点与圆的位置关系教案

时间:2019-05-15 03:00:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《点与圆的位置关系教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《点与圆的位置关系教案》。

第一篇:点与圆的位置关系教案

第23章《圆》

第5课时 点与圆的位置关系

初三()班 学号 姓名年月日

学习目标:

1、理解点与圆的位置关系由点到圆心的距离决定;

2、理解不在同一条直线上的三个点确定一个圆;

3、会画三角形的外接圆,熟识相关概念

学习过程

一、点与圆的位置三种位置关系

生活现象:阅读课本P53页,这一现象体现了平面内点与圆的位置关系. ...如图1所示,设⊙O的半径为r,A点在圆内,OAr B点在圆上,OBr C点在圆外,OCr

图1 反之,在同一平面上,已知的半径为r⊙O,和A,B,C三点: .....若OA>r,则A点在圆; 若OB<r,则B点在圆; 若OC=r,则C点在圆。

二、多少个点可以确定一个圆

问题:在圆上的点有多个,那么究竟多少个点就可以确定一个圆呢? 试一试 画图准备:

1、圆的确定圆的大小,圆确定圆的位置; 也就是说,若如果圆的和确定了,那么,这个圆就确定了。

2、如图2,点O是线段AB的垂直平分线

上的任意一点,则有OAOB

图2 / 4

ABo画图:

1、画过一个点的圆。

右图,已知一个点A,画过A点的圆.

小结:经过一定点的圆可以画个。

2、画过两个点的圆。

右图,已知两个点A、B,画过同时经过A、B两点的圆. 提示:画这个圆的关键是找到圆心,画出来的圆要同时经过A、B两点,那么圆心到这两点距离,可见,圆心在线段AB的上。

小结:经过两定点的圆可以画个,但这些圆的圆心在线段的上

3、画过三个点(不在同一直线)的圆。

提示:如果A、B、C三点不在一条直线上,那么经过A、B两点所画的圆的圆心在线段AB的垂直平分线上,而经过B、C两点所画的圆的圆心在 线段BC的垂直平分线上,此时,这 两条垂直平分线一定相交,设交点为O,则OA=OB=OC,于是以O为圆心,OA为半径画圆,便可画出经过A、B、C 三点的圆.

小结:不在同一条直线上的三个点确定个圆. .....

三、概括

我们已经知道,经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆(circumcircle).三角形外接圆的圆心叫做这个三角形的外心(circumcenter).这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线的交点. / 4

BAAABCA如图:如果⊙O经过△ABC的三个顶点,则⊙O叫做△ABC的,圆心O叫

O做△ABC的,反过来,△ABC叫做 ⊙O的。

△ABC的外心就是AC、BC、AB边的交点。

四、分组练习(A组)

CB1、已知⊙O的半径为4,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为()

A.在圆上

B.在圆外

C.在圆内

D.不确定

2、任意画一个三角形,然后再画这个三角形的外接圆.3、判断题:

① 三角形的外心到三边的距离相等………………()② 三角形的外心到三个顶点的距离相等。…………()

4、三角形的外心在这个三角形的()

A.内部

B.外部

C.在其中一边上

D.以上三种都可能

5、能过画图的方法来解释上题。

在下列三个圆中,分别画出内接三角形(锐角,直角,钝角三种三角形)

/ 4

6、直角三角形的两条直角边分别为5和12,则其外接圆半径的长为

7、若点O是△ABC的外心,∠A=70°,则∠BOC=

(B组)

8、一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5cm或6.5cm B.2.5cm C. 6.5cm D.5cm或13cm

9、随意画出四点,其中任何三点都不在同一条直线上,是否一定可以画一个圆经过这四点?请试画图说明./ 4

第二篇:《点与圆的位置关系》教案设计

《点与圆的位置关系》教案设计

一、内容和内容解析

内容

探究点与圆的位置关系;过不在同一直线上的三点画圆;三角形的外心;反正法的逻辑关系。

2内容解析

点与圆的位置关系在圆的知识体系中有着非常重要的地位,它为后面直线与圆的位置关系学习作好铺垫。

本节,主要是从探究点与圆的位置出发,从而引出经过一个点、两个点、三个点画圆。在经过三个点画圆在探究中引出三角形外心的概念,以及反证法的证明思路。而知识的应用是检验学习效果的关键。

基于以上分析,本节的教学重点是:了解点与圆的位置关系,并能通过d与r的数量关系进行判断;会经过不在同一条直线上在三点用尺规作画圆;知道三角形外心的概念,以及外心是三角形三边垂直平分线的交点这一结论,并能进行简单应用。

二、目标和目标解析

目标)探究并了解点与圆的位置关系。

2)用尺规作图:过不在同一直线上的三点画圆。

3)知道什么是三角形的外心。

4)感知反证法的逻辑思路。)经历实验、证明的过程,培养学生分析、解决问题的能力,以及逻辑思维能力,进一步提高学生的数学学科素养。

2目标解析

目标(1)的具体要求是:通过实验及归纳,知道点与圆的三种位置关系,并能通过d与r的数量关系进行判断。

目标(2)的具体要求是:会利用尺规作图:过不在同一直线上的三点画圆。或是画三角形的外接圆,找残缺圆的圆心。

目标(3)的具体要求是:知道三角形外心的概念,以及外心是三角形三边垂直平分线的交点这一结论,并能进行简单应用。

目标(4)的具体要求是:了解反证法的证明思路,会确定一个命题结论的反面。

目标()的具体要求是:让学生通过参与、观察、讨论的形式,经历猜想、验证、实验、证明的过程,共同探究点与圆的位置关系,过点画圆等问题,培养学生分析、解决问题的能力,以及逻辑思维能力,进一步关注学生的数学学科素养的培养。

三、教学问题诊断分析

对于九年级的学生而言,经过实验探究很容易得到点与圆的三种位置关系以及会用d与r的数量关系进行表示,知识的应用也不会有太多的问题,过三点画圆也是对以往知识的应用。但是对三角形外心及应用会和以往的知识混淆,而产成错误。另外反证法的证明思路学生初次接触不易理解,教师应该重点解读。

基于以上分析,本节的教学难点是:三角形的外心及应用;反证法的证明思路的理解。

第三篇:点与圆、直线与圆以及圆与圆的位置关系教案

点与圆、直线与圆以及圆与圆的位置关系

一、教学目标(一)知识教学点

使学生掌握点与圆、直线与圆以及圆与圆的位置关系;过圆上一点的圆的切线方程,判断直线与圆相交、相切、相离的代数方法与几何方法;两圆位置关系的几何特征和代数特征.

(二)能力训练点

通过点与圆、直线与圆以及圆与圆位置关系的教学,培养学生综合运用圆有关方面知识的能力.

(三)学科渗透点

点与圆、直线与圆以及圆与圆的位置关系在初中平面几何已进行了分析,现在是用代数方法来分析几何问题,是平面几何问题的深化.

二、教材分析

1.重点:(1)直线和圆的相切(圆的切线方程)、相交(弦长问题);(2)圆系方程应用.

(解决办法:(1)使学生掌握相切的几何特征和代数特征,过圆上一点的圆的代线方程,弦长计算问题;(2)给学生介绍圆与圆相交的圆系方程以及直线与圆相交的圆系方程.)2.难点:圆(x-a)2+(y-b)2=r2上一点(x0,y0)的切线方程的证明.(解决办法:仿照课本上圆x2+y2=r2上一点(x0,y0)切线方程的证明.)

三、活动设计

归纳讲授、学生演板、重点讲解、巩固练习.

四、教学过程(一)知识准备

我们今天研究的课题是“点与圆、直线与圆以及圆与圆的位置关系”,为了更好地讲解这个课题,我们先复习归纳一下点与圆、直线与圆以及圆与圆的位置关系中的一些知识.

1.点与圆的位置关系

设圆C∶(x-a)2+(y-b)2=r2,点M(x0,y0)到圆心的距离为d,则有:(1)d>r(2)d=r(3)d<r 点M在圆外; 点M在圆上; 点M在圆内.

2.直线与圆的位置关系

设圆 C∶(x-a)2+(y-b)=r2,直线l的方程为Ax+By+C=0,圆心(a,判别式为△,则有:(1)d<r(2)d=r(3)d<r 直线与圆相交; 直线与圆相切;

直线与圆相离,即几何特征;

直线与圆相交; 或(1)△>0(2)△=0(3)△<0 直线与圆相切;

直线与圆相离,即代数特征,3.圆与圆的位置关系

设圆C1:(x-a)2+(y-b)2=r2和圆C2:(x-m)2+(y-n)2=k2(k≥r),且设两圆圆心距为d,则有:

(1)d=k+r(2)d=k-r(3)d>k+r(4)d<k+r 两圆外切; 两圆内切; 两圆外离; 两圆内含;

两圆相交.

(5)k-r<d<k+r 4.其他

(1)过圆上一点的切线方程:

①圆x2+y2=r2,圆上一点为(x0,y0),则此点的切线方程为x0x+y0y=r2(课本命题).

②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).

(2)相交两圆的公共弦所在直线方程:

设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0,若两圆相交,则过两圆交点的直线方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0.

(3)圆系方程:

①设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0.若两圆相交,则过交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程).

②设圆C∶x2+y2+Dx+Ey+F=0与直线l:Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ为参数).

(二)应用举例

和切点坐标.

分析:求已知圆的切线问题,基本思路一般有两个方面:(1)从代数特征分析;(2)从几何特征分析.一般来说,从几何特征分析计算量要小些.该例题由学生演板完成.

∵圆心O(0,0)到切线的距离为4,把这两个切线方程写成

注意到过圆x2+y2=r2上的一点P(x0,y0)的切线的方程为x0x+y0y=r2,例

2已知实数A、B、C满足A2+B2=2C2≠0,求证直线Ax+By+C=0与圆x2+y2=1交于不同的两点P、Q,并求弦PQ的长.

分析:证明直线与圆相交既可以用代数方法列方程组、消元、证明△>0,又可以用几何方法证明圆心到直线的距离小于圆半径,由教师完成.

证:设圆心O(0,0)到直线Ax+By+C=0的距离为d,则d=

∴直线Ax+By+C=0与圆x2+y1=1相交于两个不同点P、Q.

3求以圆C1∶x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程.

解法一:

相减得公共弦所在直线方程为4x+3y-2=0.

∵所求圆以AB为直径,于是圆的方程为(x-2)2+(y+2)2=25. 解法二:

设所求圆的方程为:

x2+y2-12x-2y-13+λ(x2+y2+12x+16y-25)=0(λ为参数)

∵圆心C应在公共弦AB所在直线上,∴ 所求圆的方程为x2+y2-4x+4y-17=0. 小结:

解法一体现了求圆的相交弦所在直线方程的方法;解法二采取了圆系方程求待定系数,解法比较简练.

(三)巩固练习

1.已知圆的方程是x2+y2=1,求:

(1)斜率为1的切线方程;

2.(1)圆(x-1)2+(y+2)2=4上的点到直线2x-y+1=0的最短距离是

(2)两圆C1∶x2+y2-4x+2y+4=0与C2∶x2+y2+2x-6y-26=0的位置关系是______.(内切)由学生口答.

3.未经过原点,且过圆x2+y2+8x-6y+21=0和直线x-y+5=0的两个交点的圆的方程.

分析:若要先求出直线和圆的交点,根据圆的一般方程,由三点可求得圆的方程;若没过交点的圆系方程,由此圆系过原点可确定参数λ,从而求得圆的方程.由两个同学演板给出两种解法:

解法一:

设所求圆的方程为x2+y2+Dx+Ey+F=0. ∵(0,0),(-2,3),(-4,1)三点在圆上,解法二:

设过交点的圆系方程为:

x2+y2+8x-6y+21+λ(x-y+5)=0.

五、布置作业

2.求证:两圆x2+y2-4x-6y+9=0和x2+y2+12x+6y-19=0相外切. 3.求经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.

4.由圆外一点Q(a,b)向圆x2+y2=r2作割线交圆于A、B两点,向圆x2+y2=r2作切线QC、QD,求:

(1)切线长;

(2)AB中点P的轨迹方程. 作业答案:

2.证明两圆连心线的长等于两圆半径之和 3.x2+y2-x+7y-32=0

六、板书设计

第四篇:直线与圆的位置关系教案

《直线与圆的位置关系》教案

教学目标:

根据学过的直线与圆的位置关系的知识,组织学生对编出的有关题目进行讨论.讨论中引导学生体会

(1)如何从解决过的问题中生发出新问题.(2)新问题的解决方案与原有旧方法之间的联系与区别.通过编解题的过程,使学生基本了解、把握有关直线与圆的位置关系的知识可解决的基本问题,并初步体验数学问题变化、发展的过程,探索其解法.重点及难点:

从学生所编出的具体问题出发,适时适度地引导学生关注问题发展及解决的一般策略.教学过程

一、引入:

1、判断直线与圆的位置关系的基本方法:

(1)圆心到直线的距离

(2)判别式法

2、回顾予留问题:

要求学生由学过知识编出有关直线与圆位置关系的新题目,并考虑下面问题:

(1)为何这样编题.(2)能否解决自编题目.(3)分析解题方法及步骤与已学过的基本方法、步骤的联系与区别.二、探讨过程:

教师引导学生要注重的几个基本问题:

1、位置关系判定方法与求曲线方程问题的结合.2、位置关系判定方法与函数或不等式的结合.3、将圆变为相关曲线.备选题

1、求过点P(-3,-2)且与圆x2+y2+2x-4y+1=0相切的直线方程.备选题

2、已知P(x, y)为圆(x+2)2+y2=1上任意一点,求(1)(2)2x+3y=b的取值范围.备选题

3、实数k取何值时,直线L:y=kx+2k-1与曲线: y=两个公共点;没有公共点.三、小结:

1、问题变化、发展的一些常见方法,如:

(1)变常数为常数,改系数.(2)变曲线整体为部分.有一个公共点;=m的最大、最小值.(3)变定曲线为动曲线.2、理解与体会解决问题的一般策略,重视“新”与“旧”的联系与区别,并注意哪些可化归为“旧”的方法去解决.自编题目:

下面是四中学生在课堂上自己编的题目,这些题目由学生自己亲自编的或是自学中从课外书上找来的题目,这些题目都与本节课内容有关.①已知圆方程为(x-a)2+(y-b)2=r2,P(x0, y0)是圆外一点,求过P点的圆的两切线的夹角如何计算?

②P(x0, y0)是圆x2+(y-1)2=1上一点,求x0+y0+c≥0中c的范围.③圆过A点(4,1),且与y=x相切,求切线方程.④直线x+2y-3=0与x2+y2+x-2ay+a=0相交于A、B两点,且OA⊥OB,求圆方程?

⑤P是x2+y2=25上一点,A(5,5),B(2,4),求|AP|2+|BP|2最小值.⑥圆方程x2+y2=4,直线过点(-3,-1),且与圆相交分得弦长为3∶1,求直线方程.⑦圆方程x2+y2=9,x-y+m=0,弦长为

2,求m.⑧圆O(x-a)2+(y-b)2=r2,P(x0, y0)圆一点,求过P点弦长最短的直线方程?

⑨求y=的最值.圆锥曲线的定义及其应用

[教学内容]

圆锥曲线的定义及其应用。

[教学目标]

通过本课的教学,让学生较深刻地了解三种圆锥的定义是对圆锥曲线本质的刻画,它决定了曲线的形状和几何性质,因此在圆锥曲线的应用中,定义本身就是最重要的性质。

1.利用圆锥曲线的定义,确定点与圆锥曲线位置关系的表达式,体现用二元不等式表示平面区域的研究方法。

2.根据圆锥曲线定义建立焦半径的表达式求解有关问题,培养寻求联系定义的能力。

3.探讨使用圆锥曲线定义,用几何法作出过圆锥曲线上一点的切线,激发学生探索的兴趣。

4.掌握用定义判断圆锥曲线类型及求解与圆锥曲线相关的动点轨迹,提高学生分析、识别曲线,解决问题的综合能力。

[教学重点]

寻找所解问题与圆锥曲线定义的联系。

[教学过程]

一、回顾圆锥曲线定义,确定点、直线(切线)与曲线的位置关系。

1.由定义确定的圆锥曲线标准方程。

2.点与圆锥曲线的位置关系。

3.过圆锥曲线上一点作切线的几何画法。

二、圆锥曲线定义在焦半径、焦点弦等问题中的应用。

例1.设椭圆+=1(a>b>0),F1、F2是其左、右焦点,P(x0, y0)是椭圆上任意一点。

(1)写出|PF1|、|PF2|的表达式,求|PF1|、|PF1|·|PF2|的最大最小值及对应的P点位置。

(2)过F1作不与x轴重合的直线L,判断椭圆上是否存在两个不同的点关于L对称。

(3)P1(x1,y1)、P2(x2,y2)、P3(x3, y3)是椭圆上三点,且x1, x2, x3成等差,求证|PF1|、|PF2|、|PF3|成等差。

(4)若∠F1PF2=2,求证:ΔPF1F2的面积S=btg

(5)当a=2, b=最小值。

时,定点A(1,1),求|PF1|+|PA|的最大最小值及|PA|+2|PF2|的2例2.已知双曲线-=1,F1、F2是其左、右焦点。

(1)设P(x0, y0)是双曲线上一点,求|PF1|、|PF2|的表达式。

(2)设P(x0, y0)在双曲线右支上,求证以|PF1|为直径的圆必与实轴为直径的圆内切。

(3)当b=1时,椭圆求ΔQF1F2的面积。

+y=1 恰与双曲线有共同的焦点,Q是两曲线的一个公共点,2例3.已知AB是过抛物线y=2px(p>0)焦点的弦,A(x1, y1), B(x2, y2)、F为焦点,求证:

(1)以|AB|为直径的圆必与抛物线的准线相切。

(2)|AB|=x1+x2+p

(3)若弦CD长4p, 则CD弦中点到y轴的最小距离为

2(4)+为定值。

(5)当p=2时,|AF|+|BF|=|AF|·|BF|

三、利用定义判断曲线类型,确定动点轨迹。

例4.判断方程=1表示的曲线类型。

例5.以点F(1,0)和直线x=-1为对应的焦点和准线的椭圆,它的一个短轴端点为B,点P是BF的中点,求动点P的轨迹方程。

备用题:双曲线实轴平行x轴,离心率e=,它的左分支经过圆x+y+4x-10y+20=0的2

2圆心M,双曲线左焦点在此圆上,求双曲线右顶点的轨迹方程。

第五篇:直线与圆的位置关系教案

教学目标:

1.使学生理解直线和圆的相交、相切、相离的概念。

2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。

3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。

重点难点:

1.重点:直线与圆的三种位置关系的概念。

2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。

教学过程:

一.复习引入

1.提问:复习点和圆的三种位置关系。

(目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)

2.由日出升起过程中的三个特殊位置引入直线与圆的位置关系问题。

(目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力)

二.定义、性质和判定

1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。

(1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。

(2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。

(3)直线和圆没有公共点时,叫做直线和圆相离。

2.直线和圆三种位置关系的性质和判定:

如果⊙O半径为r,圆心O到直线l的距离为d,那么:

(1)线l与⊙O相交 d<r

(2)直线l与⊙O相切d=r

(3)直线l与⊙O相离d>r

三.例题分析:

例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。

①当r= 时,圆与AB相切。

②当r=2cm时,圆与AB有怎样的位置关系,为什么?

③当r=3cm时,圆与AB又是怎样的位置关系,为什么?

④思考:当r满足什么条件时圆与斜边AB有一个交点?

四.小结(学生完成)

五、随堂练习:

(1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的重要方法。

(2)已知⊙O的直径为13cm,直线L与圆心O的距离为d。

①当d=5cm时,直线L与圆的位置关系是;

②当d=13cm时,直线L与圆的位置关系是;

③当d=6。5cm时,直线L与圆的位置关系是;

(目的:直线和圆的位置关系的判定的应用)

(3)⊙O的半径r=3cm,点O到直线L的距离为d,若直线L 与⊙O至少有一个公共点,则d应满足的条件是()

(A)d=3(B)d≤3(C)d<3 d="">

3(目的:直线和圆的位置关系的性质的应用)

(4)⊙O半径=3cm。点P在直线L上,若OP=5 cm,则直线L与⊙O的位置关系是()

(A)相离(B)相切(C)相交(D)相切或相交

(目的:点和圆,直线和圆的位置关系的结合,提高学生的综合、开放性思维)

想一想:

在平面直角坐标系中有一点A(—3,—4),以点A为圆心,r长为半径时,思考:随着r的变化,⊙A与坐标轴交点的变化情况。(有五种情况)

六、作业:P100—

2、3

下载点与圆的位置关系教案word格式文档
下载点与圆的位置关系教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学圆与圆的位置关系教案

    4.2.2圆与圆的位置关系 教学要求:能根据给定圆的方程,判断圆与圆的位置关系; 教学重点:能根据给定圆的方程,判断圆与圆的位置关系 教学难点:用坐标法判断两圆的位置关系 教学过程:......

    点与圆的位置关系公开课教案(写写帮推荐)

    点与圆的位置关系公开课教案 公开课教案 课题:点与圆的位置关系 时间:,星期三 地点:多媒体教室 班级:三(3) 教学目标 : 1.了解点与圆的三种位置关系,能够用数量关系来判断点与圆的位......

    《点和圆的位置关系》的教学反思

    《点和圆的位置关系》教学反思1、要让学生的数学学习贴近生活。数学来源于生活,并用于生活。初中数学,虽然知识越来越抽象,但是只要我们用心发现,还是可以找到现实生活中的素材......

    圆和圆的位置关系教案

    初探圆和圆的位置关系 教学目标: 1.掌握圆与圆的五种位置关系的定义、性质及判定方法;两圆连心线的性质; 2.通过两圆的位置关系,培养学生的分类能力和数形结合能力; 3.通过演示两圆......

    3.1直线与圆的位置关系教案

    3.1直线与圆的位置关系(2) 教学目标: 1、通过动手操作,经历圆的切线的判定定理得产生过程,并帮助理解与记忆; 2、在探索圆的切线的判定定理的过程中,体验切线的判定、切线的特殊性;......

    优质课教案直线与圆的位置关系

    《直线与圆的位置关系》 教材:华东师大版实验教材九年级上册 一、教材分析: 教材的地位和作用 圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广......

    点直线圆和圆的位置关系复习课教案(范文)

    点、直线、圆和圆的位置关系复习课教案 湖北省巴东县民族实验中学 李萍 -、学习内容 有关点、直线、圆和圆的位置关系的复习。 二、学习目标 1、了解点和圆、直线和圆、圆和......

    与圆有关的位置关系复习课教案

    与圆有关的位置关系复习教案 前石畔九年制学校 郭海平教学目标: 1、了解点与圆、直线与圆、圆与圆的位置关系,能根据条件正确作出判断。 2、掌握圆的切线的性质与判定方法,并......