第一篇:圆与圆的位置关系教学设计
2.2.3 《圆与圆的位置关系》教学设计
王 逸 楠 152021072
王
苑 152021073 张 丹 丹 152021076
赵 英 洁 152021077
一、教材内容分析
《圆与圆的位置关系》是苏教版教材必修二第二章平面解析几何初步第二节圆与方程第三课时的内容,它属于图形与几何领域的内容,是平面解析几何中重要的内容之一。本节学生在已经掌握“圆的方程”、“直线和圆的位置关系”后,在已获得一定的探究方法的基础上,进一步探究两圆的位置关系,它是圆与方程章节中一种重要的位置关系。初中已经学过了几何法判断圆与圆的位置关系,高中课本的重提,是平面几何问题的深化,用坐标的方法来解决几何问题是解析几何的精髓,它为以后处理圆锥曲线做了铺垫,另外,本节内容可以帮助学生体会数形结合的思想,所以,本节课的内容在教材中起到了承上启下的作用,意义重大。
二、学生情况分析
初中的学习,已经让学生对于圆与圆的位置关系有了感性的认识,也知道可以利用圆心距离d与两圆半径的关系r判断圆与圆的位置关系。
在初中学习时,圆与圆的位置关系是以结论性的形式呈现,在高中要求学生利用圆与圆的方程定量进行判断,解决问题的主要方法是解析法,此时学生已经具有了一定的探究能力、分析解决问题的能力,这有利于本节课的学习.三、教学目标
1、通过对圆与圆的位置关系的探究活动,经历知识的建构过程,掌握圆与圆的位置关系的代数与几何判别方法,形成独立思考,自主探究,动手实践,合作交流的学习方式。
2、树立用代数法解决几何问题的意识,提高分析问题和灵活解决问题的能力。
3、通过观察图形,理解并掌握圆与圆的位置关系,体会数形结合的思想;养成细心观察、认真分析、严谨的良好思维习惯。
四、教学重、难点
重点:圆与圆的位置关系的判断。难点:用代数法判断圆与圆的位置关系。
五、教学过程 环节一:温故知新
回顾初中所学圆与圆的位置关系。问题:
1、圆与圆有几种位置关系?
2、我们当时是如何判断圆与圆的位置关系的? 外离圆心距大于两圆半径长之和; 外切圆心距等于两圆半径长之和;
相交圆心距大于两圆半径长之差的绝对值小于两圆半径长之和; 内切圆心距等于两圆半径长之差的绝对值; 内含圆心距小于两圆半径长之差的绝对值。交点个数。
设计意图:通过回顾初中所学知识,唤起学生脑海中已有知识,为进一步学习奠定基础。
教学预设:根据学生已有的基本知识,应大都能回答完整。若回答不完整,可利用几何画板演示来提示。环节二:引入新知
例1 判断圆(x2)2(y2)21与圆(x2)2(y5)216的位置关系? 活动:给予学生自主思考的时间,可以请两位同学板演,教师不必过多干预。一段时间后,交流解法,并总结方法。
例2 判断圆 x2y22x8y80与圆x2y24x4y20的位置关系。活动:同例1一样让学生自主2思考,互相讨论,一段时间后,总结方法。设计意图:通过具体的例子,使学生在独立思考与相互交流的过程中掌握两种判断圆与圆的位置关系的方法,体会数形结合思想。引导学生结合研究直线与圆的位置关系的方法,体会类比思想。
教学预设:如果学生只出现一种解法,则询问有没有其他解法,启发学生回顾上节课是如何研究直线与圆的位置关系的;若出现了不同解法,则请学生板演并讲解他们的思路,教师进行归纳总结。教师还应关注,有多少学生画出了图形,并表扬画出图形的同学,使学生从图像上深入体会数形结合思想。环节三:巩固新知
例3 判断下面两圆的位置关系:
x2y24x4y40与x2y26x4y120.
例4求过点A(0,6)且与圆C:x2y210x10y0切于原点的圆的方程。设计意图:通过练习学生能更进一步掌握判断圆与圆位置关系的方法,以及了解用交点判断的局限性,便于在以后的学习中根据所给圆的方程形式选择合适的方法进行求解。
环节四:归纳总结
1、我们学到了哪些知识,谈谈你的收获?
2、你能比较几何法和代数法各自使用的特点吗?
3、学习过程中,我们提到了哪些思想方法?
设计意图:通过比较两种方法的使用特点,加深对两种方法的理解;对于思想方法的进一步回顾,为以后数学学习作铺垫。环节五:课后作业
第116页例2的其他解法、练习题2、4;选做5。
第二篇:圆与圆的位置关系教学设计
圆与圆的位置关系教学设计
曲江中学
魏菊萍
一、教学目标:
知识目标:了解圆与圆的位置关系,掌握两圆位置关系与半径之间的数量关系;
能力目标:通过探索圆与圆的位置关系,提高学生探究问题和分析问题的能力;
情感目标:通过实际问题的解决,激发学生的学习热情,体会数学与现实生活的密切联系,鼓励学生自主学习,培养学生数学学习兴趣;通过合作交流,加强学生合作意识的培养.二、教学重点、难点
重点:圆心距与两圆半径之间的数量关系来判定两圆的位置关系.难点:圆心距与两圆半径之间的数量关系来判定两圆的位置关系
三、教学方法:自主探究、合作交流.四、教学用具:实物投影,硬纸片制作的两个圆,硬币两枚、圆规、直尺.五、教材分析和学情分析
“圆与圆的位置关系”是“与圆有关的位置关系”中的最后一部分。它是学生学习了“点与圆的位置关系、直线与圆的位置关系”等内容之后的又一位置关系,是圆中的重要部分。生活中圆有广泛的应用,同时也是学生思维训练不可缺少的内容。学生通过学习,学会了归纳、总结和类推的数学方法。
六、板书设计:标题在黑板的正中,左边是学生通过观察而归纳的结论,右边是师生互动练习题,中间是圆与圆的位置关系的图形展示。
七、教学过程:
(一)复习:
1.点与圆的位置关系有几种?如何识别点与圆的位置关系(其数量关系)?并用图来展示
2.直线与圆的位置关系有几种?如何判别直线与圆的位置关系?有几种判别方式?并画图分析.(二)揭示新课:
(实物投影仪上展示下列图形:自行车、奥运会五环旗、转轮)
师:请观察自行车的前后车轮,他们是什么图形?有没有交点?生:自行车的两个车轮是两圆,且没有交点.师: 奥运会五环旗上面有什么图形?有没有交点? 生:有圆。有交点。师:转轮又有什么图形? 生:有圆。
师:以上这些问题都给我们了圆与圆的位置关系的形象,圆与圆有几种位置关系?如何来识别它们的位置关系?这就是我们今天要学习的主要内容:圆与圆的位置关系(板书课题)
(三)议练新知:
师:我这里有两个大小不同的圆,请两位同学在讲台上来给大家演示一下,两圆有几种位置关系?请同学们认真观察,并归纳:(两圆从远到近的运动,归纳他们的交点情况)
生1:两圆外离,两圆没有交点.(演示两圆外离)
生2:两圆外切,两圆只有一个交点.(演示两圆外切)
师:这个交点叫什么?
生3:切点.生4:两圆相交,两圆有两个交点.(演示两圆相交)
生5:两圆内切,两圆只有一个交点(两圆相内切)
生6:两圆内含,两圆没有交点(两圆内含).师:请同学们观察总结,两圆有几种位置关系?
生7:五种.师:直线与圆有几种位置关系?
生8:三种:相离、相切和相交.师:圆与圆是否还可以另外划分呢?(与直线和圆的位置关系相对应)
生9:圆与圆的位置关系也可以划分为三种:相离、相切和相交.师:这是以什么来划分的呢?
生:以两圆的交点个数.师:这里的相离和相切又与前面学习的相离和相切相同吗?
生10:不同,这里的相离包括两种:外离和内含,相切包括两种:外切和内切.(老师板书两圆的五种分法和两种分法)
师:请同学们观察电脑演示,归纳两圆的各种位置关系中,圆心距的变化与两圆半径之间的数量关系怎样?(老师在电脑上演示外离、外切、相交、内切和内含等五种位置关系,让学生总结两圆的半径、圆心距之间的关系)(学生边总结,老师边黑板上板书)
生11:相外离时:d>R+r
生12:外切时:d=R+r
生13:相交时:R-r<d<R+r
生14:内切时:d=R-r
生15:内含时:d<R-r
师:已知⊙o1 与⊙o2 半径分别是6和2,设o1 o2=d,试判断下列两圆的位置关系,并说明理由.(5分钟)
①若d=10时,则⊙o1与⊙o2的位置关系是___ ____,理由是_____.②若d=3时,则⊙o1与⊙o2 的位置关系___ ____,理由___ ____.③若d=4时,则⊙o1与⊙o2的位置关系___ ____,理由___ ____.④若d=6时,则⊙o1与⊙o2的位置关系___ ____,理由___ ____.⑤若d=8时,则⊙o1与⊙o2的位置关系___ ____,理由___ ____.⑥若d=0时,则⊙o1与⊙o2的位置关系___ ____,理由___ ____.生:(略)
师:已知⊙o1与⊙o2相切,圆心距为10cm,其中⊙o1的半径为6cm,则⊙o2的半径是多少?
生:(略)
师:该题要注意相切分几类?
生:分内切和外切.师:请同学们相互之间讨论、归纳出本节的主要内容,并思考自己这节课你有什么收获?互相检查本节知识掌握情况。
生:表格的形式展示本节的主要内容,并互相出题检查。
(四)、巩固练习
(五)、作业
八、教学反思:
本节课在教学上采用了引导式的教学方法。通过学生动手实践等手段使学生在做中学,充分体现出“先学后教,当堂训练”的教学理念。为了调动学生学习的积极性和对本节课的兴趣,我利用多媒体教学,极大的刺激了学生的感官,学生热情高涨,都跃跃欲试,积极参与。学生在学习目标自学指导的引领下,学生动手实践,在实践中探索,感知两圆的位置关系,并通过阅读教材进行确认,感知概念并归纳圆与圆的五种位置关系。让学生自主学,探究学,而不是放任学,学生掌握了恰当的学习方法,这样的自学才有效。同时以图形运动的手段向学生直观展现知识发生过程,化静态为动态,强化了学生对知识的记忆,再通过例题的训练,教会学生从不同角度思考问题,来拓展学生思维,培养学生全面思考问题的能力。
第三篇:圆与圆的位置关系教学设计(模版)
《圆与圆的位置关系》教学设计
海南华侨中学 张克艳
一、教学目标:
知识目标
1.本节课使学生掌握圆和圆的几种位置关系的概念及相切两圆连心线的性质.
2.使学生能够根据两圆不同的位置关系,写出两个圆半径的和或差与圆心距之间的关系式;反过来,由两圆半径的和或差与圆心距的大小关系,判定两圆的位置关系.
能力目标
1、结合本节课的教学内容培养学生亲自动手实验,学会观察图形,主动获得知识的能力.
2、继续培养学生运用旧知识探求新知识的能力. 情感目标:培养学生对圆的知识的兴趣
二、重点:圆和圆的五种位置关系的概念及相切两圆的连心线的性质.
三、难点:理解相切两圆连心线性质的证明.
四、教具准备:多媒体、常用画图工具等
五、教学过程:
一、新课引入:
同学们,前面我们学习了点和圆及直线和圆的位置关系,在原有知识的基础上本节课我们学习两圆的位置关系的有关知识,那么圆和圆有几种位置关系呢?教师板书课题:“7.13圆和圆的位置关系(一)”.根据学生已有的知识水平及本节课的特点,从引导学生回顾点和圆三种位置关系到直线和圆的三种位置关系出发,激发学生通过类比探求圆和圆的位置关系有几种情况,这样可一下子抓住学生的注意力.
为了使学生真正体会到数学理论来源于实践,反过来又作用于实践的这一理论.在学生复习了点和圆及直线和圆的位置关系的基础上,教师引导学生把课前准备好的两个不等圆的纸版拿出来,同桌两人动手实验,发现圆和圆的位置关系有五种情况的过程,由学生上黑板公布自已发现的五种情况,教师适当补充.这样做的目的.是鼓励学生亲自动手来参与探索新知识过程.可充分调动学生的学习积极性.
让学生把自己得到的结论告诉同学们,对此问题不是所有同学都能理解,这时教师可以进一步引导,把得到的位置关系从投影上打出来.
这样做的好处是体现学生动手动脑的全过程,特别是通过自己实验总结出来的知识,更突出它的实际性.不是学生被动地接受知识,而是学生积极主动获得知识,更能培养学生发散思维的能力.
二、新课讲解:
学生得到的圆和圆的位置关系有五种情况,也就等于学生自己的科研成果公布于众. 请两名同学上黑板讲解得到五种位置关系的方法.全班同学参与评议,同时观察图形具有的特点.
找一名同学以两圆公共点的个数为依据,摆放出两圆各种不同的位置:
找一名同学利用运动变化的观点来得到两圆的位置.设⊙O1为动圆,⊙O2为定圆,当⊙O1向⊙O2运动时,两圆的位置关系的变化如下:
由学生实验得到结论,教师引导学生回答,教师概括总结: 圆和圆的位置关系五种情况及各自的概念.(1)两圆外离:略(2)两圆外切(3)两圆相交(4)两圆内切(5)两圆内含
教师一边讲解每一种情况的定义,同时要求学生理解重点词语“内”、“外”、“内部”、“外部”.这五种情况也可以归纳为三类:
(2)相交
接着教师引导学生思考这样问题:
除根据公共点的个数可以判定两个圆的位置关系外,还有没有其它方法呢?由于圆和圆的位置关系是学生自己得到的,前两名同学发言的激发下,不少同学都想拿出自己的作品,这时教师让学生议论五分钟,然后由学生总结出又一种方法判定两圆的位置关系.教师板书: 设两圆半径分别为R和r,圆心矩为d,那么(1)两圆外离 d>R+r(2)两圆外切 d=R+r(3)两圆相交 R-r<d<R=r(R≥r)(4)两圆内切 d=R-r(R>r)(5)两圆内含 d<R-r(R>r)同心圆 d=0 接下来为了巩固所讲的知识点,投影放出一组练习题: ⊙O1和⊙O2的半径分别为3cm和4cm,设
(1)O1O2=8厘米;(2)O1O2=7厘米;(3)O1O5=5厘米;(4)O1O2=1厘米;(5)O1O2=0.5厘米;(6)O1和O2重合. 请回答⊙O1与⊙O2的位置关系怎样?
这组练习题,学生思考回答,学生参与评价,老师不代替学生,知识点消化靠学生自己思维解决.如果有困难的话由其它同学帮忙解决.
接下来教师结合图7-96讲解“把经过两圆心的直线叫做连心线”.那么两圆外切、内切的切点与连心线有怎样的关系呢?
本题由教师分析证明思路,在学生表示认可的情况下,由学生总结出相切 两圆的性质:
如果两圆相切,那么切点一定在连心线上.
教师这样做的目的是培养学生亲自动手操作实验,发现规律,总结出结论.一方面培养学生自己探求新知识的探索精神,另一方面给学生一种自信,让他们感觉自己能行.
接着幻灯打出例1 如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm. 求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?
学生回答,教师板书:
解:(1)设⊙O与⊙P外切于点A. ∴ PA=OP-OA=8-5,∴ PA=3cm.
(2)设⊙O与⊙p内切于点B. ∴ PB=OP+OB=8+5,∴ PB=13cm.
练习题由学生自己完成,教师不讲,学生之间互相评价.
三、课堂小结:
课后小结由学生进行,教师概括:(一)本节所学的知识点:
1.圆和圆的位置关系的概念.
3.相切两圆连心线的性质.(二)本节课所学的方法:
1.会利用公共点的个数和定义判定两圆的位置关系. 2.会用两圆半径和圆心距的关系判定两圆的位置关系. 3.学会两圆相切连心线必过这两圆的切点.
六、板书设计:见教学过程
七、布置作业:
八、教学小结:
第四篇:圆与圆的位置关系教学设计
圆与圆的位置关系
一、教学目标:
(一)知识目标
1、利用计算机制作动画(让学观察两圆相对运动的过程)培养学生以运动变化的观点来观察问题(观察出确定“两圆位置关系”的关键 两圆交点的个数)分析问题、解决问题的能力。
2、用计算机制作动画让学生从静止的角度探索出“两圆半径与圆心距之间的数量关系”与“两圆位置”的联系,培养学生认识事物都是相互联系、相互制约的辩证唯物主义观点。
(二)过程与方法
在经历“观察 猜测 探索 验证 应用”的过程,渗透了从“形”到“数”和从“数”到“形”的转化,培养了学生的转化、思维能力。实现了感性到理性的升华。
(三)情感目标
1、通过合作交流、自主评价,改进学生的学习方式,及学习质量,激发学生的兴趣,唤起他们的好奇心与求知欲,点燃起学生智慧的火花,使学生积极思维,勇于探索,主动地去获取知识。
2、让学生在猜想与探究的过程中,体验成功的快乐,培养他们主动参与、合作意识,勇于创新和实践的科学精神。
二、教学重难点
重点:圆与圆位置关系的发现及确定方法
难点:圆与圆位置关系的数量关系的发现。
三、教学设备:计算机课件
四、教学过程:
(一)复习提问
1、如何确定点与圆的位置关系?
2、确定直线与圆的位置关系的方法是什么?
(二)创 设 情 景
1、欣赏生活中圆与圆位置关系的图片,同时学生举例。
2、用微机制作出有“日食”现象的动画,提问这种现象是怎么产生的呢?
3、当学生说出其现象的成因后,动画演示“日食”形成的过成。
(三)探 求 新 知
1、如果把月亮与太阳看成两个圆,那么两个圆在作相对运动的过程中有几种位置关系产生呢?请同学们在练习本中画出并将其命名。
探 究 发 现
1、将学生的发现展示给大家后,教师让学生相互分析点评。老师进行点拔。
2、老师用微机将两圆位置关系的动画与学生的发现进行对比。(教师给予恰当的点评)
3、用微机将两圆的五种位置关系进行分类,并让学生思考分类标准。从而引导学生确定两圆位置关系的一种方法(交点个数)。
4、提问:两圆“相切、相离”所指的图形是什么?
5、在给出图形的前提下可识别出两圆的位置关系,如果没有图形能识别出两圆的位置关系么?(让学生分小组讨论)
6、学生讨论完后教师给予点评,并利用微机动画与学生一起探索确定两圆位置关系的另一种方法。(对学生讨论结果教师给予适当点拨或点评)
7、例1:如图,⊙O的半径为5cm,点P是⊙O外一点,OP=8cm,若⊙P与⊙O相切,则⊙P的半径是多少?(见课件)
8、例
2、如图,等圆⊙M和⊙N相交于A、B两点,⊙M经过⊙N的圆心N,求∠MAB的度?(见课件)
9、当堂达标:填空题:1.⊙O1和⊙O2的半径分别为3cm、4cm,设d=O1O2 :(1)当d=8cm时,则⊙O1与⊙O2的位置关系是_________.(2)当d=7cm时,则⊙O1与⊙O2的位置关系是_________.(3)当d=5cm时,则⊙O1与⊙O2的位置关系是_________.(4)当d=1cm时,则⊙O1与⊙O2的位置关系是_________.(5)当d=0.5cm时,则⊙O1与⊙O2的位置关系是_________.(6)当d=0时,则⊙O1与⊙O2的位置关系是_________.五、课堂小结
六、教学反思
第五篇:圆与圆的位置关系教学设计
《圆与圆的位置关系》教学设计
香坝中学数学教师:杨廷凡
一、教材内容分析
本节课的内容是湘教版九年级数学下第三章《3。3圆与圆的位置关系》。它是在学习了点与圆以及直线与圆的位置关系的基础上,进行对圆与圆的位置关系的研究.其中学生亲自动手利用平移实验直观地探索圆和圆之间的几种位置关系,通过讨论两圆圆心之间的距离d与两圆半径R和r之间的关系来确定两圆的位置关系。学生通过观察分析,猜想验证,完成从感性到理性的发生发展的认知过程.然后知识遵循从实践走向数学,从数学走向生活的原则,让学生学以自用,把数学知识与现实生活紧密相联。
二、学生情况分析
该班学生基础知识一般,对课堂教学比较感兴趣,对课堂教学模式、教学理念属于适应阶段。有一部分学生思维比较敏捷,学生的学习能力有待于进一步提高。
三、教学目标分析
1、知识技能
(1)、探索并了解圆和圆的位置关系。
(2)、探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系.(3)、能够利用圆和圆的位置关系和数量关系解题.
2、数学思考
(1)学生经历操作、探究、归纳、总结圆和圆的位置关系的过程,培养学生观察、比较、概括的逻辑思维能力。
(2)学生经历探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系的过程,培养学生运用数学语言表述问题的能力。
3、解决问题:
(1)、学生在探索圆和圆的位置关系的过程中,学会运用数形结合的思想解决问题。
(2)、学生通过运用圆和圆的位置关系的性质与判定解题,提高运用知识和技能解决问题的能力,发展应用意识。
4、情感态度
通过探究两个圆的位置关系,培养学生合作交流的意识和细致缜密的思维品质,培养学生学数学、用数学的意识,并从数学学习活动中获得成功的喜悦树立坚定的自信。
四、教学重难点:
1、教学重点:探索并了解圆和圆的位置关系。
2、教学难点: 探索圆和圆的位置关系中两圆圆心距与两圆半径的数量关系。
五、教学方法
自主探究——合作交流——问题驱动式教学。
六、教学准备:
1、多媒体
2、两个半径不同的圆圈
七、教学过程
(一)课前一分钟安全教育。
(二)复习:(1)点与圆的位置关系。(2)直线和圆的位置关系
(三)情景创设:我们生活在丰富多彩的图形世界里,圆与圆组成的图形是我们生活中最常见的画面。比如:自行车的两个轮子、奥运会的会标、皮带轮、日环食照片(大屏幕演示),你还能举出两个圆组成的图形吗?(学生举例)。
设计意图:展现生活中圆与圆组成的图形并由学生举出实例,丰富学生对客观世界中两个圆之间多种不同位置关系的感受,为学生自主探索提供可能。
[活动一]
问题1,圆和圆有哪些位置关系?(分组讨论)
每个学生把准备好的两个半径不同的圆拿出来进行平移操作实验。(注:其中一个圆移动,另一个圆不动。)
设计意图:让学生体会用运动的观点全面观察,正确归纳两圆的位置关系。问题2,试一试你能不能描述两圆的各种位置关系? 学生思考回答,师生共同总结:
1.两个圆没有公共点,就说这两个圆相离,如上图中的(1)、(5)、(6),它们又有何区别?讨论得出其中(1)叫外离,(5)(6)叫内含,(6)是两圆同心,是两圆内含的一种特殊情况。
2.两圆只有一个公共点,就说这两圆相切,如上图是的(2)(4),同样找出它们的区别,其中(2)叫外切,(4)叫内切。
3.两圆有两个公共点,就说这两个圆相交,如上图(3)。因此两园的位置关系为:(大屏幕投影)
(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图1)
(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图2)
(3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图3)(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图4)
(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图5).两圆同心是两圆内含的一个特例.(图6)
设计意图:创设一种活动情境让学生依照两圆公共点个数,将两圆的位置进行分类,得到相离、相切、相交,然后引导学生讨论,如何准确的描述两圆更具体的位置关系,学生观察讨论,(1)与(5)、(2)与(4)的区别,从面得出两圆的五种位置关系。
教师重点关注:学生的语言表述能力即表达的准确性。
大屏幕展示圆和圆的五种位置关系:外离、外切、相交、内切、内含(包含同心圆)。
问题3,两个圆的位置关系发生变化的时候,圆心距d与两个圆的半径R与r(R>r)之间有没有内在的联系?请同学们交流一下(给出一定的时间)大屏幕演示两圆由远到近的运动情形,让学生观察圆心距d的变化,然后让学生进行归纳。
教师重点关注:学生思考问题的全面性和准确性,尤其是对两圆相交时的圆心距的范围考虑的是否到位。(教师可提示利用三角形三边之间的关系来解决问题)
师生共同总结:(大屏幕出示)两圆外离d>R+r 两圆外切d=R+r 两圆相交R-r<d<R+r(Rr)两圆内切d=R-r(R>r)两圆内含d≤R-r(R>r),同心圆(d=0 且R≠r)注:当d=0 且R=r时,两圆重合。
温馨提示:当R=r时,两个圆只有外离、外切和相交三种情况,不可能有内切和内含,只可能是重合。
设计意图:让学生感知图形的“位置关系”与“数量关系”常常是相互联系的,“位置关系”决定“数量关系”。反之,“数量关系”又是刻画“位置关系”的一种简明的符号语言,并得到两个圆五种位置关系的判定。
[活动二]
问题4,课本第84页练习1学生自己完成。大屏幕出示部分学生的正确答案。教师重点关注:学生应用 “数量关系”判定两圆“位置关系”的准确性,尤其注意,只有d>R- r 或只有d<R+ r时不能判定两个圆是相交的,只有 R-r<d<R+r(R≥r)时才能判定两个圆是相交的。
设计意图:进一步让学生理解新知,并能熟练准确的应用新知,培养学生全面细致的良好思维品质。
问题5,大屏幕出示问题:
已知⊙A、⊙B相切,圆心距为10cm,⊙A的半径为4cm,求⊙B的半径?(学生自己解答)最后教师给出图形及解答过程。
教师重点关注:学生是否考虑到两圆相切的两种情况,还有就是两圆内切时,因为不知道两圆半径的大小,还要分两种情况进行讨论。
设计意图:培养学生严谨缜密的思维品质,加强“分类讨论”数学思想的训练。
问题6,课本84页练习2,学生自己完成。大屏幕出示部分答案,进行订正,完善解题过程。教师重点关注:学生绘图能力是否有所提高。
设计意图:培养学生灵活、全面的思维品质和用运动的观点解决数学问题的意识,培养学生的创造能力和探索精神。
八、小结
这节课你有哪些收获?有何体会?你认为自己的表现如何? 教师引导学生回顾、思考、交流。教师重点关注: 1.学生的归纳总结能力。2.能否对问题有进一步的思考。
3.能否发表自己的见解,倾听他人的意见,反思学习过程。
4.学生对两圆位置及数量关系的掌握及熟练程度,对拓展知识的理解程度。设计意图:回顾、总结、矫正、提高学生的自觉形成本节课的知识网络。
九、作业:课本85页第4、5题;
十、板书设计:
§3.3 圆与圆的位置关系
一、1.圆和圆的位置关系
2.每种位置关系中两圆半径与圆心距之间的关系。
3、例题讲解
二、课堂练习
三、课时小结
四、课后作业