《二次函数复习》教学设计

时间:2019-05-12 16:45:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《二次函数复习》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《二次函数复习》教学设计》。

第一篇:《二次函数复习》教学设计

《第二十六章 二次函数复习》教学设计

进入复习阶段学生总是处于做题讲题的情景下,时间一长渐渐地产生厌烦的情绪,复习的效果也就大打折扣,为能达到复习课的目的和要求,同时学生学得不至于太枯燥乏味,我觉得加强小组合作可以使复习的效果更好。

复习时把平时在每个单元中学到的零碎知识系统化,让学生从整体上把握所学内容,先把全册教材中的基础知识按照不同的内容进行分类,把需要熟记的计算公式和所学内容中出现的练习题型分别列出来,这样复习时就有章可循,有的放矢。让学习小组内互相交流设计的问题,达成共识,派代表到屏幕、黑板或实物展台进行展示,讲解。组员进行补充,强调注意事项。老师适时进行点拨、评价。在这个过程中,利用学生动手设计题、做题、学生提示注意事项、总结中层层展开、递进。达到能提高学生运用二次函数的图象、性质来解决问题的能力。学生设计的问题在小组内达成共识,代表学生的整体水平,在此过程中,学生设计的问题,有些是我预想不到的,收到的效果较好。下面我以《二次函数复习》为例

教学目标:

根据《标准》的要求,结合本节课的内容特点和学生的实际情况,本节课的教学目标如下:

知识目标:1.理解二次函数的意义及概念。

2.掌握各类二次函数之间的关系、图象及性质,并能用来解决一些简单的实际问题。

能力目标:进一步体会函数是刻画变化规律的重要数学模型,并进一步体会数形结合的思想。

情感目标:培养学生小组合作意识;敢于发表自己的观点;尊重和理解他人的见解;能从交流中获益。

教学过程设计:

一.复习导入,出示课题:

师:前面我们学习了二次函数的基础知识,这节课我们就来一起复习一下(出示课题)。二.知识梳理,建知识树(所学二次函数的内容)生:一小组展示整理的知识树,其他小组补充完善。师:展示整理的知识树,做重点强调。

教学形式:学生课上根据自己整理的知识树先进行小组交流,补充,代表小组进行展示,其他小组进行补充,完善.老师进行总结:同学们整理的都非常全面、细致,通过整理学生对于这部分的内容又有了更进一步的认识。然后老师出示所构建的知识树,强调注意事项。

设计意图:按照我们的学习习惯,每学完一部分内容都要对其进行知识梳理,使知识系统化,学生对所学过的二次函数的有关知识进行整理,使其纳入所属的知识体系,使知识系统化,并做好知识的前后衔接。三.典例解析,变式应用: 活动一:

师:通过前面对各类函数的学习及知识树的整理,可以看出我们研究每类函数都是研究它的4个方面,定义、图象、性质及应用。这节课我们就从这几个方面进行本部分的复习。

根据定义口答:

已知函数 y(m2)xm2是关于x的二次函数。

(1)满足条件m的值为

,此函数解析式

(2)将它的图象向左平移2个单位,再向上平移4个单位,则平移后对应的二次 函数的解析式为

。即y=。

说一说: 结合函数y4x216x12,你能说出它图象的哪些性质? 画一画:

画出这个函数y4x216x12的图像。

设计意图:让学生在说一说、画一画中对二次函数的相应基础知识进行复习,层层递进,为后面的拓展练习的设计、解决奠定基础。

拓展练习:

1、根据图像,写出当x取何值时,y<0?

y>0?

y=0?

2、设图象与x轴的两个交点为A、B,顶点为C,与y轴的交点为D,试求△ABC、△ABD的面积。四边形ABCD的面积呢? 活动二:

师:结合这个二次函数的图象,你还能设计问题并尝试解答吗?

教学形式:学习小组内互相交流设计的问题,达成共识,派代表到屏幕、黑板或实物展台进行展示,讲解。组员进行补充,强调注意事项。老师适时进行点拨、评价。在这个过程中,利用学生动手设计题、做题、学生提示注意事项、总结中层层展开、递进。达到能提高学生运用二次函数的图象、性质来解决问题的能力。

设计意图:通过《配套练习册》上一个小题的改编,既考察了二次函数的图象、性质,又进一步通过进行变式练习层层递进达到发散学生思维,调动学生的积极性的目的。同时在这个过程中让学生在一式多变,一题多解,多题归一中收获数形结合解决问题的重要的数学思想。同时充分利用电子白板的书写、擦除功能,让学生进行一系列的变式训练中充分展示自我,开阔了学生的思维,提高了学生合作、交流及语言表达能力。

师:知道a、b、c、的值可以画出二次函数的图象,反过来给你一个二次函数图象,你能确定出下面式子得的值吗?

若把上述函数有关数值去掉,只保留函数图象,你能快速说出二次函数解析式

2yax2bxc中,a、b、c、b-4ac、a+b+c、a-b+c、4a-2b+c的符号吗?

设计意图:一方面考察学生会根据图象确定a、b、c的值。另一方面由特殊到一般的让学生理解数与形的结合,进一步深化研究函数的常用思想方法数形结合的思想。

2活动三:

师:二次函数和我们的实际生活是密切相关的,你能借助学过的知识尝试解决这个问题吗?

某农场用一段长为30米的篱笆,围成一个一面靠墙的矩形菜园(墙的最大可用长度为10米),中间隔有一道篱笆(平行于AB),设菜园的一边AB为x米,面积为y米2。

(1)求y与x的函数关系式。(2)如果要围成面积为63米2的花圃,AB的长是多少?(3)试求当AB边多长时,菜园面积最大?

设计意图:让学生体会二次函数的实际意义。一方面,使学生感受现实世界二次函数的大量存在;另一方面,体会用二次函数的知识可以分析和解决实际问题,体会函数建模的数学思想。

四.总结反馈, 达成目标:

(一)课堂小结:

1.通过本节课对二次函数的复习,你认为还有哪些地方需要提高?

2.在后面函数学习中,我们还需注意哪些问题?

设计意图:在独立思考和合作交流中,进一步引导学生梳理本节课在知识和数学思想方法的收获,进一步提升对数学思想方法的理性认识。在总结的同时让学生体验收获知识的快乐,培养敢于展现自我、敢说、敢问、自信的学习品质。

(二)课堂检测:

1.已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第 象限.(图略)

2.二次函数y=x2-4x+3与x轴的两个交点为A,B(点A在点B的左侧),与y轴相交于点C,顶点为D,则四边形ACBD的面积为。

3.二次函数y=-x2+1的图象与X轴交于A、B两点,与y轴相交于点C.下列说法中,错误的是()

A.△ ABC是等腰三角形 B.点C的坐标是(0,1)C.AB的长为2 D.y随x的增大而减小

设计意图:进一步夯实二次函数的基础知识,学会数形结合的数学思想解决函数问题的基本方法。

(三)布置作业: 必做: 整理笔记本,完善知识树。

选做:根据自己的实际,结合《配套练习册》易错、出错的题目整理到错题本上。

设计意图:必做部分的作业让全体学生重新对所学知识形成知识网络,加深印象打牢基础。选做部分的作业则让学生根据自己的实际进行深入学习,尊重学生的个性发展。

课后反思:

对于这种复习课我们改变了以往课堂中常用的学生个体解答方式,采用小组合作整理知识树、合作交流设计的问题,并进行小组展示,充分发挥小组同学的集体智慧。这样的教学能最大限度的调动学生学习的主动性,培养他们的集体荣誉感。

通过本节课的教学使我深深的体会到,新的课堂理念“以生为本”给我们的数学课堂注入了活力,让学生在编题、变式中交流合作,展示自我,收获自我,增大了课堂容量,提高了课堂效率。在课堂中,教师只是学习的引导者,学生学习的帮助者。让我们的数学课堂,真正成为学生自主、合作、探究学习的乐园,成为学生展示自我的舞台。

第二篇:二次函数复习课 教学设计

二次函数复习课 教学设计

和平中学

任广香

一、教材分析

1.地位和作用 :

(1)二次函数是初中数学中最基本的概念之一,贯穿于整个初中数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届中考试题中,二次函数 都是不可缺少的内容。(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。(3)二次函数与一元二次方程知识的联系,使学生能更好地将所学知识融会贯通。

2.课标要求:

①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。③会根据公式确定图象的顶点、开口方向和对称轴,平移,并能解决简单的实际问题。

④会利用二次函数的图象求与x、y轴的交点坐标。3.学情分析(1)九年级学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。

(2)学生的分析、理解能力、学习新课时有明显提高。

(3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。

(4)学生能力差异较大,两极分化明显。4.教学目标

认知目标:

(1)掌握二次函数 y=ax2+bx+c图像与系数符号之间的关系。

(2)通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力.能力目标:提高学生对知识的整体合作能力和分析能力。

情感目标:制作动画增加直观效果,激发学生兴趣,感受数学之美.在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

5.教学重点与难点:

重点:(!)掌握二次函数y=ax2+bx+c图像与系数符号之间的关系。

(2)各类形式的二次函数解析式的求解方法和思路.难点:(1)已知二次函数的解析式说出函数性质

(2)运用数形结合思想,选用恰当的数学关系式解决问题.二、教学方法:

1.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合学生的求知心理和已有的认知水平开展教学。形成学生自动、生生互动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。

3.运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

三、学法指导: 1.学法引导

“授人以鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学目标。

2.学法分析:新课标明确提出要培养自我探究能力,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

3、设计理念:对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要.”

4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。

四、教学过程:

1、教学环节设计:

根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.

本节课的教学设计环节:(1)、创设情境,引入新知 :复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排由浅入深的题、让每一个学生都能为下一步的探究做好准备。(2)、自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。(3)、运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。

(一)学习内容:

1、定义

2、解析式

3、顶点与对称轴

4、图像位置 教师以复习内容为中心,层层深入,触类旁通地引导学生参与学习过程。(二)基础演练

通过精心的选题让学生演练,教师引导下完成,达到巩固知识的作用。(三)思维拓展与应用

既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。

(四)方法与小结

由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题.

2、作业设计:(题签)

3、板书设计:(见课件)

五、评价分析:

本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知——合作交流;探究新知——运用知识,体验成功;知识深化——应用提高;归纳小结——形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。让学生乐学、会学、学会,这样才是我们的教学目标,同时让教师充满爱学生,乐教的风格。慢慢的形成了一种良性的循环,信其师学其道。

第三篇:二次函数复习

二次函数复习(1)教学反思

在二次函数复习这节课中,围绕(1)二次函数的定义(2)二次函数的图像、性质与a、b、c的关系(3)二次函数解析式的求法(4)数形结合这四个知识点进行练习。下面我要谈的是我对高老师这节课的反思:

首先,高老师在课堂上,高老师对知识的掌握很有深度,所以高老师课堂上的习题深度掌握很好,做到了面向全体。

其次,本节课体现的是分层教学,在课堂上的教学环节处处体现分层,无论是提问中得分层,还是习题中的分层做的都很好,这说明高老师对于分层教学的这种方法运用自如得当,真正的站在学生的角度来分层。

第三,课堂上的语言精辟,尤其是评价性的话语很多,很丰富。真正做到让学生为老师的一句话而振奋,因为为了争得老师的一句话而好好做题等等,这是我一直以来欠缺的一个重要点。

那么针对以上几点,我从自己的角度思考,收获了以下这些:

1.上课之前一定要反复的推敲,琢磨课本,找出本节课知识的“灵魂”,然后站在学生的角度,仔细研究,如何讲授学生们才能愿意听,才能听得明白。尤其不能把学生想像的水平很高,不是不自信,而是不能把学生逼到“危险之地”,以免打击自尊心,熄灭刚刚点燃的兴趣之光,真正做到“低起点”。

2.既然选择和实施了分层教学,就应该多下功夫去琢磨,去进行它。既然是分层就应该把它做到“顺其自然”,而不仅仅是一种形式。在分层的同时应该找到一个点,就是说,这个点上的问题是承上启下的,是应该全班都能够掌握的。对于尖子生,不能在课堂上想让他们吃饱,对于他们应该在课下,或者是采用小纸条的方法单独来测试,不能为了他们的能力把题目难度定的过高。再者,分层应该体现在一节课的所有环节,例如,在提问时,对于一个问题应该分层次来提,来回答。

3.应该及时地,迅速的提高自己的言语水平。

一堂课的精彩与否,教师的课堂语言也是很重要的一个方面,例如一节课的讲授过程,或者是对于学生的评价等等,督促自己多读书,多练习,以丰富自己的语言。

4.最后,我觉得自己真的需要多学习,多见识,这样才能提高,才能迅速的提高。对于自己的优势,我也看到了,那就是我的教学之路很长,很多方法,很多思路都有时间,有条件去尝试,所以在以后的工作中要多动脑,多为学生着想。

第四篇:二次函数教学设计

《二次函数》教学设计

一、教材分析:

《二次函数》选自义务教育课程标准试验教科书(五四学制)《数学》(人教版)九年级上册第二十一章,这章是在学生学习了一次函数与反比例函数,对于函数已经有所认识,从一次函数和反比例函数的学习大家已经知道学习函数大致包括以下内容:1.通过具体的事例认识这种函数;2.探索这种函数的图像和性质;3.利用这种函数解决实际问题;4.探索这种函数与相应方程等的关系。本章“二次函数”的学习也是从以上几个方面展开。首先让学生认识二次函数,掌握二次函数的图像和性质,然后让学生探索二次函数与一元二次方程的关系,从而得出用二次函数的图像求一元二次方程的方法。最后让学生运用二次函数的图像和性质解决一些实际问题。

本章教学时间约需12课时,具体分配如下(仅供参考): 21.1 二次函数

(6课时)21.2用函数的观点看一元二次方程

(1课时)21.3实际问题与二次函数

(3课时)数学活动

小结

(2课时)

21.1 二次函数教学时间约为 6课时,下面是第一课时的教学设计,此时学生对函数的相关知识已经很陌生,第一课时应对上学段学的一次函数和反比例函数的知识做一个回顾,让学生重温学习函数应该从以下四个内容入手:认识函数;研究图像及其性质;利用函数解决实际问题;函数与相应方程的关系。再通过分析实际问题,以及用关系式表示这一关系的过程,引出二次函数的概念,获得用二次函数表示变量之间关系的体验。然后根据这种体验能够表示简单变量之间的二次函数关系.并能利用尝试求值的方法解决实际问题.

二、教学目标:

知识技能:

1.探索并归纳二次函数的定义;

2.能够表示简单变量之间的二次函数关系. 数学思考:

1.感悟新旧知识间的关系,让学生更深地体会数学中的类比思想方法; 2.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.

解决问题:

1.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;

2.能够利用尝试求值的方法解决实际问题.进一步体会数学与生活的联系,增强用数学意识。

情感态度:

1.把数学问题和实际问题相联系,从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲;

2.使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用;

3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.

三、教学重点、难点:

教学重点:

1.经历探索和表示二次函数关系的过程,获得二次函数的定义。

2.能够表示简单变量之间的二次函数关系. 教学难点:

经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.

四、教学方法:教师引导——自主探究——合作交流。五:教具、学具:教学课件

六、教学媒体:计算机、实物投影。

七、教学过程:

[活动1] 温故知新,引出课题。

师:对于“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗?

生:学过正比例函数,一次函数,反比例函数.

师:那函数的定义是什么,大家还记得吗?

生:记得,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.

师:能把学过的函数回忆一下吗?

生:可以。

一次函数y=kx+b(其中k、b是常数,且k≠0)

正比例函数y=kx(k是不为0的常数)

反比例函数y=k

(k是不为0的常数)

x师:学习这些函数的时候,大家还记得我们从哪几个方面探究的吗? 生: 定义、函数的一般形式、函数的图像和性质、函数在实际问题中的应用、函数与方程与不等式的关系等。

师:很好,从上面的几种函数来看,每一种函数都有一般的形式.那么二次函数的一般形式究竟是什么呢?本节课我们将揭开它神秘的面纱.

师生行为:教师提出问题,指名回答,师生共同回顾旧知,教师做出适当总结和评价。教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,对于一些概括性较强的问题,教师要进行适当引导。

设计意图:由复习回顾旧知识入手,通过回顾已经学过的函数的相关知识,对要探究的新的函数有个明确的方向,让学生由旧知识中寻找新知识的生长点,符合认识新事物的规律,由浅入深,由表及里,逐渐深化。

[活动2]创设情境 探究新知: 问题

1.正方体六个面是全等的正方形,设正方形棱长为 x,表面积为 y,则 y 关于x 的关系式为是什么?

2.多边形的对角线数 d 与边数 n 有什么关系?

n边形有___个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可作____条对角线。因此,n边形的对角线总数d =______。

3.某工厂一种产品现在年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?

这种产品的原产量是20件,一年后的产量是

件,再经过一年后的产量是

件,即两年后的产量为。

4. 问题2中有哪些变量?其中哪些是自变量? 大家根据刚才的分析,判断一下式子中的d是否是n的函数?若是函数,与原来学过的函数相同吗?问题3呢? 5.观察上面的三个函数,从解析式看有什么共同点?

师生行为:教师在大屏幕上逐一提出问题,问题1、2、3让学生独立思考完成师生共同订正,问题4、5小组讨论完成,教师做适当的引导,点拨,得出问题结论。

定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做x的二次函数。教师重点关注:1.强调几个注意的问题:(1)等号左边是变量y,右边是关于自变量x的整式。(2)a,b,c为常数,且a≠0;(3)等式的右边最高次数为 2,可以没有一次项和常数项,但不能没有二次项。(4)x的取值范围是任意实数。

2.学生在探究问题的过程中,能否优化思维过程,使解决问题的方法更准确。设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,通过问题的解决,为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好奇心和求知欲。学生通过分析、交流,探求二次函数的概念,加深对概念的理解,为解决问题打下基础。

[活动3] 例题学习内化新知

问题

例1,下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项.(1)y=3(x-1)²+1

(2)y=x+k

x

(3)s=3-2t²

(4)y=(x+3)²-x²

(5)y=-x

(6)v=10Л r²

m例2,函数 y

( 3)xm2(1)m取什么值时,此函数是正比例函数?(2)m取什么值时,此函数是反比例函数?(3)m取什么值时,此函数是二次函数?

师生行为:教师出示例1,同学们稍加考虑即可获得问题的结论,进而引出例2,例2让学生分组展开讨论,待学生充分交流后,教师再组织各小组展示自己的讨论结果,共同得到正确是结论,并获得解题的经验。

教师重点关注:(1)探究中各小组是否积极展开活动;(2)学生对二次函数概念是否理解透彻,应用是否得当;(3)教师在小组中巡视,尽可能多给学生一点思考的时间和空间,对学习有困难的学生适当引导。

设计意图:通过例1的设计,有利于学生对二次函数的概念的理解,边学边练,为下一个讨论做铺垫;例2中三个问题的设计,由浅入深,层层递进,在复习旧知的同时获得解决新问题的经验,进一步内化新知、突破难点。整个探究过程都是让学生自己去探索,在探索中发现新知,在交流中归纳新知,把学习的主动权交给学生,增强学生创造的信心,体验到成功的快乐。

[活动4] 练习反馈

巩固新知 问题:

(1)

P80.练习1、2(2)

y 

(m

m)x

是二次函数,求m的值.

师生行为:教师提出问题,问题(1)学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,指名口答结果,教师强调正确解题思路;

教师重点关注:学生能否准确用二次函数表示变量之间关系;学生解题时候暴露的共性问题作针对性的点评,注重培养学生正确的思路和方法,积累解题经验。

设计意图:问题(1)是从简单的应用开始,及时巩固新知,让学生获得用二次函数表示变量之间关系的体验;问题(2)是让学生对二次函数定义很深层次的理解,培养数学思维的严谨性; 2m2m

八、自主小结,深化提高:

请同学们谈谈本节课的体会和收获,各抒己见,不拘泥于形式,教师对学生的回答给予帮助,让语言表达更准确。

设计意图:学生归纳本节课学习的主要内容,让学生自觉对所学知识进行梳理,形成体系,养成良好的学习习惯。

九、分层作业,发展个性:

作业设计:(必做题)1.阅读教材并完成P90 习题21.1:

1、2. 2.写好数学日记。

(备选题)1.已知函数y=ax2+bx+c(a、b、c是常数),当a___时是二次函数;

当a___,b___时是一次函数;

当a__,b__,c__时是正比例函数。2.画出最简单的二次函数y=x2的图象。预习作业:1.看书P80 设计意图:把作业分为必做题和选做题两种。必做题较基础,可以发现和弥补课堂学习的遗漏和不足;备选题则仅供学有余力的学生选用。

十、教学反思:

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。二次函数第一课时,教材中安排的内容不多,但学生对函数的知识已经生疏,接受起来不会很顺利。由此,我的设计是从温故知新开始,通过温故知新,引出课题、创设情境、探究新知、例题学习、内化新知、练习反馈、巩固新知等几个数学活动,引导学生用类比的思想,用已有的知识经验归纳总结出新知、内化新知、巩固应用新知的。活动中也注意了学生的知识与实际问题的联系,使学生充分体会数学源于生活又服务于生活。

第五篇:《二次函数》教学设计

实际问题与二次函数教案

仙游私立一中

林元炳

教学目标:

1、知识与技能:经历数学建模的基本过程。

2、方法与技能:会运用二次函数求实际问题中的最大值或最小值。

3、情感、态度与价值观:体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。

教学重点:二次函数在最优化问题中的应用。

难点:从现实问题中建立二次函数模型,学生较难理解。

复习旧知:

1、求在下列自变量范围下二次函数y=-x+2x-3的最值:

2⑴若-3≤x≤0,该函数的最大值为___________、最小值为__

。⑵若0≤x≤3,该函数的最大值_____________、最小值为______________。先画函数草图,再进行具体分析。

问题引入:

问题1, 某商店将每件进价为8元的某种商品按每件10元出售,一天可销出100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 分析: 先思考以下几个问题:

1.商品的利润与售价、进价以及销售量之间有什么关系? [利润=(售价-进价)×销售量] 2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)] 3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? [(10-8-x);(100+100x)] 4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2] 5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x)(100+100x)(0≤x≤2)] 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x+100x+200(0≤x≤2)„„„„„„„„(2)变式

一、某商店如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润. 注意:在变式中分析清楚随着价格的改变,其销售量也随之改变;进而总利润也发生了变化。

练习:商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大? 请同学们思考以下两个问题:

(1)题目中有几种调整价格的方法?

(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?

分析:

调整价格包括涨价和降价两种情况(1),先来看涨价的情况:设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖

件,实际 卖出

件,每件的利润为____________元。(或销售额为

元,买进商品需付

元),因此,所得利润为

元。()解:设涨价x元时利润最大,则每星期可少卖_________件,实际卖出___________件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润

(2),在降价的情况下,最大利润是多少?请你参考(1)的过程写出分析过程。设每件降价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。降价x元时则每星期少卖

件,实际卖出

件,销售额为

元,买进商品需付

元,因此,所得利润为

元。

解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润

由(1)(2)的讨论分析,你知道应该如何定价能使利润最大吗?

解这类题目的一般步骤:

归纳:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。

问题2;

某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。问:

(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;

(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?

分析:在这个问题中要注意的是:“物价部门规定每箱售价不得高于55元”这个条件。所以自变量的取值要考虑到55元这个限制。

练习2,某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果售价超过50元但不超过80元;每件商品的售价每涨价1元,每个月少卖出1件;如果售价超过80元后,每涨落价1元,每个月少卖3件。设每件商品的售价为x元,每个月的销售量为y件。(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W元,请直接写出W与x的函数关系式;

(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

作业:课本P27 第9题

下载《二次函数复习》教学设计word格式文档
下载《二次函数复习》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二次函数教学设计

    一、教学目标 1.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体会如何用数学的方法描述变量之间的数量关系。 2.能够表示简单变量之间的二次函数关系。 3.经历......

    二次函数教学设计

    教学内容:人教版九年义务教育初中第三册第108页教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷......

    二次函数复习说课稿[本站推荐]

    二次函数复习说课稿1数学课堂教学如何结合现代教育教学理论、结合学生的实际来实施素质教育,优化课堂教学,提高教学效益呢?这是每个老师在今天的课改面前都有的困惑。那么我们......

    二次函数复习教案

    中学美术课水彩画技法教学 摘要:水彩画在中学美术教育中占据着重要的地位,它不仅可以提升中学生的造型能力、色彩能力,同时也可以强化他们的审美素养。这里,笔者将结合自己的教......

    二次函数复习教案

    二次函数复习教案 一、备考策略: 通过研究分析近5年德州中考试题,二次函数中考命题主要有以下特点 (1)二次函数的图象和性质,以选择题和填空题为主。 (2)直接考察二次函数表达式的......

    二次函数复习教案

    第教学目标 18课时 二次函数(二) 1.理解二次函数与一元二次方程之间的关系; 2.结合方程根的性质、一元二次方程根的判别式,判定抛物线与x轴的交点情况; 3.会利用韦达定理解决......

    二次函数教学设计(合集14篇)

    篇1:二次函数教学设计教材分析本节课主要内容包括:运用二次函数的最大值解决最大面积的问题,让学生体会抛物线的顶点就是二次函数图象的最高点(最低点),因此,可利用顶点坐标求实际......

    二次函数教学设计五篇

    二次函数教学设计 亮兵中学郭立新 一、教材分析 本节课是数学人教版九年级(下)《二次函数》这一章的第一节课内容。知识方面,它是在正比例函数,一次函数,反比例函数的基础上,对函......