第一篇:二次函数第一节教学设计
《23.1二次函数》教学设计
主备人:余河初中徐斌(九年级数学)
参备人:刘进华 刘华丽 徐观群 朱德鹏 周宜昌 徐观兵 朱礼义
一、教学目标
1、知识与技能:掌握二次函数的概念;能够表示简单的变量之间的二次函数关系;知道实际问题中存在的二次函数关系中,对自变量的取值范围的要求。
2、过程与方法:经历探索、分析和建立两个变量之间的二次函数关系的过程,获得用二次函数表示变量之间关系的体验,体会从特殊到一般的数学思想和函数思想。
3、情感、态度和价值观:经历尝试、猜测以及动手验证等过程,发展合作交流意识,以及数学应用能力。
二、内容分析
本节从实际问题入手,结合学生已有的知识经验观察、归纳出二次函数的概念,以及一般表达式,学生会在探知过程中体会函数思想。
1、教学重点:二次函数的概念。
2、教学难点:具体地分析、确定实际问题中函数关系式。
三、教学方法:启发、探究、合作交流。
四、教学互动过程设计
(一)创设情景,导入新课
我们已学习了正比例函数及一次函数,现在来看看下面几个例子:
问题1.写出圆的半径是R(CM),它的面积S(CM)与R的关系式
答:S=πR.(1)
问题2某水产养殖湖用长40m的围栏,在水库中围一块矩形的水面,投放鱼苗。要使围成的水面面积最大,它的长应是多少米?
分析设围成的矩形水面的长是x米,那么水面的宽为(20-x)米,它的面积S平方米,则
S=X(20-X)(2)
问题3 一种商品售价为每件10元,一周可卖50件。市场调查表明:这种商品如果每件涨价1元,每周要卖5件。已知该商品进价每件为8元,问每件商品涨价多少,才能使每周得到的利润最多?
分析设每件商品涨价X元,每周获得的利润为Y元,那么 Y=(10+X)(50-5X)-8(50-5X)(3)
问题4.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系
2答:S=L(30-L)=30L-L(4)
分析:(1)(2)(3)(4)四个关系式中S和R,S和X,Y和X之间是否存在函数关系?
它们是否是一次函数?
他们不是一次函数,那么他们是什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?
答:二次函数。
这一节课我们将研究二次函数的有关知识。(板书课题)
(二).归纳抽象、形成概念
2一般地,如果y=ax+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数.注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2)由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。
2.出题:请同学给大家出示一个函数,请同学判断是否是二次函数。
(若学生考虑不全,教师给予补充。如: 2
2(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)
(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)
(三)尝试模仿、巩固提高
例1:如图2,一张正方形纸板的边长为2cm,将它剪去4个全等的直角三角形(图中阴影部分),设AE=BF=CG=DH=x(cm),四边形EFGH的面积为y(cm2),求:
1、y关于x的函数解析式和自变量的取值范围;
2、当x分别为0.25,0.5,1,1.5,1.75时,对四边形EFGH的面积,并列表表示。学生独立分析思考,尝试写出y关于x的函数解析式,教学巡回辅导,适时点拨。引导学生加以分析总结:
1、求差法
2、直接法
3、自
变量的取值范围。
例2:已知二次函数y=ax+px+q,当x=1时,函数值是4,当x=2时,函数值是-5,求这个二次函数的解析式。
此例题难度较小,但却反映求二次函数解析式的一般方法,可让学生一边说,老师一边板书示范,强调书写格式和思考方法,结束后让学生完成强化。
练习:“课内练习”第2题。
(四).课时小结
本节课我们学习了如下内容:
1.经历探索和表示二次函数关系的过程.猜想并归纳二次函数的2定义及一般形式.
2.二次函数二次系数、一次项系数和常数项的概念。
3、如何求二次函数的解析式。
(五).课后作业
课本“作业题”
(六).活动与探究
若y=(m2+m)xm2-m是二次函数,求
m的值.
第二篇:二次函数第一节教学设计
《23.1二次函数》教学设计
主备人:余河初中 徐斌(九年级数学)参备人:刘进华 刘华丽 徐观群 朱德鹏 周宜昌 徐观兵 朱礼义
一、教学目标
1、知识与技能:掌握二次函数的概念;能够表示简单的变量之间的二次函数关系;知道实际问题中存在的二次函数关系中,对自变量的取值范围的要求。
2、过程与方法:经历探索、分析和建立两个变量之间的二次函数关系的过程,获得用二次函数表示变量之间关系的体验,体会从特殊到一般的数学思想和函数思想。
3、情感、态度和价值观:经历尝试、猜测以及动手验证等过程,发展合作交流意识,以及数学应用能力。
二、内容分析
本节从实际问题入手,结合学生已有的知识经验观察、归纳出二次函数的概念,以及一般表达式,学生会在探知过程中体会函数思想。
1、教学重点:二次函数的概念。
2、教学难点:具体地分析、确定实际问题中函数关系式。
三、教学方法:启发、探究、合作交流。
四、教学互动过程设计(一)创设情景,导入新课
我们已学习了正比例函数及一次函数,现在来看看下面几个例子: 问题1.写出圆的半径是R(CM),它的面积S(CM)与R的关系式
答:S=πR.(1)
问题2 某水产养殖湖用长40m的围栏,在水库中围一块矩形的水面,投放鱼苗。要使围成的水面面积最大,它的长应是多少米?
分析 设围成的矩形水面的长是x米,那么水面的宽为(20-x)米,它的面积S平方米,则
S=X(20-X)(2)
问题3 一种商品售价为每件10元,一周可卖50件。市场调查表明:这种商品如果每件涨价1元,每周要卖5件。已知该商品进价每件为8元,问每件商品涨价多少,才能使每周得到的利润最多?
分析 设每件商品涨价X元,每周获得的利润为Y元,那么 Y=(10+X)(50-5X)-8(50-5X)(3)
问题4.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系
2答:S=L(30-L)=30L-L(4)
分析:(1)(2)(3)(4)四个关系式中S和R,S和X,Y和X之间是否存在函数关系?
它们是否是一次函数?
他们不是一次函数,那么他们是什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?
答:二次函数。
这一节课我们将研究二次函数的有关知识。(板书课题)
(二).归纳抽象、形成概念
2一般地,如果y=ax+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数.注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2)由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。
2.出题:请同学给大家出示一个函数,请同学判断是否是二次函数。
(若学生考虑不全,教师给予补充。如:
22(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)
(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)
(三)尝试模仿、巩固提高
例1:如图2,一张正方形纸板的边长为2cm,将它剪去4个全等的直角三角形(图中阴影部分),设AE=BF=CG=DH=x(cm),四边形EFGH的面积为y(cm2),求:
1、y关于x的函数解析式和自变量的取值范围;
2、当x分别为0.25,0.5,1,1.5,1.75时,对四边形EFGH的面积,并列表表示。学生独立分析思考,尝试写出y关于x的函数解析式,教学巡回辅导,适时点拨。2 引导学生加以分析总结:
1、求差法
2、直接法
3、自变量的取值范围。
例2:已知二次函数y=ax+px+q,当x=1时,函数值是4,当x=2时,函数值是-5,求这个二次函数的解析式。
此例题难度较小,但却反映求二次函数解析式的一般方法,可让学生一边说,老师一边板书示范,强调书写格式和思考方法,结束后让学生完成强化。
练习:“课内练习”第2题。
(四).课时小结
本节课我们学习了如下内容:
1.经历探索和表示二次函数关系的过程.猜想并归纳二次函数的2定义及一般形式.
2.二次函数二次系数、一次项系数和常数项的概念。
3、如何求二次函数的解析式。
(五).课后作业
课本“作业题”
(六).活动与探究 若y=(m2+m)xm2-m
是二次函数,求
m的值.
第三篇:二次函数第一节教案
教学目的:使学生理解二次函数的概念,学会列二次函数表达式和用待定系数法求二次函数解析式。
重点难点:二次函数的图象与性质都是由它的概念所决定的,因此二次函数的概念是本节教学中的重点
例2要用到待定系数法和解三元一次方程组是本节教学中的难点。
教学方法:讲授法。
教具:纸板模型
教学过程:
1。回顾旧知:(可请一位学生口答)
正比例函数--------------y=kx(k≠0)
反比例函数---------------y= k/x(k≠0)
一次函数----------------y=kx+b(k,b 是常数,且k≠0)
2。新课引入:
(1)出示下列函数让学生仔细观察:
y=20x2+40x+20
y= x +3 2
y=5x2+12x
y=3x2
(2)学生观察的同时,教师适时启发:
①这几个函数是我们已学过的三种函数吗?
②这些函数的自变量x的最高次数是多少?
③第1个函数的右边是二次三项式,请同学们说出二次项,一次项,常数项及二次项系数,一次项系数,常数项。
④第2个函数的右边只有什么项?缺少什么项?请同学们补全。类似请同学们将(3)(4)补全。
⑤启发学生通过刚才观察归纳出上述函数的一般的形式:y=ax+bx+c(a,b,c为常数,且a≠0)。2
3。点题:今天我们就来学习这类函数-------二次函数,教师板书并给出二次函数的概念:形如y=ax2+bx+c(a,b,c为常数,且a≠0)的函数叫二次函数。
4。巩固练习1:
下列函数是否为二次函数,若是,分别说出二次项系数,一次项系数及常数项a,b,c。
(1)y=πx2(2)y= 2x(3)y=1-3x2(4)y=20x2+40x+20
(5)y= 6x2+2x-1(6)y= -x2+3x+2(7)y=2x(x-3)(8)y=x(x+1)-x2
(9)y=ax2+2x+5(a为实数)(10)y=(k2+1)x2+kx+2(k为实数)
5。例题引入:运用模型直观演示正方形由于边长x变化产生正方形面积s的变化
7。巩固练习2:
(1)已知一个直角三角形的两直角边的和是10cm。若设其中
一条直角边长为xcm。,则另一条直角边长为,若这个直角三角形的面积为s,则s关于x的函数关系式是。
当x=5时,直角三角形的面积为。
(2)已知二次函数y=3x2+2x+1。
①当x=0时,函数值y=_____
②当x= -1时,函数值y=_____
③当x=1时,函数值y=_____
④当y=1时,x=_____
⑤当y= -5时,x=_____
⑥当y=-3时,x=_____
8。例题讲解:
例2:已知x的一个二次函数,在x=0时的值是1;
在x=-1时的值是0;在x=1时的值是3。
求这个二次函数。
分析:讲解时注意以下几点:
(1)用待定系数法来求这个二次函数。
(2)消元法解三元一次方程组。
(3)师生在完成例题后,同时强调:根据题意先设定二
次函数y=ax2+bx+c关系式,其中a,b,c是待确定的常数,然后根据已知条件列出以a,b,c为未知数的方程组,求得a,b,c的值。从而得出函数关系式,这种求函数关系式的方法叫待定系数法。
9。学生课堂练习:(指定一名学生板演,教师巡视检查)
已知二次函数y=ax2+c,当x=2时,y=4;当x=-1时,y=-3。
(1)求a,c的值;(2)求当y=0时,x的值。
10。课堂小结:
①二次函数的概念及二次函数解析式,强调二次项系数不为零。
②二次函数的表达式:完全形式,缺项形式。
③用待定系数法来求二次函数解析式。
11。布置家庭作业及思考题:
①函数y=ax2+bx+c一定是二次函数吗?
②已知函数y=mxm2+m+2 +7x+3是关于x的二次函数,试确定m的值。
③以前我们用描点法来探索正比例函数,反比例函数,一次函数的图象与性质。请同学们自已动手操作,画一画二次函数y=x2,与y=-x2的图象,并观察图象有何特点?
第四篇:二次函数教学设计
《二次函数》教学设计
一、教材分析:
《二次函数》选自义务教育课程标准试验教科书(五四学制)《数学》(人教版)九年级上册第二十一章,这章是在学生学习了一次函数与反比例函数,对于函数已经有所认识,从一次函数和反比例函数的学习大家已经知道学习函数大致包括以下内容:1.通过具体的事例认识这种函数;2.探索这种函数的图像和性质;3.利用这种函数解决实际问题;4.探索这种函数与相应方程等的关系。本章“二次函数”的学习也是从以上几个方面展开。首先让学生认识二次函数,掌握二次函数的图像和性质,然后让学生探索二次函数与一元二次方程的关系,从而得出用二次函数的图像求一元二次方程的方法。最后让学生运用二次函数的图像和性质解决一些实际问题。
本章教学时间约需12课时,具体分配如下(仅供参考): 21.1 二次函数
(6课时)21.2用函数的观点看一元二次方程
(1课时)21.3实际问题与二次函数
(3课时)数学活动
小结
(2课时)
21.1 二次函数教学时间约为 6课时,下面是第一课时的教学设计,此时学生对函数的相关知识已经很陌生,第一课时应对上学段学的一次函数和反比例函数的知识做一个回顾,让学生重温学习函数应该从以下四个内容入手:认识函数;研究图像及其性质;利用函数解决实际问题;函数与相应方程的关系。再通过分析实际问题,以及用关系式表示这一关系的过程,引出二次函数的概念,获得用二次函数表示变量之间关系的体验。然后根据这种体验能够表示简单变量之间的二次函数关系.并能利用尝试求值的方法解决实际问题.
二、教学目标:
知识技能:
1.探索并归纳二次函数的定义;
2.能够表示简单变量之间的二次函数关系. 数学思考:
1.感悟新旧知识间的关系,让学生更深地体会数学中的类比思想方法; 2.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.
解决问题:
1.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;
2.能够利用尝试求值的方法解决实际问题.进一步体会数学与生活的联系,增强用数学意识。
情感态度:
1.把数学问题和实际问题相联系,从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲;
2.使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用;
3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.
三、教学重点、难点:
教学重点:
1.经历探索和表示二次函数关系的过程,获得二次函数的定义。
2.能够表示简单变量之间的二次函数关系. 教学难点:
经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.
四、教学方法:教师引导——自主探究——合作交流。五:教具、学具:教学课件
六、教学媒体:计算机、实物投影。
七、教学过程:
[活动1] 温故知新,引出课题。
师:对于“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗?
生:学过正比例函数,一次函数,反比例函数.
师:那函数的定义是什么,大家还记得吗?
生:记得,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.
师:能把学过的函数回忆一下吗?
生:可以。
一次函数y=kx+b(其中k、b是常数,且k≠0)
正比例函数y=kx(k是不为0的常数)
反比例函数y=k
(k是不为0的常数)
x师:学习这些函数的时候,大家还记得我们从哪几个方面探究的吗? 生: 定义、函数的一般形式、函数的图像和性质、函数在实际问题中的应用、函数与方程与不等式的关系等。
师:很好,从上面的几种函数来看,每一种函数都有一般的形式.那么二次函数的一般形式究竟是什么呢?本节课我们将揭开它神秘的面纱.
师生行为:教师提出问题,指名回答,师生共同回顾旧知,教师做出适当总结和评价。教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,对于一些概括性较强的问题,教师要进行适当引导。
设计意图:由复习回顾旧知识入手,通过回顾已经学过的函数的相关知识,对要探究的新的函数有个明确的方向,让学生由旧知识中寻找新知识的生长点,符合认识新事物的规律,由浅入深,由表及里,逐渐深化。
[活动2]创设情境 探究新知: 问题
1.正方体六个面是全等的正方形,设正方形棱长为 x,表面积为 y,则 y 关于x 的关系式为是什么?
2.多边形的对角线数 d 与边数 n 有什么关系?
n边形有___个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可作____条对角线。因此,n边形的对角线总数d =______。
3.某工厂一种产品现在年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?
这种产品的原产量是20件,一年后的产量是
件,再经过一年后的产量是
件,即两年后的产量为。
4. 问题2中有哪些变量?其中哪些是自变量? 大家根据刚才的分析,判断一下式子中的d是否是n的函数?若是函数,与原来学过的函数相同吗?问题3呢? 5.观察上面的三个函数,从解析式看有什么共同点?
师生行为:教师在大屏幕上逐一提出问题,问题1、2、3让学生独立思考完成师生共同订正,问题4、5小组讨论完成,教师做适当的引导,点拨,得出问题结论。
定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做x的二次函数。教师重点关注:1.强调几个注意的问题:(1)等号左边是变量y,右边是关于自变量x的整式。(2)a,b,c为常数,且a≠0;(3)等式的右边最高次数为 2,可以没有一次项和常数项,但不能没有二次项。(4)x的取值范围是任意实数。
2.学生在探究问题的过程中,能否优化思维过程,使解决问题的方法更准确。设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,通过问题的解决,为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好奇心和求知欲。学生通过分析、交流,探求二次函数的概念,加深对概念的理解,为解决问题打下基础。
[活动3] 例题学习内化新知
问题
例1,下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项.(1)y=3(x-1)²+1
(2)y=x+k
x
(3)s=3-2t²
(4)y=(x+3)²-x²
(5)y=-x
(6)v=10Л r²
m例2,函数 y
( 3)xm2(1)m取什么值时,此函数是正比例函数?(2)m取什么值时,此函数是反比例函数?(3)m取什么值时,此函数是二次函数?
师生行为:教师出示例1,同学们稍加考虑即可获得问题的结论,进而引出例2,例2让学生分组展开讨论,待学生充分交流后,教师再组织各小组展示自己的讨论结果,共同得到正确是结论,并获得解题的经验。
教师重点关注:(1)探究中各小组是否积极展开活动;(2)学生对二次函数概念是否理解透彻,应用是否得当;(3)教师在小组中巡视,尽可能多给学生一点思考的时间和空间,对学习有困难的学生适当引导。
设计意图:通过例1的设计,有利于学生对二次函数的概念的理解,边学边练,为下一个讨论做铺垫;例2中三个问题的设计,由浅入深,层层递进,在复习旧知的同时获得解决新问题的经验,进一步内化新知、突破难点。整个探究过程都是让学生自己去探索,在探索中发现新知,在交流中归纳新知,把学习的主动权交给学生,增强学生创造的信心,体验到成功的快乐。
[活动4] 练习反馈
巩固新知 问题:
(1)
P80.练习1、2(2)
若
y
(m
m)x
是二次函数,求m的值.
师生行为:教师提出问题,问题(1)学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,指名口答结果,教师强调正确解题思路;
教师重点关注:学生能否准确用二次函数表示变量之间关系;学生解题时候暴露的共性问题作针对性的点评,注重培养学生正确的思路和方法,积累解题经验。
设计意图:问题(1)是从简单的应用开始,及时巩固新知,让学生获得用二次函数表示变量之间关系的体验;问题(2)是让学生对二次函数定义很深层次的理解,培养数学思维的严谨性; 2m2m
八、自主小结,深化提高:
请同学们谈谈本节课的体会和收获,各抒己见,不拘泥于形式,教师对学生的回答给予帮助,让语言表达更准确。
设计意图:学生归纳本节课学习的主要内容,让学生自觉对所学知识进行梳理,形成体系,养成良好的学习习惯。
九、分层作业,发展个性:
作业设计:(必做题)1.阅读教材并完成P90 习题21.1:
1、2. 2.写好数学日记。
(备选题)1.已知函数y=ax2+bx+c(a、b、c是常数),当a___时是二次函数;
当a___,b___时是一次函数;
当a__,b__,c__时是正比例函数。2.画出最简单的二次函数y=x2的图象。预习作业:1.看书P80 设计意图:把作业分为必做题和选做题两种。必做题较基础,可以发现和弥补课堂学习的遗漏和不足;备选题则仅供学有余力的学生选用。
十、教学反思:
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。二次函数第一课时,教材中安排的内容不多,但学生对函数的知识已经生疏,接受起来不会很顺利。由此,我的设计是从温故知新开始,通过温故知新,引出课题、创设情境、探究新知、例题学习、内化新知、练习反馈、巩固新知等几个数学活动,引导学生用类比的思想,用已有的知识经验归纳总结出新知、内化新知、巩固应用新知的。活动中也注意了学生的知识与实际问题的联系,使学生充分体会数学源于生活又服务于生活。
第五篇:《二次函数》教学设计
实际问题与二次函数教案
仙游私立一中
林元炳
教学目标:
1、知识与技能:经历数学建模的基本过程。
2、方法与技能:会运用二次函数求实际问题中的最大值或最小值。
3、情感、态度与价值观:体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。
教学重点:二次函数在最优化问题中的应用。
难点:从现实问题中建立二次函数模型,学生较难理解。
复习旧知:
1、求在下列自变量范围下二次函数y=-x+2x-3的最值:
2⑴若-3≤x≤0,该函数的最大值为___________、最小值为__
。⑵若0≤x≤3,该函数的最大值_____________、最小值为______________。先画函数草图,再进行具体分析。
问题引入:
问题1, 某商店将每件进价为8元的某种商品按每件10元出售,一天可销出100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 分析: 先思考以下几个问题:
1.商品的利润与售价、进价以及销售量之间有什么关系? [利润=(售价-进价)×销售量] 2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)] 3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? [(10-8-x);(100+100x)] 4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2] 5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x)(100+100x)(0≤x≤2)] 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x+100x+200(0≤x≤2)„„„„„„„„(2)变式
一、某商店如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润. 注意:在变式中分析清楚随着价格的改变,其销售量也随之改变;进而总利润也发生了变化。
练习:商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大? 请同学们思考以下两个问题:
(1)题目中有几种调整价格的方法?
(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?
分析:
调整价格包括涨价和降价两种情况(1),先来看涨价的情况:设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖
件,实际 卖出
件,每件的利润为____________元。(或销售额为
元,买进商品需付
元),因此,所得利润为
元。()解:设涨价x元时利润最大,则每星期可少卖_________件,实际卖出___________件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润
(2),在降价的情况下,最大利润是多少?请你参考(1)的过程写出分析过程。设每件降价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。降价x元时则每星期少卖
件,实际卖出
件,销售额为
元,买进商品需付
元,因此,所得利润为
元。
解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润
由(1)(2)的讨论分析,你知道应该如何定价能使利润最大吗?
解这类题目的一般步骤:
归纳:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。
问题2;
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。问:
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
分析:在这个问题中要注意的是:“物价部门规定每箱售价不得高于55元”这个条件。所以自变量的取值要考虑到55元这个限制。
练习2,某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果售价超过50元但不超过80元;每件商品的售价每涨价1元,每个月少卖出1件;如果售价超过80元后,每涨落价1元,每个月少卖3件。设每件商品的售价为x元,每个月的销售量为y件。(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W元,请直接写出W与x的函数关系式;
(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
作业:课本P27 第9题