第一篇:2015 新审定 人教版 六年级 数学 下册 第一单元 负数教学设计
第一单元 负数
第一课时 负数的认识
一、教学目标
(一)知识与技能
让学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0既不是正数也不是负数。
(二)过程与方法
结合现实情境理解负数的具体含义,学会用正数、负数表示生活中相反意义的量。
(三)情感态度和价值观
让学生了解负数产生的历史,感受正数、负数与生活的联系,结合史料进行爱国主义教育。
二、教学重难点
教学重点:结合现实情境理解负数的不同含义。教学难点:结合现实情境理解负数的不同含义。
三、教学过程
(一)谈话激趣,导入新课
1.同学们,你们在生活中见过负数吗?你知道它的含义吗?
2.究竟什么是负数?它表示的含义有什么不同呢?今天我们这节课一起认识负数(揭示课题)。
(二)结合情境,理解意义 1.初步感知负数
(1)出示教材第2页例1。
下面是中央气象台2012年1月21日下午发布的六个城市的气温预报(2012年1月21日20时—2012年1月22日20时)。
教师:请仔细观察,说说你有什么发现?
预设:①哈尔滨的最高气温是零下19℃,最低气温是零下27℃;海口最热,最高气温是23℃……②-12℃表示零下十二摄氏度(读作负十二摄氏度);零下温度在数字前加“-”……(2)-3℃和3℃表示的意思一样吗?请在温度计中表示出来。
预设:①-3℃表示零下三度,3℃表示零上三度;②它们表示的意义相反;③先找0℃,往下数三格表示-3℃,往上数三格表示3℃。(3)0℃表示什么意思?
预设:①0℃表示天气很冷;②0℃表示淡水开始结冰的温度;③0℃是零上温度和零下温度的分界线。
小结:比0℃低的温度叫零下温度,通常在数字前加“-”(负号)。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下正号可省略不写。(4)请在温度计上表示-18℃,比一比-3℃和-18℃哪个温度低? 2.认识正负数
(1)出示教材第3页例2。
教师:研究完气温,再来看看存折上的数。你们又有什么发现呢?说说这些数各表示什么? 预设:①2000.00表示存入2000元;②500.00和-500.00的意义恰好相反,一个是存入500元,一个是支出500元。
(2)教师:像零上温度与零下温度、收入与支出这样表示两种相反意义的量,生活中还有许多。你能举出这样的实例吗? 预设:水面上升2米、下降2米;乘车时上客5人、下客6人;货物运进200吨、运出150吨……
(3)我们怎样来表示像这样两种相反意义的量呢?
教师:为了表示两种相反意义的量,需要用两种数。一种是我们以前学过的数,如3、500、4.7、,这些数是正数;另一种是在这些数的前面添上负号“-”的数,如-
3、-500、-4.7、-等,这些数是负数。那么0是什么数呢?(0既不是正数,也不是负数,它是正数与负数的分界线。)
(4)基本练习(出示教材第4页“做一做”第2题)
请学生独立思考,哪些是正数,哪些是负数,并填入相应的圈中。
(三)回归生活,拓展应用
教师:在日常生活中,人们还有好多时候要用到正数、负数,让我们一起接着看一看!1.出示教材第6页练习一第1题。
(1)学生独立完成,集体反馈。
(2)看了这些信息,你有什么感受?月球表面白天的平均温度和夜间的平均温度相差多少度?
2.出示教材第6页练习一第5题。
(1)仔细读题,你获得了什么信息?有什么不明白的?(介绍:海平面就是海的平均高度;海拔是地面某个地点高出海平面的垂直距离。)(2)独立完成,集体反馈。(3)你知道你所在城市的海拔高度吗?说说它的具体含义。3.出示教材第6页练习一第2题。
(1)仔细读题,说说你知道了什么信息?
(2)请表示出悉尼、伦敦的时间。北京时间用什么表示?
(3)以北京时间为标准,孟加拉国首都达卡的时间记为-2时,你知道它此时的时间吗?(4)你还知道此时其他时区的时间吗?试着表示出来。4.出示练习题。
某食品厂生产的120克袋装方便面外包装印有“(120±5)克”的字样。小明购买一袋这样的方便面,称一下发现117克,请问厂家有没有欺骗行为?为什么?(1)说说你知道了什么信息?(2)“120±5”表示什么意思?
(3)如果120克记作0克,117克可以记作多少克?
(四)了解历史,课堂总结
1.出示教材第4页“你知道吗?”内容。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下。(1)看了介绍,你对负数又有什么新的认识?(2)你有什么感受? 2.这节课你有什么收获? 教师:关于负数,生活中还有更多的知识等待我们去探索,只要同学们做善于观察的有心人,在今后的生活和学习中会有更多的收获。
第二课时 直线上的负数
一、教学目标
(一)知识与技能
经历在直线上表示行走距离和方向的过程,体会直线上正负数的排列规律,逐步建构数的比较完整的认知结构。
(二)过程与方法
在活动中探究直线上表示正负数的方法,学会用正负数表示相反意义的量解决实际问题,渗透数形结合的思想。
(三)情感态度和价值观
引导学生用数学的眼光关注生活中的问题,感受数学学习的价值。
二、教学重难点
教学重点:学会在直线上表示正负数,体会直线上正负数的排列规律。教学难点:用正负数表示相反意义的量解决实际问题。
三、教学过程
(一)复习旧知,引入新课 填一填。
①一辆公共汽车经过某站台时有12人上车,记作()人;7人下车,记作()人。②阳光小学今年招收新生300人,记作+300人,那么-420人表示()。③升降机上升3.5米,记作+3.5米;-4米表示()。(1)独立完成,集体反馈。
(2)像这样表示两种相反意义的量可以用正负数表示,你还能举出这样的例子吗?
(二)创新情境,探究新知 1.认识直线上的负数
(1)出示教材第5页例3。
说说你知道了什么信息?
(2)如何在直线上表示他们的行走的距离和方向呢?你准备怎么画?
预设:①以大树为起点,向东为正,向西为负;②0表示起点,向东走2米,表示为+2米,向西走2米,表示为-2米。
(3)独立画图,交流反馈。①你是怎么画的?
(4)同桌合作游戏:你走我说。
举例:如果小明从“—2”的位置要走到“—4”,应该如何运动?
(5)引导观察:在直线上从0往右依次是什么数?从0往左呢?你发现了什么规律? 预设:①0右边的数是正数;②0左边的数是负数;③从左往右的数逐渐增大;④正数比0大,负数比0小。
(三)巩固深化,拓展应用 1.基本练习
(1)出示教材第5页“做一做”。
①独立完成,集体交流。
说说怎样在直线上表示这些数?
②从起点到-如何运动?哪个点与它到0的距离相等?它们之间相距几个单位长度?
(2)出示教材第7页练习一第7题。
①独立完成,集体反馈。
②如果一个人从“-2”位置出发向西走1米,将会到达什么位置?如果从“-2”出发先向西走1米,再向东走4米,将会到达什么位置? ③同桌合作游戏:你说我走。
游戏规则:一个人说明起点的位置和如何运动,另一个人用笔尖表示人在数轴上运动,标出最后到达的位置,并用一个数表示这个位置。(3)出示题目:
体育达标测试,一分钟仰卧起坐的成绩统计如下:李勇45个、张军28个、张强33个、赵刚26个、王亮18个。如果每分钟做仰卧起坐30个算达标,以达标的个数为标准,记录每个人的成绩。刚好达标的个数记为0个,超出的个数用正数表示,不足的个数用负数表示,请把下表填写完整。
①说说你知道了什么信息? ②独立完成,集体反馈。
②比较大家的画法有什么不同?(单位长度不一样。)
③直线上其他几个点代表什么数? ④演示画法,教师小结:在一条直线上表示行走的距离和方向,需要先确定起点、正方向、单位长度,再用正负数表示相应点。这就是我们今天这节课研究的内容(板书课题:直线上的负数)。
2.感知直线上数的变化(1)在直线上表示负数
①请学生独立在直线上表示出1.5和-1.5。②集体交流:说说你是如何表示的?
预设:①-1.5 m表示向西走1.5 m;②-1.5在-1和-2之间。(2)如果你想从起点分别到1.5和-1.5处,应该如何运动?(3)观察1.5和-1.5的位置,你发现了什么?
预设:①1.5在0的右面1.5个单位长度,-1.5在0的左面1.5个单位长度,它们表示的意义相反;②它们到0的距离相等,都是1.5个单位长度;③它们之间相距3个单位长度。(4)出示题目:
某次数学测试,老师以80分作为标准,将六名同学的成绩记为+
4、+
10、-
5、0、+
7、-4,这六名同学的实际平均成绩是多少?
①你知道这六名同学的实际成绩分别是多少吗?
②独立计算,集体反馈。
预设:方法一:(84+90+75+80+87+76)÷6=82(分);方法二:80+(4+10+7-5-4)÷6=82(分)。
(四)课堂总结
说说这节课你有什么收获?
第二篇:六年级数学下册《第一单元负数》教学反思
负数是学生在认识了自然数、分数和小数的基础上,结合学生熟悉的生活情景初步进行认识。在教学中,我注意从以下几个方面强化学生的认识:
第一、选取学生熟悉的生活素材,加深理解。
为了帮助学生更好的理解,体会正数和负数可以表示两种相反意思的量,注意结合学生熟悉的生活环境,选取他们感兴趣的素材,唤起学生已有的生活经验,使学生在具体的情境中认识负数。例如:用负数表示温度,存折上现金的存入和支取,水位高度的上升和下降,海拔高度的高于海平面和低于海平面,等等。这些学生都比较熟悉。另外,在练习中还安排了用正数和负数表示一些数据的练习。等等。
第二、初步建立数轴的模型,渗透数形结合的思想。
在学生初步认识了负数后,教材中安排了活动情境,在直线上表示从一点向两个相反方向运动后的情形,也就是在直线上表示正数、负数和0的内容。通过这个学习,学生初步体会数轴上数的顺序,完成对数的结构的初步构建。
第三篇:2015新审定人教版六年级数学下册第一单元负数教学设计 1
第一单元
负 数
第一课时
负数的认识
教学内容:负数 教学目标:
知识与技能
让学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0既不是正数也不是负数。
过程与方法
结合现实情境理解负数的具体含义,学会用正数、负数表示生活中相反意义的量。
情感态度和价值观
让学生了解负数产生的历史,感受正数、负数与生活的联系,结合史料进行爱国主义教育。教学重难点:
教学重点:结合现实情境理解负数的不同含义。教学难点:结合现实情境理解负数的不同含义。教学过程:
(一)谈话激趣,导入新课
1.同学们,你们在生活中见过负数吗?你知道它的含义吗?
2.究竟什么是负数?它表示的含义有什么不同呢?今天我们这节课一起认识负数(揭示课题)。
(二)结合情境,理解意义
1.初步感知负数
(1)出示教材第2页例1。
下面是中央气象台2012年1月21日下午发布的六个城市的气温预报(2012年1月21日20时—2012年1月22日20时)。
教师:请仔细观察,说说你有什么发现? 预设:①哈尔滨的最高气温是零下19℃,最低气温是零下27℃;海口最热,最高气温是23℃„„②-12℃表示零下十二摄氏度(读作负十二摄氏度);零下温度在数字前加“-”„„(2)-3℃和3℃表示的意思一样吗?请在温度计中表示出来。
预设:①-3℃表示零下三度,3℃表示零上三度;②它们表示的意义相反;③先找0℃,往下数三格表示-3℃,往上数三格表示3℃。(3)0℃表示什么意思?
预设:①0℃表示天气很冷;②0℃表示淡水开始结冰的温度;③0℃是零上温度和零下温度的分界线。
小结:比0℃低的温度叫零下温度,通常在数字前加“-”(负号)。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下正号可省略不写。
(4)请在温度计上表示-18℃,比一比-3℃和-18℃哪个温度低?
2.认识正负数
(1)出示教材第3页例2。
教师:研究完气温,再来看看存折上的数。你们又有什么发现呢?说说这些数各表示什么? 预设:①2000.00表示存入2000元;②500.00和-500.00的意义恰好相反,一个是存入500元,一个是支出500元。(2)教师:像零上温度与零下温度、收入与支出这样表示两种相反意义的量,生活中还有许多。你能举出这样的实例吗? 预设:水面上升2米、下降2米;乘车时上客5人、下客6人;货物运进200吨、运出150吨„„(3)我们怎样来表示像这样两种相反意义的量呢?
教师:为了表示两种相反意义的量,需要用两种数。一种是我们以前学过的数,如3、500、4.7、,这些数是正数;另一种是在这些数的前面添上负号“-”的数,如-
3、-500、-4.7、-等,这些数是负数。那么0是什么数呢?(0既不是正数,也不是负数,它是正数与负数的分界线。)基本练习(出示教材第4页“做一做”第2题)
请学生独立思考,哪些是正数,哪些是负数,并填入相应的圈中。
(三)回归生活,拓展应用
教师:在日常生活中,人们还有好多时候要用到正数、负数,让我们一起接着看一看!
1.出示教材第6页练习一第1题。
(1)学生独立完成,集体反馈。(2)看了这些信息,你有什么感受?月球表面白天的平均温度和夜间的平均温度相差多少度?
2.出示教材第6页练习一第5题。
(1)仔细读题,你获得了什么信息?有什么不明白的?(介绍:海平面就是海的平均高度;海拔是地面某个地点高出海平面的垂直距离。)(2)独立完成,集体反馈。
(3)你知道你所在城市的海拔高度吗?说说它的具体含义。
3.出示教材第6页练习一第2题。
(1)仔细读题,说说你知道了什么信息?
(2)请表示出悉尼、伦敦的时间。北京时间用什么表示?
(3)以北京时间为标准,孟加拉国首都达卡的时间记为-2时,你知道它此时的时间吗?(4)你还知道此时其他时区的时间吗?试着表示出来。
4.出示练习题。
某食品厂生产的120克袋装方便面外包装印有“(120±5)克”的字样。小明购买一袋这样的方便面,称一下发现117克,请问厂家有没有欺骗行为?为什么?(1)说说你知道了什么信息?(2)“120±5”表示什么意思?
(3)如果120克记作0克,117克可以记作多少克?
(四)了解历史,课堂总结
1.出示教材第4页“你知道吗?”内容。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下。(1)看了介绍,你对负数又有什么新的认识?(2)你有什么感受?
2.这节课你有什么收获?
教师:关于负数,生活中还有更多的知识等待我们去探索,只要同学们做善于观察的有心人,在今后的生活和学习中会有更多的收获。教学反思:
第二课时 用数轴表示正、负数
教学目标:
知识与技能
经历在直线上表示行走距离和方向的过程,体会直线上正负数的排列规律,逐步建构数的比较完整的认知结构。
过程与方法
在活动中探究直线上表示正负数的方法,学会用正负数表示相反意义的量解决实际问题,渗透数形结合的思想。
情感态度和价值观
引导学生用数学的眼光关注生活中的问题,感受数学学习的价值。教学重难点
教学重点:学会在直线上表示正负数,体会直线上正负数的排列规律。教学难点:用正负数表示相反意义的量解决实际问题。教学过程:
(一)复习旧知,引入新课
填一填。
①一辆公共汽车经过某站台时有12人上车,记作()人;7人下车,记作()人。
②阳光小学今年招收新生300人,记作+300人,那么-420人表示()。
③升降机上升3.5米,记作+3.5米;-4米表示()。(1)独立完成,集体反馈。
(2)像这样表示两种相反意义的量可以用正负数表示,你还能举出这样的例子吗?
(二)创新情境,探究新知
1.认识直线上的负数
(1)出示教材第5页例3。
说说你知道了什么信息?
(2)如何在直线上表示他们的行走的距离和方向呢?你准备怎么画?
预设:①以大树为起点,向东为正,向西为负;②0表示起点,向东走2米,表示为+2米,向西走2米,表示为-2米。(3)独立画图,交流反馈。①你是怎么画的?
(4)同桌合作游戏:你走我说。
举例:如果小明从“—2”的位置要走到“—4”,应该如何运动?
(5)引导观察:在直线上从0往右依次是什么数?从0往左呢?你发现了什么规律?
预设:①0右边的数是正数;②0左边的数是负数;③从左往右的数逐渐增大;④正数比0大,负数比0小。
(三)巩固深化,拓展应用
1.基本练习
(1)出示教材第5页“做一做”。
①独立完成,集体交流。
说说怎样在直线上表示这些数?
②从起点到-如何运动?哪个点与它到0的距离相等?它们之间相距几个单位长度?(2)出示教材第7页练习一第7题。
①独立完成,集体反馈。
②如果一个人从“-2”位置出发向西走1米,将会到达什么位置?如果从“-2”出发先向西走1米,再向东走4米,将会到达什么位置? ③同桌合作游戏:你说我走。
游戏规则:一个人说明起点的位置和如何运动,另一个人用笔尖表示人在数轴上运动,标出最后到达的位置,并用一个数表示这个位置。(3)出示题目:
体育达标测试,一分钟仰卧起坐的成绩统计如下:李勇45个、张军28个、张强33个、赵刚26个、王亮18个。如果每分钟做仰卧起坐30个算达标,以达标的个数为标准,记录每个人的成绩。刚好达标的个数记为0个,超出的个数用正数表示,不足的个数用负数表示,请把下表填写完整。
①说说你知道了什么信息? ②独立完成,集体反馈。
②比较大家的画法有什么不同?(单位长度不一样。)③直线上其他几个点代表什么数?
④演示画法,教师小结:在一条直线上表示行走的距离和方向,需要先确定起点、正方向、单位长度,再用正负数表示相应点。这就是我们今天这节课研究的内容(板书课题:用数轴表示正、负数)。
2.感知直线上数的变化(1)在直线上表示负数
①请学生独立在直线上表示出1.5和-1.5。②集体交流:说说你是如何表示的?
预设:①-1.5 m表示向西走1.5 m;②-1.5在-1和-2之间。(2)如果你想从起点分别到1.5和-1.5处,应该如何运动?(3)观察1.5和-1.5的位置,你发现了什么?
预设:①1.5在0的右面1.5个单位长度,-1.5在0的左面1.5个单位长度,它们表示的意义相反;②它们到0的距离相等,都是1.5个单位长度;③它们之间相距3个单位长度。(4)出示题目:
某次数学测试,老师以80分作为标准,将六名同学的成绩记为+
4、+
10、-
5、0、+
7、-4,这六名同学的实际平均成绩是多少?
①你知道这六名同学的实际成绩分别是多少吗?
②独立计算,集体反馈。预设:方法一:(84+90+75+80+87+76)÷6=82(分);方法二:80+(4+10+7-5-4)÷6=82(分)。
(四)课堂总结
说说这节课你有什么收获?
教学反思:
第一单元测试
一、测试目的:
1、通过测试了解学生对本单元知识的掌握情况,学习方法的掌握,从而分析学生在学习中存在的问题便于采取措施。
2、在测试中锻炼学生在规定的时间内完成事情的能力,使学生掌握做题的时间及方法。
3、通过测试了解后进生的学习情况采取有效的方法帮助学生学习。
4、在讲评中纠正学生存在的错误与不足。
二、教学时间:四课时
三、教学过程:
第一、二课时
学生做测试题教师巡逻监考。
第 三、四课 时
一、总结测试结果。
教师分析测试题存在的问题,总结测试的结果。
二、讲解测试题目。
第四篇:人教版六年级数学下册第一单元负数认识负数教学设计
认识负数
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例
1、例2。教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。教学重、难点: 负数的意义。教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢„„你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量。(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。④ 一个蓄水池夏季水位上升 米,冬季水位下降 米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)(2)尝试。
怎样用数学方式来表示这些相反意义的量呢? 请同学们选择一例,试着写出表示方法。„„
(3)展示交流。„„
2.认识正、负数。(1)引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。写完后,交流、检查。3.联系实际,加深认识。(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:„
„)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。4.进一步认识“0”。(1)看一看、读一读。
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。哈尔滨:
-15 ℃~-3 ℃
北京:
-5 ℃~5 ℃
深圳:℃~23 ℃
温度中有正数也有负数,请把负数读出来。(2)找一找、说一说。
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么? 现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)你能很快找到12 ℃、-3 ℃吗?(3)提升认识。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
(完善板书。)5.练一练。
读一读,填一填。(练习一第1题。)6.出示课题。
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗? 根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。7.负数的历史。(1)介绍。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放):
“中国是世界上最早认识和运用负数的国家,早在2000多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”
(2)交流。
简单了解了负数的历史,你有什么感受?
三、练习应用
今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。
课件逐一出示:
1.表示海拔高度。(“做一做”第2题。)
通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。
2.表示温度。(练习一第2题。)
月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温度为零下150℃,记作_____________℃。
3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?
4.表示时间。(练习一第3题。)
5.“净含量:10±0.1kg”表示什么意思?
四、总结延伸
1.学生交流收获。
2.总结。
简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。
第五篇:最新人教版六年级数学下册第一单元负数教案
全册教材分析
一、本册教材的内容
第一单元为负数,第二单元为百分数
(二),第三单元为圆柱与圆锥,第四单元为比例,第五单元为数学广角-鸽巢问题,第六单元为整理和复习。
二、单元内容介绍
第一单元 负数
编排特点:
1.选取学生熟悉的生活素材,加深对负数意义的理解。
教材注意结合学生熟悉的生活情境,选取学生感兴趣的素材,帮助学生更好的理解负数的意义,体会正数和负数可以表示两种相反意义的量。
2.初步建立数轴的模型,渗透数形结合的思想。
在学生初步认识负数后,教材帮助学生进一步感受负数的意义,并初步建立数轴的模型,让学生体会数轴上数的顺序,完成对数的结构的初步构建。
“负数”教学中应注意的问题:
1、结合具体生活情境,加深对正负数的认识。
运用大量实例,让学生直观形象地理解“正负数是表示相反意义的量”,加深学生对正负数的认识。(温度的零上与零下、存折中的支出与存入、海平面以上与海平面以下、相反方向的距离等)
2、注意正确地理解正号和负号的含义。
数学符号是一种高度抽象化、概括化和形式化的数学语言,而小学生由于仍处于具体形象的思维水平,在首次接触新的数学符号时往往不能很好地理解其实质,从而产生一些不正确的认识。例如,“正数前面的正号”“负数前面的负号”等不科学的表述。这就要求在本单元的教学中,老师应重视引导学生对“+”、“—”的分析,帮助学生透过形式,切实理解正号、负号的本质意义。
3、把握好教学要求。
进行数的大小比较时,则应该脱离具体的情境,把数轴上的点和抽象的正负数对应起来,通过观察数轴上正负数的排列顺序,总结数的大小比较规律。
第二单元 百分数
(二)教学目标:
1、解决“打折”等实际问题,沟通各类百分数问题的联系。
2、体验百分数在日常生活中的广泛应用以及在交流、信息传递中的作用,树立依法纳税和科学理财的意识。
3、感受百分数在日常生活中和生产中的广泛应用,对周围环境中与百分数有关的事物具有好奇心,激发学生学好数学的信心。教学中需要注意的问题:
1、本单元中的利息的计算比较繁琐了一点,在教学中要注意指导学生注意利率化为小数计算时的小数点位置。
2、本单元的折扣与成数有相似之处又有不同之处,着重于写法上的区别,如一个是七五折,一个是七成五。
3、学会合理购物是这一个单元的综合实践运用,要指导学生结合具体事例,经历综合运用所学知识解决合理购物问题的过程。能自己做出购物方案,并对方案的合理性做出充分的解释。
第三单元 圆柱与圆锥
教学目标:
1.认识圆柱,掌握圆柱的基本特征,认识圆柱的底面、侧面和高和圆锥,探索并掌握圆柱的侧面积、表面积的计算方法,以及会运用公式计算体积,解决有关的简单实际问题。
2.认识圆锥,掌握圆锥的基本特征,认识圆锥的底面和高,以及会运用公式计算体积,解决有关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥体模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
教学中需要注意的问题:
1、本单元的很多习题需要老师帮助学生理解问题的实际含义,把它转化为纯粹的数学问题,这时可以通过教具或图形帮助学生理解。
2、本单元的计算比较繁琐,建议无论在计算圆柱的表面积,还是计算圆柱、圆锥的体积时,尽量让学生结合图形进行分步计算。笔筒、厨师帽、铁桶是无盖的,我一般是
要求学生画出它的草图,在不要求的那个面上打一个小×。
3、本单元我们经常会碰到近似取值的题,视实际情况而定。
第四单元 比例
教学目标
1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
“比例”教学中应注意的问题
1.在“比例的意义”教学中注意情感、价值观的渗透。
教师在教学中可通过学生算出各面国旗长、宽之比均为3:2,借机向学生说明:为维护国旗的尊严,我国制定了《国旗法》,其中规定“国旗长、宽之比为3:2”,所以尽管在不同的场合根据需要国旗的大小可能不同,但是它们的形状是一样的。让学生认识到国旗的庄严与神圣,从而对学生进行热爱国旗的教育。
2.比例教学中的“变与不变”。
正比例反比例的意义很抽象,它是一种数学模型,研究两个相关联的变量之间的关系。
在正比例里,一种量扩大(缩小),另一种量也随着扩大(缩小),但这两种量中相对应的两个数的比值一定。
在反比例里,一种量扩大(缩小),另一种量也反而缩小(扩大),但这两种量中相对应的两个数的乘积一定。
3、如何界定比例尺的大小?
比例尺的大小不是指比值的大小,而是指缩放程度的大小。例如:比例尺1:1000大于1:100.4、利用比例尺进行计算时,注意计算中的长度单位的转换训练。
第五单元
数学广角-鸽巢问题
教学目标
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”;
2、会用“抽屉原理”解决简单的实际问题。
利用抽屉原理解决实际问题的关键:
1、制造“抽屉”;(将“具体问题”与“抽屉问题”联系)
2、讨论假设法最不利的情况(尽可能多地平均分给各个抽屉);
3、用算式形式表示假设法的核心思路:
物品数÷抽屉数=商……余数
4、“至少数=商+1”。“至少数”是哪一个抽屉不必关心它;
第六单元 整理和复习
教学目标
1.比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识;能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。
2.巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。
3.掌握所学几何形体的特征;能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;巩固所学的简单的画图、测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。
4.掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据作出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算平均数的实际问题。
5.进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。
整理与复习的建议
(一)数与代数
(1)注意概念的理解。
这部分复习内容概念比较集中,复习时可以通过让学生自己举出例证加以说明的方式帮助学生重温概念的含义,并促进理解。这样也能避免机械背诵概念条文的做法。有
些容易混淆的概念可以通过对比、辨析,帮助学生搞清它们的异同点。
(2)重视计算能力的培养与提高。
小学阶段所学的数值计算都集中在本节中,复习时要注意在理解算理,搞清算法之间内在联系与区别的基础上,合理安排练习。比如每天有计划、有侧重地练习一些口算和少量的混合运算,这样的分布练习比集中练习效果更好。
(二)图形与几何
(1)图形的认识与测量,着重复习小学阶段所学习的各图形的特点、关系以及部分形体的周长、面积、体积计算。这部分内容从纵向看,可按平面图形——立体图形的顺序进行整理;从横向看,可归结为图形特征的认识,图形周长、面积、体积的测量与计算。
(2)图形与变换,着重复习轴对称、平移、旋转三种基本的几何变换形式。
(3)图形与位置,着重复习确定物体的相对位置,辨认方向和使用路线图(包括比例尺的应用)。
(三)统计与概率
这部分内容集中整理了小学阶段统计与概率的知识,主要有统计表、条形统计图、折线统计图和扇形统计图,平均数、中位数和众数,可能性等。
(四)数学思考
数学思想与方法可以帮助有条理地思考,这部分内容集中了一些找规律,枚举法,假设法、加法及乘法原理等方面的内容,着重于让学生全面学会有条理地进行数学思考。
(五)综合与实践
综合与实践着重于运用小学阶段所学过的数学知识,对于一些具体生活事例能能进行有效的设计方案,并能说清条理和依据。
第一单元
负数
单元分析:
现实世界中存在着许多具有相反方向的量,或某种量的增大和减小,也可用这种量的某一状态为标准,把它们看作是向两个方向变化的量。从而产生了负数,正数和负数的学习过去安排在中学中学习,现在提前到六年级学,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。
教学要求:
1、经历在熟悉的生活环境中认识负数的过程,了解负数的意义,会用负数表示一些日常生活中的问题。
2、3、能对现实生活中有关负数的数学信息作出合理解释。能用负数描述并解决一些现实世界中的简单问题。
教学重点:
负数的意义
教学难点:用数轴表示正负数 课时安排:
1、2、负数的初步认识及读写„„„„„„„„1课时 用数轴表示正负数„„„„„„„„„„1课时 负数的初步认识及读、写
第一课时
主备人:朱桂荣
教学内容:负数的初步认识及读写例
1、例2 教学目标:
1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:初步认识正数和负数以及读法和写法。教学难点:理解0既不是正数,也不是负数。学情分析:
教学方法: 教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄式度(零下10摄式度)。
3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做
好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?
(1)现在你能看出长沙最低气温是多少摄式度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄式度)。
(2)上海的气温:上海的最高气温是多少摄式度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)指出:上海的气温比0℃要高,是零上4摄式度。
(3)了解首都北京的最高气温:北京又是多少摄式度呢?与长沙的0℃比起来,又怎样了呢?(比长沙的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)你能在温度计上拨出来吗?(4)比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最高气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
2、小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、教学例2
1、让学生从课本第3页的表格中观察,知道了什么?
2、讲解为了表示收入与支出这样两种相反意义的量,需要用两种数表示,一种是正数,一种数是在数的前面添上负号的负数。
3、学生小组讨论和交流,理解什么叫正数,什么叫负数,并学习正确的读法和写法。
四、巩固练习
1、先读一读,再把下列各数填入相应的圈中。-2 14 +23 -3.4 0 +74.5 50 -4.8 -82 +50 13
974 正数 负数
2、通常,我们规定海平面的海拔高度为0米。珠穆朗玛峰的海拔高度为()米,吐鲁番盆地的海拔高度为()米。
珠穆朗玛峰 8844.43m 海平面
吐鲁番盆地
155m 3、判断题:
(1)0是负数。((2)在写正数时,“+”号可以省略不写。((3)零上60C(60C)和零下60
C(-60
C)是两种相反的意义的量。((4)4 不是正数。(9
五、课堂小结
通过今天的学习,你有什么收获?
六、布置作业:
第6页第1、2题
板书设计:
1.负数的认识
3℃读作:3摄氏度
-3℃读作:负3摄氏度 表示零上3摄氏度
表示零下3摄氏度 存入500元:500.00
支出500元:-500.00
两种相反意义的量
0既不是正数,也不是负数。))))用数轴表示正、负数
第一课时
主备人:朱桂荣
教学内容:用数轴表示正负数例3 教学目标:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。教学重、难点:负数与负数的比较。教学方法: 教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
1437-8 5.6 +0.9-+ 0-82
2、如果+20%表示增加20%,那么-6%表示。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是()摄氏度。
二、新授: 教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。)
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直
线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?
(7)总结:负数比0小,正数比0大,负数比正数小。
三、巩固练习
1、说出点A、B、C、D、E表示的数。
A、()B、()C、()D、()E、()
2、在数轴上表示下列各数。
-4 1 -2 2.5 -0.5 1.5 5
2四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。(2)负数比0小,正数比0大,负数比正数小。
五、布置作业:
第6页第4题、第7页第7题
板书设计: