二次函数的应用教学设计

时间:2019-05-12 16:58:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《二次函数的应用教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《二次函数的应用教学设计》。

第一篇:二次函数的应用教学设计

二次函数的应用教学设计

一、教学分析

(一)教学内容分析

二次函数yax2bxc的图像和性质是人教版九年级数学下册的内容,是在学生学习了二次函数的基本概念及yax2bxc的图像和性质之后引入的新内容。本节课的教学内容既是对yax2bxc的图像和性质的引申,也是后面研究其它模块知识的基础。所以,学习本节内容我们既要对前段的内容进行升华,又要对后段内容进行启发。

(二)教学对象分析

九年级的学生在前面的学习过程中已经接触过一次函数和反比例函数的内容,从学习情况看,他们对函数的理解和掌握情况并不理想。通过课下的了解,学生们对二次函数有一定的畏难情绪,对学习非常的不利,掌握图像和性质是本节应用的基础。所以我们在教学过程中,要想方设法的调动学生的积极性,帮助他们突破难点。

二、教学目标设计

(一)知识与技能: 通过本节学习,巩固二次函数yax2bxc,(a0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。

(二)过程与方法:

能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。

(三)情感、态度与价值观:

1、在进行探索活动过程中发展学生的探究意识,逐步养成合作交流的习惯。

2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。

三、教学方法设计

由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。

四、教学过程设计

(一)导学提纲

设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。

(二)前情回顾:

1、复习二次函数yax2bxc,(a0)的图象、顶点坐标、对称轴和最值。

2、抛物线在什么位置取最值?(三)适当点拨,自主探究 1.在创设情境中发现问题

[做一做]:请你画一个周长为40厘米的矩形,算算它的面积是多少,再和同学比比,发现了什么,谁的面积最大,2、在解决问题中找出方法

[想一想]:某工厂为了存放材料,需要围一个周长40米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大,(问题设计思路:把前面矩形的周长40厘米改为40米,变成一个实际问题,目的在于让学生体会其应用价值——我们要学有用的数学知识。学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,合作探究中在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础。)

3、在巩固与应用中提高技能

例1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD究竟应为多少米才能使花圃的面积最大,(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。)

解:设垂直于墙的边AD=x米,则AB=(32-2x)米,设矩形面积为y米,得到: yx(322x),错解,由顶点公式得: x=8米时,y最大=128米

而实际上定义域为[11,16],由图象或增减性可知x=11米时,y最大=110米。(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。)(四)总结交流:(1)同学们经历刚才的探究过程,想想解决此类问题的思路是什么,.(2)在探究发现这些判定方法的过程中运用了什么样的数学方法?(五)我来试一试: 如图在RtABC中,点P在斜边AB上移动,PMBC,PNAC,M,N分别为垂足,已知AC=1,AB=2,求:(1)何时矩形PMCN的面积最大,把最大面积是多少?(2)当AM平分CAB时,求矩形PMCN的面积.作业:课本随堂练习、习题1,2,3

(六)板书设计

二次函数的应用——面积最大问题

五、课后反思

二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。本节课充分运用导学提纲,教师提前通过一系列问题串的设置,引导学生课前预习,在课堂上通过对一系列问题串的解决与交流,让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题。

就整节课看,学生的积极性得以充分调动,特别是学困生,在独立思考和小组合作中改变以往的配角地位,也能积极参与到课堂学习活动中,今后继续发扬从学生出发,从学生的需要出发,把问题梯度降低,设计让学生在能力范围内掌握新知识,有了足够的热身运动之后再去拓展延伸。

第二篇:二次函数利润应用教学设计

二次函数与实际问题

利润的最大化问题——教学设计

教学目标:

1、探究实际问题与二次函数的关系

2、让学生掌握用二次函数最值的性质解决最大值问题的方法

3、让学生充分感受实际情景与数学知识合理转化的过程,体会如何遇到问题—提出问题—解决问题的思考脉络。教学重点:

探究利用二次函数的最大值性质解决实际问题的方法 教学难点:

如何将实际问题转化为二次函数的数学问题,并利用函数性质进行决策 教学过程 : 情境设置:水果店售某种水果,平均每天售出20千克,每千克售价60元,进价20元。经市场调查发现,在进价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量减少1千克;若每降价1元,日销售量将增加2千克。现商店为增加利润,扩大销售,尽量减少库存,决定采取适当措施。

(1)如果水果店日销水果要盈利1200元,那么每千克这种水果应涨价或降价多少元?

解:设每千克这种水果降价x元。

(60-20-x)(20+2x)=1200

解得x=10或x =20 水果店扩大销售,尽量减少库存 x=10不合题意,舍 x=20 答:每千克这种水果应降价20元。

(2)如果水果店日销水果要盈利最多,应如何调价?最多获利多少元?

设计:问题1是利用一元二次方程解决问题,引导学生先根据题意判断出应只选择降价,只是一种可能。通过分析“降价”让学生自主完成,教师点评,强调验根。因学生已经学习过一元二次方程,困难不会太大。

问题2,引导学生由一元二次方程过度到二次函数,并想到利用二次函数最值的性质去解决问题。给学生空间时间去思考。老师问两个问题;1 怎样设?2什么方法去解决?

解:设每千克这种水果降价x元。y=(60-20-x)(20+2x)=-2 x²+60x+800(0< x≤40)a=-2<0 y有最大值

当x= 15时,y最大 此时,y=1250

答:每千克应降价15元,使获利最多,最多可获利1250元。得到答案后,学生自做帮学生梳理过程,并画图象,更深刻体会。易忽略自变取值范围。

小结:解决利润最大化问题的基本方法和步骤: 方法:二次函数思想

步骤

1、设自变量

2、建立函数解析式

3、确定自变量取值范围

4、顶点公式求出最值(在自变量取值范围内)

变式:若将题中“扩大销售,尽量减少库存”去掉,水果店应如何调价?

解:分两种情况讨论:

(1)设每千克这种水果降价x元。y=(60-20-x)(20+2x)=-2 x²+60x+800(0< x≤40)a=-2<0 y有最大值

当x =15时,y最大 此时,y=1250 答:每千克应降价15元,使获利最多,最多可获利1250元。

(2)设每千克这种水果应涨价x元 y=(60-20+x)(20-x)=-x²-20x+800(0< x≤20)a=-1<0 y有最大值 x =-10-10<0

当x>-10 时,y随x增大而减小

当x=0时,y取最大值

此时y=800 由上述讨论可知:应每千克降价15元,获利最多,最多可获利为1250元。

让学生想到是二种可能,涨价和降价,得分类讨论思想,函数思想,数形结合思想。强调在自变量取值范围内取最值,如顶点不在这个范围,根据函数图象的增减性来判断,而且实际问题的图象不是整个的抛物线,而是局部,这取决于自变量取值范围。学生自己整哩书写,教师指导。练习与作业

某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件。市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件。设每件涨价x元(x为非负整数),每星期的销售为y件。

(1)求y与x的函数关系式及自变量x的取值范围;

(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?

第三篇:二次函数的应用教学设计专题

课题 :第26章 二次函数 专项训练 抛物线的变换

教学背景:

二次函数是九年级下册数学中的重要教学内容,它从具体问题入手,通过实例巩固学生所学的知识。让学生通过平移旋转的特征,充分感受求解析式的重要性。

教学目标:

1、知识目标:学生能够利用平移旋转的特征;能够二次函数的关系式,从而熟练运用数形结合的方法解决问题。

2、技能目标:培养学生根据平移旋转的实际情况求二次函数关系式进行而解决问题的能力,引导学生把平移旋转实际化,即建立数学模型解决实际问题。

3、情感目标:经历“问题情境——自主探究——交流与讨论——猜想结论——得出结论”的数学思维、活动过程,体验成功的喜悦,感受数学与实际生活的紧密联系,增加学习数学的兴趣。

教学重点:利用平移旋转的特征感受二次函数关系式的变换规律 教学难点:利用平移旋转求二次函数关系式 教学用具:多媒体 教学过程:

一、引入练习:

1.点的坐标关于X轴对称坐标的特点,Y轴对称坐标的特点,原点对称坐标特点。

二、专项训练一

抛物线的平移

类型之一 抛物线与平移 1.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是(D)A.y=3x2+2 B.y=3(x-1)2 C.y=3(x-1)2+2 D.y=2x2 2.(2015·临沂)要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是(C)A.先向左平移1个单位,再向上平移2个单位 B.先向左平移1个单位,再向下平移2个单位 C.先向右平移1个单位,再向下平移2个单位 D.先向右平移1个单位,再向上平移2个单位

3.如图,把抛物线y=x2沿直线y=x平移2个单位后,其顶点在直线上的A处,则平移后抛物线的解析式是(C)A.y=(x+1)2-1 B.y=(x+1)2+1 C.y=(x-1)2+1 D.y=(x-1)2-1

14.如图在平面直角坐标系中,抛物线y=x2经过平移得21到抛物线y=x2-2x,其对称轴与两段抛物线弧所围成的阴2影部分的面积为(B)A.2 B.4 C.8 D.16

15.在平面直角坐标系中,把抛物线y=-x2+1向上平2移3个单位,再向左平移1个单位,则所得抛物线的解析式1是__y=-(x+1)2+4__. 26.已知二次函数y=3x2的图象不动,把x轴向上平移2个单位长度,那么在新的坐标系下此抛物线的解析式是__y=3x2-2__. 7.在平面直角坐标系中,平移抛物线y=-x2+2x-8,使它经过原点,写出平移后抛物线的一个解析式:__y=-x2+2x(答案不唯一)__.

8.(2015·岳阳)如图,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的给纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是__③④__.(填序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.19.如图,点A(-1,0)为二次函数y=x2+bx-2的图象2与x轴的一个交点.(1)求该二次函数的解析式,并说明当x>0时,y值随x值变化而变化的情况;(2)将该二次函数图象沿x轴向右平移1个单位,请直接写出平移后的图象与x轴的交点坐标.

类型之二 抛物线与轴对称 10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1.下列结论中错误的是(D)A.abc<0 B.2a+b=0 C.b2-4ac>0 D.a-b+c>0

11.如图所示,在一张纸上作出函数y=x2-2x+3的图象,沿x轴把这张纸对折,描出与抛物线y=x2-2x+3关于x轴对称的抛物线,则描出的这条抛物线的解析式为__y=-x2+2x-3__.

类型之三 抛物线与旋转 12.将二次函数y=x2-2x+1的图象绕它的顶点A旋转180°,则旋转后的抛物线的函数解析式为(C)A.y=-x2+2x+1 B.y=-x2-2x+1 C.y=-x2+2x-1 D.y=x2+2x+1 13.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是(B)A.y=-(x+1)2+2 B.y=-(x-1)2+4 C.y=-(x-1)2+2 D.y=-(x+1)2+4 14.把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为__y=-(x+1)2-2__.

15.在平面直角坐标系中,将抛物线y1=x2-4x+1向左平移3个单位长度,再向上平移4个单位长度,得到抛物线y2,然后将抛物线y2绕其顶点顺时针旋转180°,得到抛物线y3.(1)求抛物线y2,y3的解析式;(2)求y3<0时,x的取值范围;(3)判断以抛物线y3的顶点以及其与x轴的交点为顶点的三角形的形状,并求它的面积.

第四篇:二次函数教学设计

《二次函数》教学设计

一、教材分析:

《二次函数》选自义务教育课程标准试验教科书(五四学制)《数学》(人教版)九年级上册第二十一章,这章是在学生学习了一次函数与反比例函数,对于函数已经有所认识,从一次函数和反比例函数的学习大家已经知道学习函数大致包括以下内容:1.通过具体的事例认识这种函数;2.探索这种函数的图像和性质;3.利用这种函数解决实际问题;4.探索这种函数与相应方程等的关系。本章“二次函数”的学习也是从以上几个方面展开。首先让学生认识二次函数,掌握二次函数的图像和性质,然后让学生探索二次函数与一元二次方程的关系,从而得出用二次函数的图像求一元二次方程的方法。最后让学生运用二次函数的图像和性质解决一些实际问题。

本章教学时间约需12课时,具体分配如下(仅供参考): 21.1 二次函数

(6课时)21.2用函数的观点看一元二次方程

(1课时)21.3实际问题与二次函数

(3课时)数学活动

小结

(2课时)

21.1 二次函数教学时间约为 6课时,下面是第一课时的教学设计,此时学生对函数的相关知识已经很陌生,第一课时应对上学段学的一次函数和反比例函数的知识做一个回顾,让学生重温学习函数应该从以下四个内容入手:认识函数;研究图像及其性质;利用函数解决实际问题;函数与相应方程的关系。再通过分析实际问题,以及用关系式表示这一关系的过程,引出二次函数的概念,获得用二次函数表示变量之间关系的体验。然后根据这种体验能够表示简单变量之间的二次函数关系.并能利用尝试求值的方法解决实际问题.

二、教学目标:

知识技能:

1.探索并归纳二次函数的定义;

2.能够表示简单变量之间的二次函数关系. 数学思考:

1.感悟新旧知识间的关系,让学生更深地体会数学中的类比思想方法; 2.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.

解决问题:

1.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;

2.能够利用尝试求值的方法解决实际问题.进一步体会数学与生活的联系,增强用数学意识。

情感态度:

1.把数学问题和实际问题相联系,从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲;

2.使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用;

3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.

三、教学重点、难点:

教学重点:

1.经历探索和表示二次函数关系的过程,获得二次函数的定义。

2.能够表示简单变量之间的二次函数关系. 教学难点:

经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.

四、教学方法:教师引导——自主探究——合作交流。五:教具、学具:教学课件

六、教学媒体:计算机、实物投影。

七、教学过程:

[活动1] 温故知新,引出课题。

师:对于“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗?

生:学过正比例函数,一次函数,反比例函数.

师:那函数的定义是什么,大家还记得吗?

生:记得,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.

师:能把学过的函数回忆一下吗?

生:可以。

一次函数y=kx+b(其中k、b是常数,且k≠0)

正比例函数y=kx(k是不为0的常数)

反比例函数y=k

(k是不为0的常数)

x师:学习这些函数的时候,大家还记得我们从哪几个方面探究的吗? 生: 定义、函数的一般形式、函数的图像和性质、函数在实际问题中的应用、函数与方程与不等式的关系等。

师:很好,从上面的几种函数来看,每一种函数都有一般的形式.那么二次函数的一般形式究竟是什么呢?本节课我们将揭开它神秘的面纱.

师生行为:教师提出问题,指名回答,师生共同回顾旧知,教师做出适当总结和评价。教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,对于一些概括性较强的问题,教师要进行适当引导。

设计意图:由复习回顾旧知识入手,通过回顾已经学过的函数的相关知识,对要探究的新的函数有个明确的方向,让学生由旧知识中寻找新知识的生长点,符合认识新事物的规律,由浅入深,由表及里,逐渐深化。

[活动2]创设情境 探究新知: 问题

1.正方体六个面是全等的正方形,设正方形棱长为 x,表面积为 y,则 y 关于x 的关系式为是什么?

2.多边形的对角线数 d 与边数 n 有什么关系?

n边形有___个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可作____条对角线。因此,n边形的对角线总数d =______。

3.某工厂一种产品现在年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?

这种产品的原产量是20件,一年后的产量是

件,再经过一年后的产量是

件,即两年后的产量为。

4. 问题2中有哪些变量?其中哪些是自变量? 大家根据刚才的分析,判断一下式子中的d是否是n的函数?若是函数,与原来学过的函数相同吗?问题3呢? 5.观察上面的三个函数,从解析式看有什么共同点?

师生行为:教师在大屏幕上逐一提出问题,问题1、2、3让学生独立思考完成师生共同订正,问题4、5小组讨论完成,教师做适当的引导,点拨,得出问题结论。

定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做x的二次函数。教师重点关注:1.强调几个注意的问题:(1)等号左边是变量y,右边是关于自变量x的整式。(2)a,b,c为常数,且a≠0;(3)等式的右边最高次数为 2,可以没有一次项和常数项,但不能没有二次项。(4)x的取值范围是任意实数。

2.学生在探究问题的过程中,能否优化思维过程,使解决问题的方法更准确。设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,通过问题的解决,为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好奇心和求知欲。学生通过分析、交流,探求二次函数的概念,加深对概念的理解,为解决问题打下基础。

[活动3] 例题学习内化新知

问题

例1,下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项.(1)y=3(x-1)²+1

(2)y=x+k

x

(3)s=3-2t²

(4)y=(x+3)²-x²

(5)y=-x

(6)v=10Л r²

m例2,函数 y

( 3)xm2(1)m取什么值时,此函数是正比例函数?(2)m取什么值时,此函数是反比例函数?(3)m取什么值时,此函数是二次函数?

师生行为:教师出示例1,同学们稍加考虑即可获得问题的结论,进而引出例2,例2让学生分组展开讨论,待学生充分交流后,教师再组织各小组展示自己的讨论结果,共同得到正确是结论,并获得解题的经验。

教师重点关注:(1)探究中各小组是否积极展开活动;(2)学生对二次函数概念是否理解透彻,应用是否得当;(3)教师在小组中巡视,尽可能多给学生一点思考的时间和空间,对学习有困难的学生适当引导。

设计意图:通过例1的设计,有利于学生对二次函数的概念的理解,边学边练,为下一个讨论做铺垫;例2中三个问题的设计,由浅入深,层层递进,在复习旧知的同时获得解决新问题的经验,进一步内化新知、突破难点。整个探究过程都是让学生自己去探索,在探索中发现新知,在交流中归纳新知,把学习的主动权交给学生,增强学生创造的信心,体验到成功的快乐。

[活动4] 练习反馈

巩固新知 问题:

(1)

P80.练习1、2(2)

y 

(m

m)x

是二次函数,求m的值.

师生行为:教师提出问题,问题(1)学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,指名口答结果,教师强调正确解题思路;

教师重点关注:学生能否准确用二次函数表示变量之间关系;学生解题时候暴露的共性问题作针对性的点评,注重培养学生正确的思路和方法,积累解题经验。

设计意图:问题(1)是从简单的应用开始,及时巩固新知,让学生获得用二次函数表示变量之间关系的体验;问题(2)是让学生对二次函数定义很深层次的理解,培养数学思维的严谨性; 2m2m

八、自主小结,深化提高:

请同学们谈谈本节课的体会和收获,各抒己见,不拘泥于形式,教师对学生的回答给予帮助,让语言表达更准确。

设计意图:学生归纳本节课学习的主要内容,让学生自觉对所学知识进行梳理,形成体系,养成良好的学习习惯。

九、分层作业,发展个性:

作业设计:(必做题)1.阅读教材并完成P90 习题21.1:

1、2. 2.写好数学日记。

(备选题)1.已知函数y=ax2+bx+c(a、b、c是常数),当a___时是二次函数;

当a___,b___时是一次函数;

当a__,b__,c__时是正比例函数。2.画出最简单的二次函数y=x2的图象。预习作业:1.看书P80 设计意图:把作业分为必做题和选做题两种。必做题较基础,可以发现和弥补课堂学习的遗漏和不足;备选题则仅供学有余力的学生选用。

十、教学反思:

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。二次函数第一课时,教材中安排的内容不多,但学生对函数的知识已经生疏,接受起来不会很顺利。由此,我的设计是从温故知新开始,通过温故知新,引出课题、创设情境、探究新知、例题学习、内化新知、练习反馈、巩固新知等几个数学活动,引导学生用类比的思想,用已有的知识经验归纳总结出新知、内化新知、巩固应用新知的。活动中也注意了学生的知识与实际问题的联系,使学生充分体会数学源于生活又服务于生活。

第五篇:《二次函数》教学设计

实际问题与二次函数教案

仙游私立一中

林元炳

教学目标:

1、知识与技能:经历数学建模的基本过程。

2、方法与技能:会运用二次函数求实际问题中的最大值或最小值。

3、情感、态度与价值观:体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。

教学重点:二次函数在最优化问题中的应用。

难点:从现实问题中建立二次函数模型,学生较难理解。

复习旧知:

1、求在下列自变量范围下二次函数y=-x+2x-3的最值:

2⑴若-3≤x≤0,该函数的最大值为___________、最小值为__

。⑵若0≤x≤3,该函数的最大值_____________、最小值为______________。先画函数草图,再进行具体分析。

问题引入:

问题1, 某商店将每件进价为8元的某种商品按每件10元出售,一天可销出100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 分析: 先思考以下几个问题:

1.商品的利润与售价、进价以及销售量之间有什么关系? [利润=(售价-进价)×销售量] 2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)] 3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? [(10-8-x);(100+100x)] 4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2] 5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x)(100+100x)(0≤x≤2)] 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x+100x+200(0≤x≤2)„„„„„„„„(2)变式

一、某商店如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润. 注意:在变式中分析清楚随着价格的改变,其销售量也随之改变;进而总利润也发生了变化。

练习:商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大? 请同学们思考以下两个问题:

(1)题目中有几种调整价格的方法?

(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?

分析:

调整价格包括涨价和降价两种情况(1),先来看涨价的情况:设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖

件,实际 卖出

件,每件的利润为____________元。(或销售额为

元,买进商品需付

元),因此,所得利润为

元。()解:设涨价x元时利润最大,则每星期可少卖_________件,实际卖出___________件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润

(2),在降价的情况下,最大利润是多少?请你参考(1)的过程写出分析过程。设每件降价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。降价x元时则每星期少卖

件,实际卖出

件,销售额为

元,买进商品需付

元,因此,所得利润为

元。

解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润

由(1)(2)的讨论分析,你知道应该如何定价能使利润最大吗?

解这类题目的一般步骤:

归纳:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。

问题2;

某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。问:

(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;

(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?

分析:在这个问题中要注意的是:“物价部门规定每箱售价不得高于55元”这个条件。所以自变量的取值要考虑到55元这个限制。

练习2,某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果售价超过50元但不超过80元;每件商品的售价每涨价1元,每个月少卖出1件;如果售价超过80元后,每涨落价1元,每个月少卖3件。设每件商品的售价为x元,每个月的销售量为y件。(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W元,请直接写出W与x的函数关系式;

(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

作业:课本P27 第9题

下载二次函数的应用教学设计word格式文档
下载二次函数的应用教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二次函数教学设计

    一、教学目标 1.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体会如何用数学的方法描述变量之间的数量关系。 2.能够表示简单变量之间的二次函数关系。 3.经历......

    二次函数教学设计

    教学内容:人教版九年义务教育初中第三册第108页教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷......

    26.3(6)二次函数的应用教学设计

    26.3(6)二次函数的应用 教学目标: 1.能运用二次函数的知识解决简单的实际问题. 2.通过研究二次函数的图像和直观性质以及解决实际问题的过程中,进一步领会数形结合以及数学建模......

    《二次函数的应用》教学反思

    《二次函数的应用》教学反思 《二次函数的应用教学反思》教学反思 二次函数的应用是在学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查,它......

    二次函数教学设计(合集14篇)

    篇1:二次函数教学设计教材分析本节课主要内容包括:运用二次函数的最大值解决最大面积的问题,让学生体会抛物线的顶点就是二次函数图象的最高点(最低点),因此,可利用顶点坐标求实际......

    二次函数教学设计五篇

    二次函数教学设计 亮兵中学郭立新 一、教材分析 本节课是数学人教版九年级(下)《二次函数》这一章的第一节课内容。知识方面,它是在正比例函数,一次函数,反比例函数的基础上,对函......

    二次函数教学设计(最终5篇)

    二次函数教学设计(精选8篇)作为一位无私奉献的人民教师,常常要根据教学需要编写教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么应当如何写教学设计呢?以下是小......

    二次函数第一节教学设计

    《23.1二次函数》教学设计 主备人:余河初中 徐斌(九年级数学) 参备人:刘进华 刘华丽 徐观群 朱德鹏 周宜昌 徐观兵 朱礼义 一、教学目标 1、知识与技能:掌握二次函数的概念;能......