最简二次根式 教学设计示例4初中二年级教案

时间:2019-05-12 16:34:40下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《最简二次根式 教学设计示例4初中二年级教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《最简二次根式 教学设计示例4初中二年级教案》。

第一篇:最简二次根式 教学设计示例4初中二年级教案

1.使学生理解最简二次根式的概念;

2.掌握把二次根式化为最简二次根式的方法.

教学重点和难点

重点:化二次根式为最简二次根式的方法.

难点:最简二次根式概念的理解.

教学过程设计

一、导入新课

计算:

我们再看下面的问题:

简,得到

从上面例子可以看出,如果把二次根式先进行化简,会对解决问题带来方便.

二、新课

答:

1.被开方数的因数是整数或整式;

2.被开方数中不含能开得尽方的因数或因式.

满足上面两个条件的二次根式叫做最简二次根式.

例1 试判断下列各式中哪些是最简二次根式,哪些不是?为什么?

解(l)不是最简二次根式.因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的因式.

整数.

(3)是最简二次根式.因为被开方数的因式x2+y2开不尽方,而且是整式.

(4)是最简二次根式.因为被开方数的因式a-b开不尽方,而且是整式.

(5)是最简二次根式.因为被开方数的因式5x开不尽方,而且是整式.

(6)不是最简二次根式.因为被开方数中的因数8=22·2,含有开得尽的因数22.

指出:从(1),(2),(6)题可以看到如下两个结论.

1.在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;

2.在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.

例2 把下列各式化为最简二次根式:

分析:把被开方数分解因式或因数,再利用积的算术平方根的性质

例3 把下列各式化成最简二次根式:

分析:题(l)的被开方数是带分数,应把它变成假分数,然后将分母有理化,把原式化成最简二次根式.

题(2)及题(3)的被开方数是分式,先应用商的算术平方根的性质把原式表示为两个根式的商的形式,再把分母有理化,把原式化成最简二次根式.

通过例

2、例3,请同学们总结出把二次根式化成最简二次根式的方法.

答:如果被开方数是分式或分数(包括小数)先利用商的算术平方根的性质,把它写成分式的形式,然后利用分母有理化化简.

如果被开方数是整式或整数,先把它分解因式或分解因数,然后把开得尽方的因式或因数开出来,从而将式子化简.

三、课堂练习

1.在下列各式中,是最简二次根式的式子为 [ ] 的二次根式的式子有_____个. [ ]

a.2 b.3

c.1 d.0

3.把下列各式化成最简二次根式:

答案:

1.b

2.b

四、小结

1.最简二次根式必须满足两个条件:

(1)被开方数的因数是整数,因式是整式;

(2)被开方数中不含能开得尽方的因数或因式.

2.把一个式子化为最简二次根式的方法是:

(1)如果被开方数是整式或整数,先把它分解成因式(或因数)的积的形式,把开得尽方的因式(或因数)移到根号外;

(2)如果被开方数含有分母,应去掉分母的根号.

五、作业

1.把下列各式化成最简二次根式:

2.把下列各式化成最简二次根式:

答案:

第二篇:最简二次根式教案

教学目的1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。教学重点最简二次根式的定义。教学难点一个二次根式化成最简二次根式的方法。教学过程

一、复习引入1.把下列各根式化简,并说出化简的根据:2.引导学生观察考虑:化简前后的根式,被开方数有什么不同?化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。3.启发学生回答:二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?

二、讲解新课1.总结学生回答的内容后,给出最简二次根式定义:满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽的因数或因式。最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。2.练习:下列各根式是否为最简二次根式,不是最简二次根式的说明原因:3.例题:例1 把下列各式化成最简二次根式:例2 把下列各式化成最简二次根式:4.总结把二次根式化成最简二次根式的根据是什么?应用了什么方法?当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

三、巩固练习1.把下列各式化成最简二次根式:2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。

四、小结本节课学习了最简二次根式的定义及化简二次根式的方法。同学们掌握用最简二次根式的定义判断一个根式是否为最简二次根式,要根据积的算术平方根和商的算术平方根的性质把一个根式化成最简二次根式,特别注意当被开方数为多项式时要进行因式分解,被开方数为两个分数的和则要先通分,再化简。

五、布置作业(1)把下列各式化成最简二次根式:字).

第三篇:最简二次根式的优秀教学设计

教学目标

1.使学生进一步理解最简二次根式的概念;

2.较熟练地掌握把一个式子化为最简二次根式的方法.

教学重点和难点

重点:较熟练地把二次根式化为最简二次根式.

难点:把被开方数是多项式和分式的二次根式化为最简二次根式.

教学过程设计

一、复习

1.把下列各式化为最简二次根式:

请说出第(3),(4)题的解题过程.

答:第(3)题的被开方数是一个多项式,先把它分解因式,再运用积的算术平方根的性质,把根号中的平方式及平方数开出来,运算结果应化为最简二次根式.

理化.

二、新课

例1 把下列各式化成最简二次根式:

请说出各题的特点和解题思路.

答:(1)题的被开方数及(2)题的被开方数的分子是多项式,应化成因式积的形式,可以先分解因式,再化简.

(3)题的被开方数的分母是两个数的平方差,先利用平方差公式把它化为乘积形式,再根据商的算术平方根和积的算术平方根的性质及分母有理化的方法,使运算结果为最简二次根式.

例2 计算:

分析:依据二次根式的乘除法的法则进行计算,最后要把计算结果化成最简二次根式.

三、课堂练习

1.选择题:

(1)下列二次根式中,最简二次根式是

(2)下列二次根式中,最简二次根式是

(3)下列二次根式中,最简二次根式是

(4)下列二次根式中,最简二次根式是

(5)下列二次根式中,最简二次根式是

(7)下列化简中,正确的是

(8)下列化简中,错误的是

2.把下列各式化为最简二次根式:

3.计算:

答案:

四、小结

1.把一个式子化为最简二次根式时,如果被开方数是多项式,应把它化成积的形式,一般可考虑先分解因式,然后再化简.

2.如果一个式子的被开方数的分母是一个多项式,而这个多项式又不能分解因式(如课堂练习2(2)),在分母有理化时,把分子分母同乘以这个多项式.

3.二次根式的乘除法运算,运算结果一定要化为最简二次根式.

五、作业

1.把下列各式化成最简二次根式:

2.计算:

答案:

课堂教学设计说明

最简二次根式教学分二课时进行.教学设计中首先安排讨论二次根式的被开方数是单项式以及被开方数的分母是单项式的情况,然后再讨论被开方数是多项式和分母是多项式的情况.通过5个例题及课堂练习,最后达到使学生比较深刻地理解最简二次根式的概念,达到熟练地掌握把二次根式化为最简二次根式的教学目标.的是引导学生能把一个式子化简为最简二次根式应用于有关计算问题中去,把最简二次根式和已学过的二次根式的乘除运算进行联系,促使学生把单个概念和方法纳入认知系统中,启发学生认识到二次根式的乘除运算与最简二次根式是密切关联的.

第四篇:最简二次根式(说课)

最简二次根式(说课)

作用与地位

作为二次根式乘、除法与加减法的过渡桥梁的“最简二次根式”这一节课在本章中起着承上启下的作用,必须先复习与巩固已学过的乘、除法知识。另一方面,本小节的内容,显然是下一小节“二次根式的加减法”的基础,因为加减法就是在识别“同类的”最简二次根式的前提下进行的。目的与要求

本课的内容比较单纯,就是要求学生掌握化简一个二次根式成最简二次根式的方法。当然,这首先需要知道什么是最简二次根式(即本节课的重点),让学生了解最简二次根式的概念,不在于能否背出定义,关键还是遇到实际式子能够加以判断(也就是本节课的难点),所以应在练习中让学生熟悉这个概念。我采用启发式教学并借助实物投影以扩充教学容量。背景

在实际问题中,遇到二次根式,一般应把它先化简,这会给解决问题带来方便,把二次根式化简,至少有以下三种用途:

(1)、把一个二次根式化简后,可避免因误差积累而造成的结果不准确。(2)、把两个二次根式化简后,它们的乘除法运算可能变得简单,例如: 32274233126;1512 ÷245=

152353235=

5=15。

(3)、把一组二次根式化简成最简二次根式后,可以对同类二次根式进行加法、减法运算(这将在下一小节中学习).

学生们在前面已经看到了这些用途,实际上,看到这些用途是第二位的,最重要的是从这些用途中领会把复杂化为简单,把未知化为已知,从而使问题得以解决的思想方法。教学过程分成以下几个步骤

一、提出问题:(投影显示)

两个问题首先是对二次根式乘、除法的复习;其次通过两种解法对 比得出将繁杂的二次根式化为简单的二次根式后,使解决问题更加容易。

二、问题解决:

依照学生的认知规律引导学生从从简单的问题中发现规律,突出本 节课的重点。并由此引出新课“最简二次根式”,达到本课的第一个教学目的(理解最简二次根式的定义)。对于最简二次根式的定义以开门见山的方式直接给出。

三、解决问题:

接着通过训练将最简二次根式的定义加以熟练并总结出化简最简二

次根式的步骤,从而达到本课的第二个教学目的(会将不是最简二次根式的根式化成最简二次根式)。

在训练内容的选择上考虑到学生接受新知识的能力一是以常用运算

为主,采用由浅入深,层层递进的方式,二是以基本技能为主,而不追求繁难式子化简的特殊技巧。在进行最简二次根式的化简时,始终围绕二次根式的概念和性质,抓住学生问题的症结培养学生独立学习,思考解决问题的能力。

四、总结问题:

采用学生小结教师补充的方式来概括本节课的知识。

第五篇:二次根式 教学设计示例2初中二年级教案

(一)复习提问

1.什么叫二次根式?

2.下列各式是二次根式,求式子中的字母所满足的条件:

(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数.

(二)二次根式的简单性质

上节课我们已经学习了二次根式的定义,并了解了第一个简单性质

我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号“”看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:

这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?

请分析:引导学生答如 时才成立。

时才成立,即a取任意实数时都成立。

我们知道

如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.

例1 计算:

分析:这个例题中的四个小题,主要是运用公式。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的,说明,这与带分数。因此,以后遇到,应写成,而不宜写成。

例2 把下列非负数写成一个数的平方的形式:

(1)5;(2)11;(3)1.6;(4)0.35.

例3 把下列各式写成平方差的形式,再分解因式:

(1)4x2-1;

(2)a4-9;

(3)3a2-10;

(4)a4-6a2+9.

解:(1)4x2-1

=(2x)2-12

=(2x+1)(2x-1).

(2)a4-9

=(a2)2-32

=(a2+3)(a2-3)

(3)3a2-10

(4)a4-6a2+32

=(a2)2-6a2+32

=(a2-3)2

(三)小结

1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.

2.关于公式 的应用。

(1)经常用于乘法的运算中.

(2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.

(四)练习和作业

练习:

1.填空

注意第(4)题需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.

2.实数a、b在数轴上对应点的位置如下图所示:

分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.

3.计算

二、作业

教材p.172习题11.1;a组2、3;b组2.

补充作业:

下列各式中的字母满足什么条件时,才能使该式成为二次根式?

分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:

(1)由-|a-2b|≥0,得a-2b≤0,但根据绝对值的性质,有|a-2b|≥0,∴ |a-2b|=0,即a-2b=0,得a=2b.

(2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0

∴(m2+1)(m-n)≤0,又m2+1>0,∴ m-n≤0,即m≤n.

说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.

下载最简二次根式 教学设计示例4初中二年级教案word格式文档
下载最简二次根式 教学设计示例4初中二年级教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二次根式教学设计

    二次根式教学设计 二次根式教学设计1 1教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3) 理解最简二次根式的......

    16.1 二次根式 教学设计 教案

    教学准备 1. 教学目标 1、知识与技能: (1)理解二次根式的概念, (2)利用公式的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题. 2、过程与方法 : 通过自主合作学习......

    二次根式教学设计(合集8篇)

    篇1:二次根式教学设计【知识与技能】1.理解二次根式的概念,并利用 (a≥0)的意义解答具体题目.2.理解 (a≥0)是非负数和( )2=a.3.理解 =a(a≥0)并利用它进行计算和化简.【过程与方法......

    二次根式教学设计(通用)[大全五篇]

    二次根式教学设计(通用5篇)作为一位优秀的人民教师,就有可能用到教学设计,借助教学设计可以让教学工作更加有效地进行。那要怎么写好教学设计呢?以下是小编精心整理的二次根式教......

    二次根式教学设计(五篇模版)

    二次根式教学设计作为一名教师,可能需要进行教学设计编写工作,教学设计是实现教学目标的计划性和决策性活动。那么应当如何写教学设计呢?以下是小编为大家收集的二次根式教学设......

    二次根式 教学设计5篇

    7 二次根式 第1课时 二次根式的概念和性质 教学目标 【知识与技能】 1.了解二次根式及最简二次根式的概念. 2.会化简二次根式. 3.理解并掌握二次根式的性质. 【过程与方法】......

    二次根式除法教学设计(大全)

    二次根式的除法 一、教学目标 1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算; 2.会进行简单的二次根式的除法运算; 3.使学生掌握分母有理化概念,并能利用分......

    二次根式教学设计(最终版)

    二次根式教学设计 一:教学内容分析 本节课是人教版九年级上册第21章二次根式第一节二次根式第一课时的内容,它是前面学习的数的开方的后继学习,也是学习二次根式的运算的基础,......