第一篇:点与圆的位置关系公开课教案(写写帮推荐)
点与圆的位置关系公开课教案
公开课教案
课题:点与圆的位置关系 时间:,星期三 地点:多媒体教室
班级:三(3)
教学目标 : 1.了解点与圆的三种位置关系,能够用数量关系来判断点与圆的位置关系
2.掌握不在一条直线上的三点确定一个圆,能画出三角形的外接圆,求出特殊三角形的外接圆的半径
3.渗透方程思想,分类讨论思想。
教学重点: 用数量关系判断点和圆的位置关系,用尺规作三角形的外接圆,求直角三角形、等边三角形和等腰三角形的半径。教学难点: 运用方程思想求等腰三角形的外接圆半径。教学过程
(一)情境导入
同学们看过奥运会的射击比赛吗?射击的靶子是由许多圆组成的,射击的成绩是由击中靶子不同位置所决定的;右图是一位运动员射击10发子弹在靶上留下的痕迹。你知道这个运动员的成绩吗?请同学们算一算。(击中最里面的圆的成绩为10环,依次为9、8、…、1环)
这一现象体现了平面上的点与圆的位置关系,如何判断点与圆的位置关系呢?这就是本节课研究的课题。(二)实践与探索1:点与圆的位置关系
我们知道圆上的所有点到圆心的距离都等于半径,若点在圆上,那么这个点到圆心的距离等于半径,若点在圆外,那么这个点到圆心的距离大于半径,若点在圆内,那么这个点到圆心的距离小于半径。
如图28.2.1,设⊙O的半径为r,A点在圆内,B点在圆上,C点在圆外,那OA<r,OB=r,OC>r.反过来也成立,即 若点A在⊙O内
若点A在⊙O上
若点A在⊙O外
思考与练习
1、⊙O的半径,圆心O到直线的AB距离。在直线AB上有P、Q、R三点,且有。P、Q、R三点对于⊙O的位置各是怎么样的?
2、中,,,对C点为圆心,为半径的圆与点A、B、D的位置关系是怎样的?(三)实践与探索2:不在一条直线上的三点确定一个圆
问题与思考:平面上有一点A,经过A点的圆有几个?圆心在哪里?平面上有两点A、B,经过A、B点的圆有几个?圆心在哪里?平面上有三点A、B、C,经过A、B、C三点的圆有几个?圆心在哪里?从以上的图形可以看到,经过平面上一点的圆有无数个,这些圆的圆心分布在整个平面;经过平面上两点的圆也有无数个,这些圆的圆心是在线段AB的垂直平分线上。经过A、B、C三点能否画圆呢?同学们想一想,画圆的要素是什么?(圆心确定圆的位置,半径决定圆的大小),所以关键的问题是定其加以和半径。如图28.2.4,如果A、B、C三点不在一条直线上,那么经过A、B两点所画的圆的圆心在线段AB的垂直平分线上,而经过B、C两点所画的圆的圆心在线段BC的垂直平分线上,此时,这两条垂直平分线一定相交,设交点为O,则OA=OB=OC,于是以O为圆心,OA为半径画圆,便可画出经过A、B、C三点的圆.
思考:如果A、B、C三点在一条直线上,能画出经过三点的圆吗?为什么? 即有:不在同一条直线上的三个点确定一个圆
也就是说,经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。、思考:随意画出四点,其中任何三点都不在同一条直线上,是否一定可以画一个圆经过这四点?请举例说明。
(四)应用与拓展
例
1、如图,已知 中,若,求ΔABC的外接圆半径。解:略 例
2、如图,已知等边三角形ABC中,边长为,求它的外接圆半径。解:略
例
3、如图,等腰 中,,求 外接圆的半径。
(四)小结与作业 本节课我们学习了用数量关系判断点和圆的位置关系和不在同一直线上的三点确定一个圆,求解了特殊三角形直角三角形、等边三角形、等腰三角形的外接圆半径,在求解等腰三角形外接圆半径时,运用了方程的思想,希望同学们能够掌握这种方法,领会其思想。习题1、2、3、4
第二篇:点与圆的位置关系教案
第23章《圆》
第5课时 点与圆的位置关系
初三()班 学号 姓名年月日
学习目标:
1、理解点与圆的位置关系由点到圆心的距离决定;
2、理解不在同一条直线上的三个点确定一个圆;
3、会画三角形的外接圆,熟识相关概念
学习过程
一、点与圆的位置三种位置关系
生活现象:阅读课本P53页,这一现象体现了平面内点与圆的位置关系. ...如图1所示,设⊙O的半径为r,A点在圆内,OAr B点在圆上,OBr C点在圆外,OCr
图1 反之,在同一平面上,已知的半径为r⊙O,和A,B,C三点: .....若OA>r,则A点在圆; 若OB<r,则B点在圆; 若OC=r,则C点在圆。
二、多少个点可以确定一个圆
问题:在圆上的点有多个,那么究竟多少个点就可以确定一个圆呢? 试一试 画图准备:
1、圆的确定圆的大小,圆确定圆的位置; 也就是说,若如果圆的和确定了,那么,这个圆就确定了。
2、如图2,点O是线段AB的垂直平分线
上的任意一点,则有OAOB
图2 / 4
ABo画图:
1、画过一个点的圆。
右图,已知一个点A,画过A点的圆.
小结:经过一定点的圆可以画个。
2、画过两个点的圆。
右图,已知两个点A、B,画过同时经过A、B两点的圆. 提示:画这个圆的关键是找到圆心,画出来的圆要同时经过A、B两点,那么圆心到这两点距离,可见,圆心在线段AB的上。
小结:经过两定点的圆可以画个,但这些圆的圆心在线段的上
3、画过三个点(不在同一直线)的圆。
提示:如果A、B、C三点不在一条直线上,那么经过A、B两点所画的圆的圆心在线段AB的垂直平分线上,而经过B、C两点所画的圆的圆心在 线段BC的垂直平分线上,此时,这 两条垂直平分线一定相交,设交点为O,则OA=OB=OC,于是以O为圆心,OA为半径画圆,便可画出经过A、B、C 三点的圆.
小结:不在同一条直线上的三个点确定个圆. .....
三、概括
我们已经知道,经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆(circumcircle).三角形外接圆的圆心叫做这个三角形的外心(circumcenter).这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线的交点. / 4
BAAABCA如图:如果⊙O经过△ABC的三个顶点,则⊙O叫做△ABC的,圆心O叫
O做△ABC的,反过来,△ABC叫做 ⊙O的。
△ABC的外心就是AC、BC、AB边的交点。
四、分组练习(A组)
CB1、已知⊙O的半径为4,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为()
A.在圆上
B.在圆外
C.在圆内
D.不确定
2、任意画一个三角形,然后再画这个三角形的外接圆.3、判断题:
① 三角形的外心到三边的距离相等………………()② 三角形的外心到三个顶点的距离相等。…………()
4、三角形的外心在这个三角形的()
A.内部
B.外部
C.在其中一边上
D.以上三种都可能
5、能过画图的方法来解释上题。
在下列三个圆中,分别画出内接三角形(锐角,直角,钝角三种三角形)
/ 4
6、直角三角形的两条直角边分别为5和12,则其外接圆半径的长为
7、若点O是△ABC的外心,∠A=70°,则∠BOC=
(B组)
8、一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5cm或6.5cm B.2.5cm C. 6.5cm D.5cm或13cm
9、随意画出四点,其中任何三点都不在同一条直线上,是否一定可以画一个圆经过这四点?请试画图说明./ 4
第三篇:《点与圆的位置关系》教案设计
《点与圆的位置关系》教案设计
一、内容和内容解析
内容
探究点与圆的位置关系;过不在同一直线上的三点画圆;三角形的外心;反正法的逻辑关系。
2内容解析
点与圆的位置关系在圆的知识体系中有着非常重要的地位,它为后面直线与圆的位置关系学习作好铺垫。
本节,主要是从探究点与圆的位置出发,从而引出经过一个点、两个点、三个点画圆。在经过三个点画圆在探究中引出三角形外心的概念,以及反证法的证明思路。而知识的应用是检验学习效果的关键。
基于以上分析,本节的教学重点是:了解点与圆的位置关系,并能通过d与r的数量关系进行判断;会经过不在同一条直线上在三点用尺规作画圆;知道三角形外心的概念,以及外心是三角形三边垂直平分线的交点这一结论,并能进行简单应用。
二、目标和目标解析
目标)探究并了解点与圆的位置关系。
2)用尺规作图:过不在同一直线上的三点画圆。
3)知道什么是三角形的外心。
4)感知反证法的逻辑思路。)经历实验、证明的过程,培养学生分析、解决问题的能力,以及逻辑思维能力,进一步提高学生的数学学科素养。
2目标解析
目标(1)的具体要求是:通过实验及归纳,知道点与圆的三种位置关系,并能通过d与r的数量关系进行判断。
目标(2)的具体要求是:会利用尺规作图:过不在同一直线上的三点画圆。或是画三角形的外接圆,找残缺圆的圆心。
目标(3)的具体要求是:知道三角形外心的概念,以及外心是三角形三边垂直平分线的交点这一结论,并能进行简单应用。
目标(4)的具体要求是:了解反证法的证明思路,会确定一个命题结论的反面。
目标()的具体要求是:让学生通过参与、观察、讨论的形式,经历猜想、验证、实验、证明的过程,共同探究点与圆的位置关系,过点画圆等问题,培养学生分析、解决问题的能力,以及逻辑思维能力,进一步关注学生的数学学科素养的培养。
三、教学问题诊断分析
对于九年级的学生而言,经过实验探究很容易得到点与圆的三种位置关系以及会用d与r的数量关系进行表示,知识的应用也不会有太多的问题,过三点画圆也是对以往知识的应用。但是对三角形外心及应用会和以往的知识混淆,而产成错误。另外反证法的证明思路学生初次接触不易理解,教师应该重点解读。
基于以上分析,本节的教学难点是:三角形的外心及应用;反证法的证明思路的理解。
第四篇:点与圆、直线与圆以及圆与圆的位置关系教案
点与圆、直线与圆以及圆与圆的位置关系
一、教学目标(一)知识教学点
使学生掌握点与圆、直线与圆以及圆与圆的位置关系;过圆上一点的圆的切线方程,判断直线与圆相交、相切、相离的代数方法与几何方法;两圆位置关系的几何特征和代数特征.
(二)能力训练点
通过点与圆、直线与圆以及圆与圆位置关系的教学,培养学生综合运用圆有关方面知识的能力.
(三)学科渗透点
点与圆、直线与圆以及圆与圆的位置关系在初中平面几何已进行了分析,现在是用代数方法来分析几何问题,是平面几何问题的深化.
二、教材分析
1.重点:(1)直线和圆的相切(圆的切线方程)、相交(弦长问题);(2)圆系方程应用.
(解决办法:(1)使学生掌握相切的几何特征和代数特征,过圆上一点的圆的代线方程,弦长计算问题;(2)给学生介绍圆与圆相交的圆系方程以及直线与圆相交的圆系方程.)2.难点:圆(x-a)2+(y-b)2=r2上一点(x0,y0)的切线方程的证明.(解决办法:仿照课本上圆x2+y2=r2上一点(x0,y0)切线方程的证明.)
三、活动设计
归纳讲授、学生演板、重点讲解、巩固练习.
四、教学过程(一)知识准备
我们今天研究的课题是“点与圆、直线与圆以及圆与圆的位置关系”,为了更好地讲解这个课题,我们先复习归纳一下点与圆、直线与圆以及圆与圆的位置关系中的一些知识.
1.点与圆的位置关系
设圆C∶(x-a)2+(y-b)2=r2,点M(x0,y0)到圆心的距离为d,则有:(1)d>r(2)d=r(3)d<r 点M在圆外; 点M在圆上; 点M在圆内.
2.直线与圆的位置关系
设圆 C∶(x-a)2+(y-b)=r2,直线l的方程为Ax+By+C=0,圆心(a,判别式为△,则有:(1)d<r(2)d=r(3)d<r 直线与圆相交; 直线与圆相切;
直线与圆相离,即几何特征;
直线与圆相交; 或(1)△>0(2)△=0(3)△<0 直线与圆相切;
直线与圆相离,即代数特征,3.圆与圆的位置关系
设圆C1:(x-a)2+(y-b)2=r2和圆C2:(x-m)2+(y-n)2=k2(k≥r),且设两圆圆心距为d,则有:
(1)d=k+r(2)d=k-r(3)d>k+r(4)d<k+r 两圆外切; 两圆内切; 两圆外离; 两圆内含;
两圆相交.
(5)k-r<d<k+r 4.其他
(1)过圆上一点的切线方程:
①圆x2+y2=r2,圆上一点为(x0,y0),则此点的切线方程为x0x+y0y=r2(课本命题).
②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).
(2)相交两圆的公共弦所在直线方程:
设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0,若两圆相交,则过两圆交点的直线方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0.
(3)圆系方程:
①设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0.若两圆相交,则过交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程).
②设圆C∶x2+y2+Dx+Ey+F=0与直线l:Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ为参数).
(二)应用举例
和切点坐标.
分析:求已知圆的切线问题,基本思路一般有两个方面:(1)从代数特征分析;(2)从几何特征分析.一般来说,从几何特征分析计算量要小些.该例题由学生演板完成.
∵圆心O(0,0)到切线的距离为4,把这两个切线方程写成
注意到过圆x2+y2=r2上的一点P(x0,y0)的切线的方程为x0x+y0y=r2,例
2已知实数A、B、C满足A2+B2=2C2≠0,求证直线Ax+By+C=0与圆x2+y2=1交于不同的两点P、Q,并求弦PQ的长.
分析:证明直线与圆相交既可以用代数方法列方程组、消元、证明△>0,又可以用几何方法证明圆心到直线的距离小于圆半径,由教师完成.
证:设圆心O(0,0)到直线Ax+By+C=0的距离为d,则d=
∴直线Ax+By+C=0与圆x2+y1=1相交于两个不同点P、Q.
例
3求以圆C1∶x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程.
解法一:
相减得公共弦所在直线方程为4x+3y-2=0.
∵所求圆以AB为直径,于是圆的方程为(x-2)2+(y+2)2=25. 解法二:
设所求圆的方程为:
x2+y2-12x-2y-13+λ(x2+y2+12x+16y-25)=0(λ为参数)
∵圆心C应在公共弦AB所在直线上,∴ 所求圆的方程为x2+y2-4x+4y-17=0. 小结:
解法一体现了求圆的相交弦所在直线方程的方法;解法二采取了圆系方程求待定系数,解法比较简练.
(三)巩固练习
1.已知圆的方程是x2+y2=1,求:
(1)斜率为1的切线方程;
2.(1)圆(x-1)2+(y+2)2=4上的点到直线2x-y+1=0的最短距离是
(2)两圆C1∶x2+y2-4x+2y+4=0与C2∶x2+y2+2x-6y-26=0的位置关系是______.(内切)由学生口答.
3.未经过原点,且过圆x2+y2+8x-6y+21=0和直线x-y+5=0的两个交点的圆的方程.
分析:若要先求出直线和圆的交点,根据圆的一般方程,由三点可求得圆的方程;若没过交点的圆系方程,由此圆系过原点可确定参数λ,从而求得圆的方程.由两个同学演板给出两种解法:
解法一:
设所求圆的方程为x2+y2+Dx+Ey+F=0. ∵(0,0),(-2,3),(-4,1)三点在圆上,解法二:
设过交点的圆系方程为:
x2+y2+8x-6y+21+λ(x-y+5)=0.
五、布置作业
2.求证:两圆x2+y2-4x-6y+9=0和x2+y2+12x+6y-19=0相外切. 3.求经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.
4.由圆外一点Q(a,b)向圆x2+y2=r2作割线交圆于A、B两点,向圆x2+y2=r2作切线QC、QD,求:
(1)切线长;
(2)AB中点P的轨迹方程. 作业答案:
2.证明两圆连心线的长等于两圆半径之和 3.x2+y2-x+7y-32=0
六、板书设计
第五篇:圆和圆的位置关系教案
初探圆和圆的位置关系
教学目标:
1.掌握圆与圆的五种位置关系的定义、性质及判定方法;两圆连心线的性质;
2.通过两圆的位置关系,培养学生的分类能力和数形结合能力;
3.通过演示两圆的位置关系,培养学生用运动变化的观点来分析和发现问题的能力.
教学重点:
两圆的五种位置与两圆的半径、圆心距的数量之间的关系.
教学难点:
两圆位置关系及判定.
(一)复习、引出问题
1.复习:直线和圆有几种位置关系?各是怎样定义的?
(教师主导,学生回忆、回答)直线和圆有三种位置关系,即直线和圆相离、相切、相交.各种位置关系是通过直线与圆的公共点的个数来定义的
2.引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?
(二)观察、分类,得出概念
1、让学生观察、分析、比较,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义:
(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图(1))
(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图(2))
(3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图(3))
(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图(4))
(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例.(图(6))
2、归纳:
(1)两圆外离与内含时,两圆都无公共点.
(2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一
(3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切).
教师组织学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交.除以上关系外,还有其它关系吗?可能不可能有三个公共点?
结论:在同一平面内任意两圆只存在以上五种位置关系.
(三)分析、研究
1、相切两圆的性质.
让学生观察连心线与切点的关系,分析、研究,得到相切两圆的连心线的性质:
如果两个圆相切,那么切点一定在连心线上.
这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明
2、两圆位置关系的数量特征.
设两圆半径分别为R和r.圆心距为d,组织学生研究两圆的五种位置关系,r和d之间有何数量关系.(图形略)
两圆外切 d=R+r;
两圆相交 R-r<d<R+r.
两圆内切两圆外离两圆内含
d=R-r(R>r);d>R+r; d<R-r(R>r);
说明:注重“数形结合”思想的教学.
(四)应用、练习
例1: 如图,⊙O的半径为5厘米,点P是⊙O外一点,OP=8厘米
求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?
(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?
解:(1)设⊙P与⊙O外切与点A,则
PA=PO-OA
∴PA=3cm.
(2)设⊙P与⊙O内切与点B,则
PB=PO+OB
∴PB=1 3cm.
例2:已知:如图,△ABC中,∠C=90°,AC=12,BC=8,以AC为直径作⊙O,以B为圆心,4为半径作.
求证:⊙O与⊙B相外切.
证明:连结BO,∵AC为⊙O的直径,AC=12,∴⊙O的半径,且O是AC的中点
∴,∵∠C=90°且BC=8,∴,∵⊙O的半径,⊙B的半径,∴BO=,∴⊙O与⊙B相外切.
练习(P138)
(五)小结
知识:①两圆的五种位置关系:外离、外切、相交、内切、内含;
②以及这五种位置关系下圆心距和两圆半径的数量关系;
③两圆相切时切点在连心线上的性质.
能力:观察、分析、分类、数形结合等能力.
思想方法:分类思想、数形结合思想.
(六)作业
教材P151中习题A组2,3,4题.