必须依靠旋转摩擦进行焊接,接头形式和工件断面形成受损,对非圆形截面零件、盘状工件和薄壁管件焊接较困难;受摩擦焊机功率和压力的限制,旋转摩擦焊不能焊接断面较大的工件,目前可焊接工件的最大断面为200㎝²;搅拌摩擦焊仅适合轻合金材料的对接和搭接,对于高强度材料如钢钛合金以及粉末冶金材料的焊接则较困难②对于盘状薄零件、薄管件和筒形件,不易于装夹,较难施焊,因此对工装夹具要求较高;有时焊接接头的飞边是多余和有害的,要求增加清理工序,增加了成本,此外,摩擦焊机设备相对较为复杂,焊机的一次性投机较大,只有大批量生产才能降低成本
2.简述搅拌摩擦焊的原理及其优点? 原理:利用一个非损耗的搅拌头旋转着插入被焊接工件,当搅拌头的肩部和被焊接工件的表面接触时,由于搅拌针和搅拌肩与被焊接材料的摩擦生热,使搅拌针附近的材料热塑化,热塑化的金属在搅拌头的旋转摩擦作用下,逐渐由前部向后部转移,当搅拌头向前移动时,在搅拌头轴肩的挤压,锻造作用下,形成致密的固相扩散连结接头;优:焊接变形小;焊接金属力学性能好;工作环境好;搅拌头属于非消耗性材料;操作简单;氧化皮可以自动去除;设备结构简单,易于实现自动焊接和机器人焊接;可用于焊接裂纹敏感性较高的材料。
3.搅拌头的接头形式有哪些?特点是什么?搅拌头材料如何选择?
三槽锥形螺纹和锥形螺纹
特点:减小焊接压力;使塑性流动更加容易;螺纹产生向下的力;增大搅拌针和塑化材料的接触面积。
选择:①热强行:在焊接温度下,搅拌头应具有较好的力学性能。②耐磨性:搅拌头应能够承受焊接初始压入阶段以及焊接过程中的材料磨损,并且在规定焊接时间内和焊接长度内保持搅拌头的初始形状。③耐冲击性:在室温或工作温度下搅拌头应具有抵抗焊接初始压入和焊接冲击的能力。④合适的热传导性:搅拌头的热传导能力应该比被焊工件差,否则大量的摩擦热将通过搅拌头传导损失,而不是用于被焊接材料。⑤不存在危险性:搅拌头作为一种焊接工具,会经常与操作者接触,所以不应该有辐射性。⑥易加工性:搅拌头材料应该容易被加工成复杂形状
4.摩擦焊接头的设计原则及接头形式? 对于传统连续驱动摩擦焊,至少有一个是圆形截面②为了夹持方便,牢固,保证焊接过程不失稳,应尽量避免设计薄管,薄板接头③一般倾斜接头应与中心线成30°~45°的斜面④对锻压温度或热导率相差较大的材料,为了使两个零件的锻压和顶锻相对平衡,应调整界面的相对尺寸⑤对大截面接头,为了降低摩擦加热时的转矩和功率峰值,采用端面侧角的办法可使焊接时接触面积逐渐增加⑥如果限制飞边流出,应预留飞边槽⑦采用中心部位凸起的接头,可有效地避免中心未焊透⑧摩擦焊应避免渗碳﹑渗氮等⑨为了防止由于轴向力引起的工作滑退,通常在工件后面设置挡块⑩工件伸出夹头外的尺寸要适
当,被焊工件应尽可能有相同的伸出长度 5.为什么钢的激光焊接接头有良好的韧①焊接功率:所需的功率随工件的厚度和性、强度和抗裂性? 硬度的增加而增加 ①激光焊接焊缝细﹑热影响区窄②从接②振动频率:焊薄件时宜选取高的谐振频头的硬度和显微组织的分布来看,激光焊率,功率愈小选择的频率愈高,大功率焊有较高的硬度和较陡的硬度梯度,这表明机一般选择16到20kHz的较低的谐振频可能有较大的应力集中出现③激光焊热率③振幅:超声波焊机的振幅约在5到影响区的组织主要为马氏体,这时由于它25μm的范围内,随着材料厚度硬度提高的焊接速度高|﹑热输入小④合金钢激光所需振幅值亦相应增大,但有上限④静压焊时,焊缝中的有害杂质元素大大减少,力:其选择取决于材料厚度、硬度、接头产生了净化效应,提高了接头的韧性 形式和使用的超声功率⑤焊接时间:随材6.激光焊接﹑切割时应采取哪些个人防料性质、厚度及其他工艺参数而定。护措施? 13.钢轨焊接工艺流程:a准备工作。焊接①激光防护眼镜②激光防护面罩③激光前将焊接工具、封箱砂、待焊钢轨准备好。防护手套④激光防护服 仔细检查钢轨进行焊前清理,两段钢轨接7.激光有哪些危害? 头对直。B焊接工作。装卡砂型、坩埚装①对眼睛的危害:当眼睛受到过量照射时,料及放置坩埚支架、预热、点火浇注。c视网膜会烧伤,引起视力下降,甚至会烧整修工作。先推瘤后打磨。D钢轨焊接质坏色素上皮和邻近的光感视杆细胞核视量检测。锥细胞,导致视力丧失②对皮肤的危害:当脉冲激光的能量密度接近几焦每平方厘米或连续激光的功率密度达到0.5w/㎝²时,皮肤就有可能遭到严重的损伤③火灾:激光束直接照射或强反射会引起可燃物的燃烧导致火灾④电击:激光焊中还存在着数千伏至万伏的高压,存在电击的危险⑤有害气体:激光焊时材料受到加热而蒸发、气化,产生各种有毒的金属烟尘,对人体有一定伤害 7.电子束焊的主要工艺参数有哪些、对焊接质量有什么影响、如何正确选择焊接工艺参数? ①加速电压:在相同的功率、不同的加速电压下,所得焊缝深度和形状是不同的。提高加速电压可增加焊缝的深度。当焊接大厚度并要求得到窄而平行的焊缝或电子枪与焊件的距离较大时可提高加速电压。②电子束流:与加速电压一起决定电子束焊的功率。焊环缝时,要控制束流的递增、递减;焊接各种不同厚度的材料时,要改变束流;焊接大厚件时,焊接电流需逐渐减小。③聚焦电流:有上焦点、下焦点和表面焦点。焦点位置对焊缝形状影响很大。当焊件厚度大于10mm时,通常采用下焦点焊,且焦点在焊缝熔深的30%处;当焊件厚度大于50mm时,焦点在焊缝熔深的50~75%之间更合适。④焊接速度:和电子束功率一起决定着焊缝的熔深、焊缝宽度以及被焊材料的熔池行为。增加焊接速度会,焊缝变窄,熔深减小。⑤工作距离影响电子束的聚焦程度。在不影响电子枪稳定工作的前提下,可以采用尽可能短的工作距离。8.电子束焊安全防护有哪些方面,防护措施是什么? 防护高压电击的措施:①保证高压电源和电子枪有足够的绝缘,耐压实验应为额定电压的1.5倍②设备外壳应接地良好,采用专用地线,设备外壳用截面积大于12㎜²的粗铜线接地,接地电阻应小于3Ω③更换阴极组件或维修时,应切断高压电源,并用接地良好的放电棒接触准备更换的零件或需要维修的地方,放完电后才可以操作④电子束焊机应安装电压报警或其他电子联动装置,以便在出现故障时自动断电⑤焊工操作时应戴耐高压的绝缘手套,穿绝缘鞋;X射线的防护:①加速电压低于60kv的焊机,一般靠焊机外壳的钢板厚度来防护②加速电压高压60kv的焊机,外壳应附加足够厚度加铅板加强防护③电子束焊机在高压电压下运行,观察窗应选用铅玻璃,厚度可按相应的铅当量选择 9.扩散焊的中间层有哪些作用、应如何选择? 中间层的作用:①改善表面接触,以降低对待焊接表面制备的要求和降低焊接所需压力②改善扩散条件,加速扩散过程,以降低加热温度和缩短焊接时间③改善冶金反应,避免或将少金属间形成脆性化合物和不希望存在的共晶组织④避免和减少焊接热应力或扩散孔洞等缺陷。如何选择:中间层材料可以是纯金属,也可以是含有能活化扩散的或能降低熔点的元素,而成分与母材相似的合金。中间层的厚度要适当,宜薄不宜厚,一般有1μm到数百微米。10.扩散焊的接头形式有哪些?为什么? 按被焊材料不同有四种组合:同种材料、同种材料带中间夹层、不同材料、不同材料带中间夹层。同类材料组合的扩散焊过程是建立在被焊材料原子自扩散的基础上的;而不同材料的组合,除自扩散外,还充分利用了某些元素,特别是某些容易扩散元素的异类材料扩散和反应扩散的规模而大大加速扩散过程。如果焊接过程中,中间层发生熔化,就变成过渡液相扩散焊,从而又大大加速了扩散焊接过程。10.对中间层材料的性能有何要求? ①材料塑性好,易变形②含有容易向基体扩散的或能降低中间层熔点的元素,如硼、铍硅等③不与母材金属产生不良的冶金反应,如不产生脆性化合物层或对性能产生不良影响的共晶组织④不会在接头上引起电化学腐蚀 11.超声波焊接的接头必须是搭接接头,焊缝的形状分:点焊、缝焊、环焊和线焊 12.超声波焊接的工艺参数、如何选择?
第四篇:焊接基础知识培训有感
焊接基础知识培训有感
6月11日下午2点整点上课,我和同事忙完活,提前走进了公司国家级技术中心二楼展示厅的课堂。公司副总工程师杨九成、早已在主讲台等候。为了有利于一小时的学习,我选择了最前面的第二排坐下。这次培训由人力资源部牵头组织,听课的有技术部门、制造一公司车间一线焊工、工艺部门、品管部检验人员等,是我进公司以来的第一次上课。杨总工程师从实际情况出发,以充盈的焊接专业知识和丰富的工作经验,从焊接节点的设计、生产现场的操作到检验、验收的标准面面俱到,得到同事们的一致好评。不时有员工拿手机拍下PPT板书,学习求进的风气空前浓厚。原计划一小时的培训延长到两小时才结束。
现在想想回味无穷。通过学习,使我对焊接知识有了更充分的认识。做到老学到老,只有不断的充电,才能跟上现代企业的发展步伐。目前市场竞争愈来愈激烈、用户对产品质量的要求越来越高,特别是焊接这一项尤为重要。不仅要看到焊缝的外表美观,而且还要产品、设备经久内用。焊缝的牢固程度在动态载荷达三万次以上不断裂,可想而知焊缝在钢结构产品制造中,是个不容忽视的重要组成部分。只有不断的学习、才会不断的提高;只有各部门形成共识,才会让产品的设计、制造、检验、安装焊接的质量得到整体的提高。
张兴余
第五篇:特种加工学习感想
(×××××&&)
特种加工论文
(论新形势下我国机械制造行业)
特种加工的发展
姓名: *** 专业: 机械设计制造及其自动化 班级: 机电*** 学号: 0000000000
×××××× 学 院 摘要
随着科学技术的不断进步,对精度、效率、质量的要求愈来愈高,高精度与高效率成为超精密加工永恒的主题。精密和超精密加工,是现代机械制造业最主要的发展方向之一,在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。在不久的将来,超精密加工势必将向着高精度、高效率、大型化、微型化、智能化、工艺整合化、在线加工检测一体化、绿色化等方向发展。为适应这一要求,面对愈来愈强韧的材料性能、愈来愈高的精度要求以及愈来愈严格的表面完整性,很多特种加工技术随之应运而生。而电火花加工就是其中一种。本文将以特种加工最普遍应用的电火花加工为例,介绍现代生产制造行业精密加工与超精密加工的发展概况。
关键字: 现代 精密和超精密 特种加工 电火花 发展概况
abstract
With the continuous progress of science and technology of precision, efficiency, quality of the increasingly high demand, high precision and high efficiency has become the eternal theme of the ultra precision machining.The precision and ultra precision machining, is one of the most important development of modern machinery manufacturing industry, to improve the performance of mechanical and electrical products, quality and development plays a vital role high and new technology, and has become a key technology to obtain success in international competition.In the near future, there will be ultra precision machining with high precision, high efficiency, large-scale, miniaturized, intelligent, technology integration, online processing and testing integration, green and other directions.In order to meet this demand, face The material performance of more and more strong, the accuracy of the increasingly high demand, more and more strict surface integrity, a lot of special processing technology came into being.And the electrical discharge machining is one of them.This paper will take EDM machining is the most widely applied as an example, introduce the modern manufacturing industry and the development of precision machining overview of ultra precision machining.Key words:
modern
precision and ultra precision machining
non-traditional machining
EDM
development
引言
随着科学技术的不断进步,对精度、效率、质量的要求愈来愈高,高精度与高效率成为超精密加工永恒的主题。精密和超精密加工,是现代机械制造业最主要的发展方向之一,在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。
1.1机械制造加工
通常来说,按制造加工精度划分,机械制造加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为Ra1~0.1μm,表面粗糙度为Ra0.1~0.01μm的加工技术,但这个界限是随着加工技术的进步而不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。
目前超精密加工日趋成熟,已形成系列,它包括超精密切削、超精密磨削、超精密研磨、超精密特种加工等。尽管超精密加工迄今尚无确切的定义,但是它仍然在向更高的层次发展。超精密加工将向高精度、高效率、大型化、微型化、智能化、工艺整合化、在线加工检测一体化、绿色化等方向发展。在不久的将来,精密加工也必将实现精密化、智能化、自动化、高效信息化、柔性化、集成化。创新思想及先进制造模式的提出也必将为精密与超精密技术发展提供策略。环保化也是机械制造业发展的必然趋势。
随着IT相关产业的发展,近年来,光学和电子工业所用装置的零部件产品的需求急速增长,这种增长刺激了微细形状及高精度加工技术的迅速发展。其中,微细孔加工技术的开发应用尤其引人注目。微细孔加工早已在印刷电路板等加工中加以应用,包括钢材在内的多种被加工材料,均可用钻头进行小直径加工。目前,小直径孔加工中,利用钻头切削的直径最小可至φ50μm左右。小于φ50μm的孔则多采用电加工来完成。为了抑制毛刺的产生,许多研究者提出可采用超声波振动切削的方式。目前,正在探索一种应用范围广而且工艺合理的超声波振动切削模式,其中包括研究机床的适应特性等内容。随着这些问题的顺利解决,今后可望更好地实现直径更小的微小深孔加工,加工精度会更高。
1.2 特种加工
随着航空航天工业、核能工业、电子工业以及汽车工业的迅速发展,很多产品均要求在高温、高压、高速或腐蚀环境下长期而可靠地工作。为适应这一要求,各种新结构、新材料与复杂的精密零件大量出现,其结构形状愈来愈复杂,材料性能愈来愈强韧,精度要求愈来愈高,表面完整性愈来愈严格,很多特种加工技术随之应运而生。
特种加工是指那些不属于传统加工工艺范畴的加工方法,它不同于使用刀具、磨具等直接利用机械能切除多余材料的传统加工方法。特种加工是近几十年发展起来的新工艺,是对传统加工工艺方法的重 要补充与发展,目前仍在继续研究开发和改进。直接利用电能、热能、声能、光能、化学能和电化学能,有时也结合机械能对工件进行的加工。特种加工中以采用电能为主的电火花加工和电解加工应用较广,泛称电加工。
特种加工亦称“非传统加工”或“现代加工方法”,泛指用电能、热能、光能、电化学能、化学能、声能及特殊机械能等能量达到去除或增加材料的加工方法,从而实现材料被去除、变形、改变性能或被镀覆等。
1.2.1特种加工的优势
与传统机械加工方法相比,特种加工方法具有许多独到之处:(1)加工范围不受材料物理、机械性能的限制,能加工任何硬的、软的、脆的、耐热或高熔点金属以及非金属材料。
(2)易于加工复杂型面、微细表面以及柔性零件。
(3)易获得良好的表面质量,热应力、残余应力、冷作硬化、热影响区等均比较小。
(4)各种加工方法易复合形成新工艺方法,便于推广应用。
1.2.2特种加工的特点
1、机械能,与加工对象的机械性能无关,有些加工方法,如激光加工、电火花加工、等离子弧加工、电化学加工等,是利用热能、化学能、电化学能等,这些加工方法与工件的硬度强度等机械性能无关,故可加工各种硬、软、脆、热敏、耐腐蚀、高熔点、高强度、特殊性能的金属和非金属材料。
2、非接触加工,不一定需要工具,有的虽使用工具,但与工件不接触,因此,工件不承受大的作用力,工具硬度可低于工件硬度,故使刚性较差的元件及弹性元件得以加工。
3、微细加工,工件表面质量高,有些特种加工,如超声、电化学、水喷射、磨料流等,加工余量都是微细进行,故不仅可加工尺寸微小的孔或狭缝,还能获得高精度、极低粗糙度的加工表面。
4、不存在加工中的机械应变或大面积的热应变,可获得较低的表面粗糙度,其热应力、残余应力、冷作硬化等均比较小,尺寸稳定性好。
5、两种或两种以上的不同类型的能量可相互组合形成新的复合加工,其综合加工效果明显,且便于推广使用。
6、特种加工对简化加工工艺、变革新产品的设计及零件结构工艺性等产生积极的影响。
1.2.3特种加工的方法
特种加工工艺是直接利用各种能量,如电能、光能、化学能、电化学能、声能、热能及机械能等进行加工的方法。
1、“以柔克刚”,特种加工的工具与被加工零件基本不接触,加工时不受工件的强度和硬度的制约,故可加工超硬脆材料和精密微细零件,甚至工具材料的硬度可低于工件材料的硬度。
2、加工时主要用电、化学、电化学、声、光、热等能量去除多余材料,而不是主要靠机械能量切除多余材料。
3、加工机理不同于一般金属切削加工,不产生宏观切屑,不产生强烈的弹、塑性变形,故可获得很低的表面粗糙度,其残余应力、冷作硬化、热影响度等也远比一般金属切削加工小。
4、加工能量易于控制和转换,故加工范围广,适应性强。
现代的发展以及新型结构材料和高精密复杂结构的大批采用,进一步加剧了加工工艺性的恶化,传统加工方法难以达到高精度、高质量、高效率和低成本综合技巧与经济指标请求,因而需要进一步开发和利用新型特种加工技巧和及其复合工艺。如电火花加工、电解加工、超声波加工、复合加工等已成为国内外国防工业和机械工业着力发展的特种加工技巧,受到先进工业国家的工业部门的广泛关注。而电火花加工也逐渐在我国国内机械制造加工行业得到了越来越普遍的应用。
1.3 电火花加工
1.3.1 电火花加工的定义
电火花是一种自激放电,其特点如下: 火花放电的两个电极间在放电前具较高的电压,当两电极接近时,其间介质被击穿后,随即发生火花放电。伴随击穿过程,两电极间的电阻急剧变小,两极之间的电压也随之急剧变低。火花通道必须在维持暂短的时间(通常为10-7-10-3s)后及时熄灭,才可保持火花放电的“冷极”特性(即通道能量转换的热能来不及传至电极纵深),使通道能量作用于极小范围。通道能量的作用,可使电极局部被腐蚀。利用火花放电时产生的腐蚀现象对材料进行尺寸加工的方法,叫电火花加工。电火花加工是在较低的电压范围内,在液体介质中的火花放电。
1.3.2 电火花加工的特点
电火花加工是与机械加工完全不同的一种新工艺。随着工业生产的发展和科学技术的进步,具有高熔点、高硬度、高强度、高脆性,高粘性和高纯度等性能的新材料不断出现。具有各种复杂结构与特殊工艺要求的工件越来越多,这就使得传统的机械加工方法不能加工或难于加工。因此,人们除了进一步发展和完善机械加工法之外,还努力寻求新的加工方法。电火花加工法能够适应生产发展的需要,并在应用中显示出很多优异性能,因此,得到了迅速发展和日益广泛的应用。
1.脉冲放电的能量密度高,便于加工用普通的机械加工方法难于加工或无法加工的特殊材料和复杂形状的工件。不受材料硬度影响,不受热处理状况影响。
2.脉冲放电持续时间极短,放电时产生的热量传导扩散范围小,材料受热影响范围小。
3.加工时,工具电极与工件材料不接触,两者之间宏观作用力极小。工具电极材料不需比工件材料硬,因此,工具电极制造容易。
4.可以改革工件结构,简化加工工艺,提高工件使用寿命,降低工人劳动强度。
1.3.3电火花加工分类
按工具电极和工件相对运动的方式和用途的不同,大致可分为电火花成形加工、电火花线切割、电火花磨削和镗磨、电火花同步共轭回转加工、电火花高速小孔加工、电火花表面强化与刻字六大类。前五类属电火花成形、尺寸加工,是用于改变零件形状或尺寸的加工方法;后者则属表面加工方法,用于改善或改变零件表面性质。以上方法中以电火花成形加工和电火花线切割应用最为广泛。
1)电火花成形加工
该方法是通过工具电极相对于工件作进给运动,将工件电极的形状和尺寸复制在工件上,从而加工出所需要的零件。它包括电火花型腔加工和穿孔加工两种。
a、电火花型腔加工主要用于加工各类热锻模、压铸模、挤压模、塑料模和胶木膜的型腔。
b、电火花穿孔加工主要用于型孔(圆孔、方孔、多边形孔、异形孔)、曲线孔(弯孔、螺旋孔)、小孔和微孔的加工。近年来,为了解决小孔加工中电极截面小、易变形、孔的深径比大、排屑困难等问题,在电火花穿孔加工中发展了高速小孔加工,取得良好的社会经济效益。典型机床有D7125,D7140等电火花穿孔成形机床。
2)电火花线切割加工
该方法是利用移动的细金属丝作工具电极,按预定的轨迹进行脉冲放电切割。按金属丝电极移动的速度大小分为高速走丝和低速走丝线切割。我国普通采用高速走丝线切割,近年来正在发展低速走丝线切割,高速走丝时,金属丝电极是直径为φ0.02~φ0.3mm的高强度钼丝,往复运动速度为8~10m/s。低速走丝时,多采用铜丝,线电极以小于0.2m/s的速度作单方向低速运动。线切割时,电极丝不断移动,其损耗很小,因而加工精度较高。其平均加工精度可达 0.0lmm,大大高于电火花成形加工。表面粗糙度Ra值可达1.6 或更小。
目前电火花线切割广泛用于加工各种冲裁模(冲孔和落料用)、样板以及各种形状复杂型孔、型面和窄缝、凸轮、成形刀具、精密细小零件和特殊材料,试制电机、电器等产品等。典型机床有DK7725,DK7740数控电火花线切割机床。
3)其他电火花加工方式
剩下的电火花加工方式应用较少,不是主流。包括:
(1)电火花内孔、外圆和成形磨削:用于加工高精度、表面粗糙度值小的小孔,如拉丝模、挤压模、微型轴承内环、钻套等和加工外圆、小模数滚刀等。典型机床有D6310电火花小孔内圆磨床等。
(2)电火花同步共轭回转加工:用于加工各种复杂型面的零件,如高精度的异形齿轮,精密螺纹环规,高精度、高对称度、表面粗糙度值小的内、外回转体表面等。典型机床有JN-2,JN-8内外螺纹加工机床。
(3)电火花高速小孔加工:用于加工线切割穿丝预孔,深径比很大的小孔,如喷嘴等。典型机床有D703G电火花高速小孔加工机床。
(4)电火花表面强化、刻字:用于电火花刻字、打印记。典型设备有D9105电火花强化机等。
1.3.4电火花加工用途
目前电火花加工已广泛应用于模具制造、航天航空、电子、电机电器、精密机械、仪器仪表、汽车、轻工业等行业,以解决难加工材料及复杂形状零件的加工问题,加工范围已达到小到几微米的小孔、轴、缝,大到几米的超大型模具和零件。
电火花加工的主要用途可以概括为以下几项:(1)用于模具生产中的型孔、型腔加工,已成为模具制造业的主导加工方 法,推动了模具行业的技术进步。
(2)可以用于制造冲模、塑料模、锻模和压铸模。
(3)加工小孔、畸形孔以及在硬质合金上加工螺纹螺孔。(4)在金属板材上切割出零件。(5)加工窄缝。
(6)磨削平面和圆面。
(7)其它(如强化金属表面,取出折断的工具,在淬火件上穿孔,直接加 工型面复杂的零件等)。
总结
毋庸置疑,我国的制造业发展现已进入了高速发展阶段,中国民营企业也已具备足够的经济实力来使企业迈向现代化,诸如各种特种加工技术的先进设备的引进和大量专业人才的涌入使许多沿海地区的制造业水平迅速提高。特种加工技术在制造业领域占有重要的地位,是实现难加工材料,复杂零件精密加工的有效手段。随着国家决策的科学化、民主化进程不断深入,各类技术与设备的不断精进,相信我国的制造业会更快速、更健康地发展。
参考文献:
[1]简金辉,焦锋.超精密加工技术研究现状及发展趋势[J].机械研究与应 用.2009(01)
[2]白基成,刘晋春,郭永丰,杨晓冬.特种加工[M].北京: 机械工业出版社, 第六版,2015.[3]张纹,蒋维波.特种加工技术的应用与发展趋势[J].农业装备技 术,2006,32(3):24225.[4]赵如福.金属机械加工工艺人员手册.上海科学技术出版社,1990 [5]卢秉恒.机械制造技术基础.北京.机械工业出版社,2007.
[6]王贵成,张银喜.精密与特种加工.武汉.武汉理工大学出版社,2009. [7]刘志东,高长水.电火花加工工艺及应用.北京.国防工业出版社,2011. [8]汤传建.喷气电火花加工试验及机理研究.上海.上海交通大学机械与动力 工程学院,2008.
[9]黄春峰,赖传兴,陈树全.现代特种加工技术的发展 [J].航空精密制造技 术, 2001,37(6):14 220.[10]舒利平,肖传恩,周健;特种加工技术发展现状与展望[J].企业技 术开发(学术版),2007(9)