与圆有关的位置关系复习课教案

时间:2019-05-12 18:25:32下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《与圆有关的位置关系复习课教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《与圆有关的位置关系复习课教案》。

第一篇:与圆有关的位置关系复习课教案

与圆有关的位置关系复习教案

前石畔九年制学校

郭海平

教学目标:

1、了解点与圆、直线与圆、圆与圆的位置关系,能根据条件正确作出判断。

2、掌握圆的切线的性质与判定方法,并能应用其解决问题。教学重点:

与圆有关的位置关系的判定方法及切线的判定与性质。教学难点:

综合问题的分析解决。教学方法:启发引导 教学准备:课件 教学流程:

一、课本知识点梳理

考点1:点与圆的位置关系

幻灯片: 点与圆的位置关系

由学生完成作答。

例1:(2009•江西)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()

A、当a<5时,点B在⊙A内

B、当1<a<5时,点B在⊙A内

C、当a<1时,点B在⊙A外

D、当a>5时,点B在⊙A外

考点2: 直线与圆的位置关系。

幻灯片:直线与圆的位置关系

切线的性质和判定

2、(2009•山西)如图,CD切⊙O 于点B,CO的延长线交⊙O于点A.若∠C= 36°,则∠ABD的度数是()

A.72°

B.63°C.54°

D.36°

3、(2010陕西)如图,点A、B、D在⊙O上,∠A=25°,OD的延长线交BC于点C,∠OCB=40°,直线BC与⊙O的位置关系为——。

考点3:三角形与圆的位置关系

幻灯片出示:三角形与圆的位置关系

等边三角形的内接圆与外接圆关系

4、(2011 •银川)如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为()

考点4:圆与圆的位置关系

幻灯出示圆与圆的位置关系,由学生完成作答。

5、(2009 •陕西)图中圆与圆之间不同的位置关系有:()

A. 2 种

B.3种

C.4种

D.5种

6、(2011 •陕西)同一平面内的两个圆,他们的半径分别为2和3,圆心距为d,当1<d<5时,两圆的位置关系是()

A、外离

B、相交

C、内切或外切

D、内含

二、课堂练习

(2011 •陕西)如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D;(1)求证:AP=AC;(2)若AC=3,求PC的长.

三 作业

(2010•襄樊)如图,已知:AC是⊙O的直径,PA⊥AC,连结OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.(1)证明:直线PB是⊙O的切线;

(2)探究线段PO与线段BC之间的数量关系,并予以证明;(3)求sin∠OPA的值.

第二篇:与圆有关的位置关系复习课教案

课题:与圆有关的位置关系复习课教案

教学目标:

1.知识与能力:巩固点和圆、直线和圆、圆和圆的位置关系,明确其性质和判定方法。

2.过程与方法:培养数形结合分析问题的能力,学习归纳和类比。

3.情感、态度和价值观:树立学数学、用数学的思想意识。

重点和难点:

1.巩固相应位置关系的概念和数量关系,理解它们的对应。

2.能够明确图形中的位置和数量关系,利用数形结合的思想方法,解决实际问题。

教学过程:

一、导入:

1、情境导入:近期,中国航天科技有了重大突破,神八顺利升空,并且和先期升空的天宫一号成功对接,分离之后,神八按照原计划回顾地球。欣赏以下图片,体会作为中国人的骄傲,明确我们以后的学习目标,观察圆在航天科技的广泛应用。

2、出示学习目标,限时阅读理解,明确学习的方向。

二、讲解:

1、回忆、巩固以前学习的知识。

(以表格的形式展示,引导学生通过填空,结合图形,理解、记忆相关位置关系的名称,所对应的数量关系,找出一定的规律。)

2、例题解析:

例题一: 已知:P是非⊙O上的一点,P点到⊙O的最大距离是d,最小距离是a.求⊙O的半径r.解析:点P可能的位置有几种?作出正确的图形,通过图形解决这个问题。(限时4分钟,解决这个问题。完成后,教师检查,并且展示一个同学的解题过程,指出出现的问题。)

例题二:已知⊙A的直径为6,点A的坐标为(-3,-4),则⊙A与X轴的位置关系是_____,⊙A与Y轴的位置关系是______。

解析:通过直径,求出半径;作出平面直角坐标系,标出圆心的正确位置,作出正确的图形,问题即可以得到正确的解决。(限时3分钟)

演示解题过程,引导同学们纠正失误。

例题三:两个圆的半径的比为2 : 3 ,内切时圆心距等于 8cm,那么这两圆相交时,圆心距d的取值 范围是多少?

解析:利用方程的思想,合理设未知数,正确列出方程,先解决半径的问题。利用相交时数量关系解决问题即可。(限时4分钟)

教师作及时的讲解和订正。

3、巩固练习。(5-8分钟)

课堂总结:

1.知识总结。

2.思想方法总结。

3.反思站一节课自己的感受和体会。

达标测试:

1.基础测试,快速问答。

2.能力测试:教师给予适当的点拨,引导学生们深入思考,提高学习数学的兴趣。

艺术欣赏:

出示与圆有关的一些图片,感受圆所构成图形的艺术性,培养他们学习数学的兴趣。然后布置作业,下课。

第三篇:点直线圆和圆的位置关系复习课教案(范文)

点、直线、圆和圆的位置关系复习课教案

湖北省巴东县民族实验中学 李萍

-、学习内容

有关点、直线、圆和圆的位置关系的复习。

二、学习目标

1、了解点和圆、直线和圆、圆和圆的几种位置关系。

2、进一步理解各种位置关系中,d与R、r数量关系。

3、训练探究能力、识图能力、推理判断能力。

4、丰富对现实空间及图形的认识,发展形象思维,并能解决简单问题。

三、学习重点

切线的判定,两圆外切、内切与两圆圆心距d、半径R、r和的数量关系的联系。

四、学习难点

各知识点之间的联系及灵活应用。

五、学习活动概要

问题情景引入――基础知识重温――综合知识应用

六、学习过程

(一)、图片引入,生活中的圆。

(二)、点与圆的位置关系

1、问题引入:点和圆的位置关系有哪几种?怎样判定。

复习点和圆的位置关系,点到圆心的距离d与半径r的数量关系与三种位置关系的联系。

2、练习反馈

如图,已知矩形ABCD的边AB=3厘米,AD=4厘米。

(1)以点A为圆心、4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?

(2)若以A点为圆心作圆A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是什么?

(三)、直线和圆的位置关系

1、知识回顾:直线和圆的三种位置关系及交点,三种位置关系与圆心到直线的距离d与半径r的数量关系间的联系。

2、分组活动:全班分为三组,各代表相交、相切、相离。当出示的问题是圆与直线的位置关系是哪组代表的,那组的同学起立,看那组同学反应最快。

已知⊙O的半径是5,根据下列条件,判断⊙O与直线L的位置关系。(1)圆心O到直线L的距离是4(2)圆心O到直线L的垂线段的长度是5(3)圆心O到直线L 的距离是6(4)圆心O到直线L上的一点A的距离是4(5)(圆心O到直线L上的一点B的距离是5(6)圆心O到直线L上的一点C的距离是6

3、要点知识重温:圆的切线

出示图形,同学们重温切线的有关性质及判定。

4、知识应用

1)、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线。

2)、在以点O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD是圆的线。(四)圆与圆的位置关系

1、生活中处处有数学。列举反应圆和圆的位置关系的实例,以投篮为例。

2、知识回顾:

1)圆和圆的五种位置关系

2)两圆外切、内切时,圆心距d与半径R、r的位置关系。

3、抢答

1)两圆圆心距为4㎝,两圆半径分别是1㎝、3㎝,则两圆位置关系是----2)两圆外切,半径分别是1㎝、3㎝,则圆心距为――

3)两圆半径分别是1㎝、3㎝,圆心距是2㎝,则两圆位置关系是――

4)两圆相切,半径分别是3㎝、1㎝,则圆心距是――

5)两圆内切,圆心距为4㎝,一圆半径是5㎝,则另一圆的半径是――

4、活动与探究

已知图中各圆两两相切,⊙O的半径为2R,⊙O1、⊙O2的半径都是R,求⊙O3的半径。

关 于 复习教 学 的 认 识 及 作 法

湖北省巴东县民族实验中学

李萍

新课改中考要求:知识考查“基础化”,题材选择“生活化”,能力要求“综合化”。中考命题范围是以《课标》要求确定的。我们对课标中的“探索并掌握”、“能”、“会”、“灵活运用”等要求的内容,要进行较为扎实的复习、抓落实,并围绕课本的相关内容进行适当的变式。现在我就一节复习课谈一点认识及作法。

一、问题情景引入

在复习课引入复习内容时,注重从学生的实际生活材料入手,要求学生列举生活的实例,力图为学生创设一个贴近生活实际的“生活化”问题情景。《新课标》指出:“数学教学要紧密联系学生得生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动„„”当数学和学生的现实生活密切结合时,数学才是活的,富有生命力的。

二、基础知识重温

在第一轮复习中,注重对基础知识的复习巩固,全面复习基础知识,加强技术技能训练,做到全面、扎实、系统、形成知识网络。复习时要注意引导学生根据个人具体情况把遗忘的知识重温一遍,加深记忆,还要引导学生弄清概念的内涵和外延。但对于学生掌握较好的基础知识,可以让其中的某位同学带领大家一起回忆复习,对课本中的概念、性质等进行再理解、再识别、再重现。在复习过程中,适当地加入活动,调节课堂气氛,在宽松的环境下对知识要点进行理解。

三、综合知识应用

在中考数学中会出现一两道难度较大、综合性较强的数学问题,解决这类问题所用到的知识都是同学们学过的基础知识,并不依赖于那些特别的,没有普遍性的解题技巧。所以要引导学生进行“思”和想,让学生学会思考。会思考是要学生自己“悟”出来,自己“学”出来的,教师能教的,是思考问题的方法和带有普遍性的解题技巧。然后让学生用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。复习课中,在基础知识得以理解的技术上,要有相应的巩固练习,活动探究。如复习直线与圆的位置关系相切后,安排两个证明直线是圆的切线的练习,让学生进一步掌握如何证明直线是圆的切线基本的思路与方法,以便能正确的思考、解决。如果在练习巩固的过程中,大多数学生遇到困难,不能正确解答时,可以让学生展开讨论,相互学习,取长补短,共同探究,共同提高。

总之,要切实提高复习实效,要因地制宜地拟定好复习计划,充分发挥备课组的集体智慧,群策群力,认真探究有效的复习方法,及时反馈学生的掌握情况信息,做到对症下药,因人而异。让教师的教学内容得到全面的落实,学生的综合素质得到最大程度的提高。

第四篇:圆和圆的位置关系教案

初探圆和圆的位置关系

教学目标:

1.掌握圆与圆的五种位置关系的定义、性质及判定方法;两圆连心线的性质;

2.通过两圆的位置关系,培养学生的分类能力和数形结合能力;

3.通过演示两圆的位置关系,培养学生用运动变化的观点来分析和发现问题的能力.

教学重点:

两圆的五种位置与两圆的半径、圆心距的数量之间的关系.

教学难点:

两圆位置关系及判定.

(一)复习、引出问题

1.复习:直线和圆有几种位置关系?各是怎样定义的?

(教师主导,学生回忆、回答)直线和圆有三种位置关系,即直线和圆相离、相切、相交.各种位置关系是通过直线与圆的公共点的个数来定义的

2.引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?

(二)观察、分类,得出概念

1、让学生观察、分析、比较,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义:

(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图(1))

(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图(2))

(3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图(3))

(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图(4))

(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例.(图(6))

2、归纳:

(1)两圆外离与内含时,两圆都无公共点.

(2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一

(3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切).

教师组织学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交.除以上关系外,还有其它关系吗?可能不可能有三个公共点?

结论:在同一平面内任意两圆只存在以上五种位置关系.

(三)分析、研究

1、相切两圆的性质.

让学生观察连心线与切点的关系,分析、研究,得到相切两圆的连心线的性质:

如果两个圆相切,那么切点一定在连心线上.

这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明

2、两圆位置关系的数量特征.

设两圆半径分别为R和r.圆心距为d,组织学生研究两圆的五种位置关系,r和d之间有何数量关系.(图形略)

两圆外切 d=R+r;

两圆相交 R-r<d<R+r.

两圆内切两圆外离两圆内含

d=R-r(R>r);d>R+r; d<R-r(R>r);

说明:注重“数形结合”思想的教学.

(四)应用、练习

例1: 如图,⊙O的半径为5厘米,点P是⊙O外一点,OP=8厘米

求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?

(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?

解:(1)设⊙P与⊙O外切与点A,则

PA=PO-OA

∴PA=3cm.

(2)设⊙P与⊙O内切与点B,则

PB=PO+OB

∴PB=1 3cm.

例2:已知:如图,△ABC中,∠C=90°,AC=12,BC=8,以AC为直径作⊙O,以B为圆心,4为半径作.

求证:⊙O与⊙B相外切.

证明:连结BO,∵AC为⊙O的直径,AC=12,∴⊙O的半径,且O是AC的中点

∴,∵∠C=90°且BC=8,∴,∵⊙O的半径,⊙B的半径,∴BO=,∴⊙O与⊙B相外切.

练习(P138)

(五)小结

知识:①两圆的五种位置关系:外离、外切、相交、内切、内含;

②以及这五种位置关系下圆心距和两圆半径的数量关系;

③两圆相切时切点在连心线上的性质.

能力:观察、分析、分类、数形结合等能力.

思想方法:分类思想、数形结合思想.

(六)作业

教材P151中习题A组2,3,4题.

第五篇:《圆和圆的位置关系》教案范文

教学目标

(一)教学知识点

1.了解圆与圆之间的几种位置关系.

2.了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.

(二)能力训练要求

1.经历探索两个圆之间位置关系的过程,训练学生的探索能力.

2.通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力.

(三)情感与价值观要求

1.通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

2.经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维.

教学重点

探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.

教学难点

探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程.

教学方法

教师讲解与学生合作交流探索法

教具准备

投 影片三张

第一张:(记作3. 6A)

第二张:(记作3.6B)

第三张:(记作3.6C)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.

Ⅱ.新课讲解

一、想一想

[师]大家思考一下,在现实生活中你见过两个圆的哪些位置关系呢?

[生]如自行车的两个车轮间的位置关 系;车轮轮胎的两个边界圆间的位置关系;用一只手拿住大小两个圆环时两个圆环间的位置关系等.

[师]很好,现实生活中我们见过的有关两个圆的位置很多.下面我们就来讨论这些位置关系分别是什么.

二、探索圆和圆的位置关系

在一张透明纸上作一个⊙O.再在另一张透明纸上作一个与⊙O1半径不等的⊙O2.把两张透明纸叠在一起,固定⊙O1,平移⊙O2,⊙O1与⊙O2有几种位置关系?

[师]请大家先自己动手操作,总结出不同的位置关系,然后互相交流.

[生]我总结出共有五种位置关系,如下图:

[师]大家的归纳、总结能力很强,能说出五种位置关系中各自有什么特点吗?从公共点的个数和一个圆上的点在另一个圆的内部还是外 部来考虑.

[生]如图:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;

(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;

(3)相交:两个圆有两个公共点,一 个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;

(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;

(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.

[师]总结得很出色,如果只从公共点的个数来考虑,上面的五种位置关系中有相同类型吗?

[生]外离和内含都没有公共点;外切和内切都有一个公共点;相交有两个公共点.

[师]因此只从公共点的个数来考虑,可分为相离、相切、相交三种.

经过大家的讨论我们可知:

投影片(24.3A)

(1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.

(2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离,相切

三、例题讲解

投影片(24.3B)

两个同样大小的肥皂 泡黏在一起,其剖面如图所示(点O,O'是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直 线,TP、NP分别为两圆的切线,求TPN的大小.

分析:因为两个圆大小相同,所以 半径OP=O'P=OO',又TP、NP分别为两圆的切 线,所以PTOP,PNO'P,即OPT=O'PN=90,所以TPN等于36 0减去OPT+O'PN+OPO'即可.

解 :∵OP=OO'=PO',△PO'O是一个等边三角形.

OPO'=60.

又∵TP与NP分别为两圆的切线,TPO =NPO'=90.

TPN=360-290-60=120.

四、想一想

如图(1),⊙O1与⊙O2外切,这个图是 轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果⊙O1与⊙O2内切呢?〔如图(2)〕

[师]我们知道圆是轴对称图形,对称轴是任一直径所在的直线,两个圆是否也组成一 个轴对称图形呢?这就要看切点T是否在连接两个圆心的直线上,下面我们用反证法来证明.反证法的步骤有三 步:第一步是假设结论不成立;第二步是根据假设推出和已知条件或定理相矛盾的结论;第三步是证明假设错误,则原来的结论成立.

证明:假设切点T不在O1O2上.

因为圆是轴对称图形,所以T关于O1O2的对称点T'也是两圆的公共点,这与已知条件⊙O1和⊙O2相切矛盾,因此假设不成立.

则T在O1O2上.

由此可知图(1)是轴对称图形,对 称轴是两圆的连心线,切点与对称轴的位置关系是切点在对称轴上.

在图(2)中应有同样的结论.

通过上面的讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过切点,图(1)和图(2)都是轴对称图形,对称轴是它们的连心 线.

五、议一议

投影片(24.3C)

设两圆的半径分别为R和r.

(1)当两圆外切时,两圆圆心之间的距离(简称圆心距)d与R和r具有怎样的关系?反之当d与R和r满足这一关系时,这两个圆一定外切吗?

(2)当两圆内切时(R>r),圆心距d与R和r具有怎样的关系?反之,当d与R和r满足这一关系时,这两个圆一定内切吗?

[师]如图,请大家互相交流.

[生]在图(1)中,两圆相外切,切点是A.因为切点A在连心线 O1O2上,所以O1O2=O1A+O2A=R+r,即d=R+r;反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.

在图(2)中,⊙O1与⊙O2相内切,切点是 B.因为切点B在连心线O1O2上,所以 O1O2=O1B-O2B,即d=R-r;反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.

[师]由此可知,当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切 d=R+r.

当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内 切,即两圆相内切 d=R-r.

Ⅲ.课堂练习

随堂练习

Ⅳ.课时小结

本节课学习了如下内容:

1.探索圆和圆的五种位置关系;

2.讨论在两圆外切或内切情况下,图形的轴对称性及对称轴,以及切点和对称轴的位置关系;

3. 探讨在两圆外切或内切时,圆心距d与R和r之间的关系.

Ⅴ.课后作业习题24.3Ⅵ.活动与探究

已知图中各圆两两相切,⊙O的半径为2R,⊙O1、⊙O2的半径为R,求⊙O3的半径.

分析:根据两圆相外切连心线的长为两半径之和,如果设⊙O 3的半径为r,则O1O3=O2O3=R+r,连接OO3就有OO3O1O2,所以OO2O3构成了直角三角形,利用勾股定理可求得⊙O3的半径r.

解:连接O2O3、OO3,O2OO3=90,OO3=2R-r,O2O3=R+r,OO2=R.

(R+r)2=(2R-r)2+R2.

r= R.

板书设计

24.3 圆和圆的位置关系

一、1.想一想

2.探索圆和圆的位置关系

3.例题讲解

4.想一想

5.议一议

二、课堂练习

三、课时小结

四、课后作业

下载与圆有关的位置关系复习课教案word格式文档
下载与圆有关的位置关系复习课教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学圆与圆的位置关系教案

    4.2.2圆与圆的位置关系 教学要求:能根据给定圆的方程,判断圆与圆的位置关系; 教学重点:能根据给定圆的方程,判断圆与圆的位置关系 教学难点:用坐标法判断两圆的位置关系 教学过程:......

    点与圆的位置关系教案

    第23章《圆》 第5课时 点与圆的位置关系 初三( )班 学号 姓名年月日 学习目标:1、理解点与圆的位置关系由点到圆心的距离决定;2、理解不在同一条直线上的三个点确定一个圆; 3、......

    直线与圆的位置关系教案

    《直线与圆的位置关系》教案 教学目标: 根据学过的直线与圆的位置关系的知识,组织学生对编出的有关题目进行讨论.讨论中引导学生体会 (1)如何从解决过的问题中生发出新问题. (2)新......

    直线与圆的位置关系教案

    教学目标:1.使学生理解直线和圆的相交、相切、相离的概念。2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。3.培养学生把实际问题转化为数学问题的能力及......

    直线与圆的位置关系评课稿

    直线与圆的位置关系评课稿 数学课堂教法如何结合现代教育教法理论、结合学生的实际来实施素质教育,优化课堂教法,提高教法效益呢?这是每个老师在今天的课改面前都有的困惑.那么......

    《圆与圆的位置关系》评课记录

    《圆与圆的位置关系》评课记录 吴义国校长: 王华均老师的这节课体现了学生的主体地位,让学生在探究中亲历知识形成的过程,远比让学生直接但却被动地获取现成知识结论要更加具有......

    直线和圆的位置关系复习学案

    港 中 数 学 网直线和圆的位置关系知识点:直线和圆的位置关系、切线的判定和性质、三角形的内切圆、切线长定理、弦切角的定理、相交弦、切割线定理课标要求:1.掌握直线和圆的......

    3.6_圆和圆的位置关系教案

    3.6圆和圆的位置关系 教学目标: 探索圆与圆几种位置及两圆相切时两圆圆心距.半径的数量关系的过程. 教学重点及教学难点:了解圆与圆的几种位置关系及两圆相切时圆心距d、半径R......