第一篇:人教版四年级数学下册第九单元《鸡兔同笼》教学设计
第九单元
《数学广角──鸡兔同笼》单元教学计划
教学内容
教材第103~107的内容。教材分析
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。其解法包括:列表法、假设法、方程法。由于本单元还没学习到方程法,因此,教材主要引导学生通过猜测、列表和假设等方法来逐步解决问题,培养学生猜测、有序思考及逻辑推理能力。其编排特点如下:
1.利用古题激发学习兴趣。
2.体现解决问题的策略和方法多样化。
3.拓宽对“鸡兔同笼”问题的认识,明确其在生活中的应用。教学目标
1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.经历自主探究解决问题的过程,体验解决问题策略的多样化。了解列表法、假设法等解决问题的方法,在解决问题的过程中培养逻辑推理能力,增强应用意识和实践能力。
教学建议
1.了解“鸡兔同笼”问题的本质,渗透化繁为简的数学思想。2.引导学生探索解决问题的策略和方法,丰富解题策略。单元课时安排
第1课时
鸡兔同笼问题
第2课时
用“鸡兔同笼”解决实际问题
第1课时
鸡兔同笼问题
教学内容
鸡兔同笼问题:教材第103~104页例1。教学目标
1.了解“鸡兔同笼”问题的结构特点,渗透化繁为简的思想,掌握用列表法、假设法解决问题,初步形成解决此类问题的一般性策略。
2.经历猜测的过程,尝试用列表、假设的方法解决“鸡兔同笼”问题,引导学生有序思考,使学生体会解题策略的多样性。
3.在解决问题的过程中,培养学生的迁移思维能力,感受古代数学问题的趣味性。教学重点
渗透化繁为简的思想,体会用假设法的逻辑性和一般性。教学难点
理解用假设法解决“鸡兔同笼”问题的算理。教学过程
一、导入新课
师:同学们,大约一千五百多年前,我国古代数学名著《孙子算经》中记载了一道数学趣题——“鸡兔同笼”问题。
出示主题图:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? 师:这道题是以文言文的方式表述的,哪位同学看懂它的意思了?
生:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只? 师:从题中获取信息,你知道了什么,要求什么问题?
二、新课教学
1.尝试解决,交流想法。
既然“鸡兔同笼”问题能流传至今,就应该有它独特的思考方式和解题方法。问题:同学们想一想,算一算鸡和兔各有多少只? 2.感受化繁为简的必要性。
师:大家在刚才猜了好几组数据,经过验证都不正确,为什么猜不对呢?数据大了不好猜,我们应该怎么办?我们把数字改小些,先从简单的问题入手。
(课件出示例1)“笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?” 师:从题中你们能获取哪些信息?和生活常识联系在一起,你还能说出哪些信息? 预设:
生1:鸡和兔共8只,鸡和兔共有26只脚。生2:鸡有2只脚,兔有4只脚。3.猜想验证。
师:有了这些信息,我们先来猜猜,笼子可能会有几只鸡?几只兔?猜测需要抓住哪个条件? 生:鸡和兔一共有8只。
师:每组都有一张表格,请大家来填一填,看看谁能又快又准确地找出答案来。
学生汇报。
小结:这个方法挺好,能帮我们解决鸡兔同笼的问题,我们把这种方法叫做列表法。(板书:列表法)
师:老师刚才发现,很多同学都完成得非常快,很了不起!那么,同学们,你们觉得用列表法解决“鸡兔同笼”问题怎么样呢?
生1:列表法能很清晰地解决这个问题。
生2:因为数字比较简单,所以列表法还可以用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。师:说得非常好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。
学生小组交流汇报。
生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。4.数形结合理解假设法。
教师:同学们的想法非常好,我们一起继续来看这张表格,通过分析表格来将同学们的想法表述得更加清晰。(1)假设全是鸡。
教师:我们先看表格中左起的第一列,8和0是什么意思? 学生:就是有8只鸡和0只兔,也就是假设笼子里全是鸡。
教师:那笼子里是不是全是鸡呢?这也就是把什么当什么来算了? 学生:不是,我们是把一只4只脚的兔当成一只2只脚的鸡来算的。教师:这样算会有什么结果呢?
学生:每少算一只兔就会少算2只脚。
教师:假设全是鸡,一共是16只脚。实际有26只脚,这样笼子里就少了10只脚,这说明什么呢? 学生:每只鸡比兔少2只脚,少了10只脚说明笼子里有5只兔。教师:你们能列出算式吗? 学生尝试列算式。师以画图法进行演示:
8×2=16(只)。(如果把兔全当成鸡,一共就有8×2=16只脚。)26-16=10(只)。(把兔看成鸡来算,4只脚的兔当成2只脚的鸡算,每只兔就少算了2只脚,10只脚是少算的兔的脚数。)
4-2=2(只)。(假设全是鸡,就是把4只脚的兔当成2只脚的鸡。所以4-2表示一只兔当成一只鸡,就要少算2只脚。)
10÷2=5(只)兔。(那把多少只兔当成鸡算,就会少10只脚呢?就看10里面有几个2,也就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)
8-5=3(只)鸡。(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡。)(2)假设全是兔。
师:我们再回到表格中,看看右起第一列中的0和8是什么意思? 生:就是有0只鸡和8只兔,也就是假设笼子里全是兔。
师:笼子里是不是全是兔呢?这个时候是把什么当什么算的?
生:把里面的鸡当成兔来计算的。
师:那把一只2只脚的鸡当成一只4只脚的兔来算,会有什么结果呢? 生:就会多算2只脚。
师:请同学们像老师那样画一画,算一算。
学生汇报: 8×4=32(只)。(如果把鸡全看成兔,一共就有8×4=32只脚。)32-26=6(只)。(把鸡当成兔来算,2只脚的鸡当成4只脚的兔算,每只鸡就多了2只脚,6只脚是多算了鸡的脚数。)
4-2=2(只)。(假设全是兔,就是把2只脚的鸡当成4只脚的兔。所以4-2表示一只鸡当成一只兔,多算了2只脚。)
6÷2=3(只)鸡。(那要把多少只鸡当成兔来算,就会多算6只脚呢?就看6里面有几个2,也就是把几只鸡当成了兔来算,所以6÷2=3就是现在鸡的只数了。)
8-3=5(只)兔。(用鸡兔的总只数减去鸡的只数就是兔的只数,8-3=5只兔。)(3)提出假设法概念。
刚才我们通过假设都是鸡或都是兔来解决例1的,所以把这种方法叫做假设法。这是解决“鸡兔同笼”问题的一种基本方法,也是算术方法中较为普遍的一般方法。
(板书:假设法)
5.小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。
6.课件出示:* 古人是怎样解决“鸡兔同笼”问题的?
(1)假如让鸡抬起一只脚,兔子抬起两只脚,还有26÷2=13只脚。
(2)这时每只鸡一只脚,每只兔子两只脚。笼子里只要有一只兔子,则脚的总数就比头的总数多1。(3)这时脚的总数与头的总数之差13-8=5,就是兔子的只数。
三、知识运用
学生独立完成古代趣题。方法展示: 1.列表法:
答:鸡有23只,兔有12只。2.假设法:
假设笼子里全都是鸡。
35×2=70(只)
94-70=24(只)
4-2=2(只)兔:24÷2=12(只)。鸡:35-12=23(只)
答:鸡有23只,兔有12只。假设笼子里全都是兔。
35×4=140(只)
140-94=46(只)
4-2=2(只)鸡:46÷2=23(只)兔:35-23=12(只)
答:鸡有23只,兔有12只。
四、课堂小结
这节课我们一起用列表法和假设法研究了古代著名的“鸡兔同笼”问题。你学会了吗?
第2课时
用“鸡兔同笼”解决实际问题
教学内容
用“鸡兔同笼”解决实际问题:教材练习二十四。教学目标
1.加深了解“鸡兔同笼”问题本质,感受古代数学问题的趣味性。
2.在解决生活实际问题的过程中,能发现“鸡兔同笼”问题,并体会代数方法的一般性。
教学重点
加深了解“鸡兔同笼”问题本质,感受古代数学问题的趣味性。教学难点
理解用假设法解决“鸡兔同笼”问题的算理,建立“鸡兔同笼”问题的数学模型。教学过程
一、导入新课
在“鸡兔同笼”问题中,你发现了什么规律?
结论:鸡增加1只,同时兔减少1只,腿减少2条。鸡减少1只,同时兔增加1只,腿增加2条。腿增加和减少于兔保持一致。
二、新课教学 1.小知识。
“鸡兔同笼”是一类中国有名的算术题,最早出现在《孙子算经》中。此书约成书于四、五世纪,作者生平和编写年代都不清楚。先传版本的《孙子算经》共三卷。卷下31题,可谓是后世“鸡兔同笼”的始祖。
(1)金鸡独立。
其实对这个问题,不但咱们中国人有研究,外国人对它也有关注,美国教授波利亚,他讲了一个很有趣的故事解释了这种解法的道理。
有一天鸡和兔在草地上玩,鸡突发奇想对兔子说:“我会金鸡独立!”说着就将一只脚提起来。兔子也不甘示弱:“我也会!”于是,兔子也将两条前腿提起来。这时草地上的总脚数是不是只剩下原来的一半了?94÷2=47(只)这时草地上的脚数是不是还比鸡兔的总只数多一些呢?47-35=12(只)为什么会多?不就是因为每只兔子有两只脚吗?这样总共多了几只脚就有几只兔子,而剩下的就是鸡了。35-12=23(只)
看来我们解决数学问题有时还真需要点数学家的本领——“奇思妙想”!(2)龟鹤同游。
日本人对鸡兔同笼问题也有研究,传到后日本,变成“龟鹤算”:有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?
日本人说的“龟鹤”和我们说的“鸡兔”有联系吗?
鸡兔同笼,也叫龟鹤问题。看问题要抓住本质的东西,这里的鸡不仅仅代表鸡,这里的兔也不仅仅是指兔!
(3)有趣的“百僧百馍”。
课件出示:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几人? 这些有趣的故事,都是鸡兔同笼的原型再现。2.利用规律,实题操作
(1)课件出示:鸡兔同笼,有10个头,28条腿,鸡、兔各有多少只? 生利用规律进行练习。(2)“鸡兔同笼”变异题。
课件出示:新星小学“环保卫士”小分队12人参加植树活动。男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树。男女各有几人?
引导学生将“鸡兔同笼”的模型转换。学生思考谁是鸡,谁是兔。小组交流,汇报展示。
假设全是男,12×3=36(棵),少了:36-32=4(棵),每位女生少:3-2=1(棵)女生:4÷1=4(人)男:12-4=8(人)。
(3)完成练习二十四的1~4题。引导学生将“鸡兔同笼”的模型转换。
第1题,鸡兔同笼问题,学生思考谁是鸡,谁是兔。汇报展示:假设全是大钢珠。
小钢珠有:(11×30-266)÷(11-7)=16个; 大钢珠有:30-16=14个,答:大钢珠有14个,小钢珠有16个。师:从另外一个角度考虑怎么做?
第2题,独立完成,小组交流,全班订正。第4题,学生思考谁是鸡,谁是兔。汇报展示:假设全是二等奖。
一等奖:(10000-100×60)÷(300-100)=4000÷200=20(个); 二等奖:60-20=40(个)。
第3、5题,小组交流,合作完成,说一说想法。
三、巩固练习
1.停车场里停了三轮车和小汽车共11辆,总共有40个轮子,问三轮车和小汽车各有几辆? 这道题与鸡兔同笼问题有什么联系? 生找出两者的异同点,进行练习。2.完成练习二十四的6题。
第6题,一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几人? 学生独立思考,反馈展示。
分析:把一个大和尚和一个小和尚当成一组,100÷(3+1)=100÷4=25(组),这25也就是大和尚的人数,再用总人数100减去大和尚人数25,75(人)得到小和尚有75人。
答:大和尚有25人,小和尚有75人。
四、课堂小结
通过今天的学习,你了解了什么?有什么收获?
100-25 =
第二篇:2015新人教版四年级数学下册第九单元数学广角---鸡兔同笼教案
2015新人教版四年级数学下册《数学广角:平鸡兔同笼》精品教案 9数学广角——鸡兔同笼
【教学目标】
1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
【重点难点】
用假设法和列方程的方法解决“鸡兔同笼”问题。
【教学指导】
1.要注重解题策略的多样化教学中,教师通过组织学生采取讨论,自主探索等方式,多手段、多层面、多角度地探索问题,引导学生运用列表法、画图法、假设法、代数法等方法分析和解决问题,从而使学生获得分析问题和解决问题的基本方法,体验解决问题策略的多样性,发展创新意识。在注重解决问题策略多样化的同时,教师还应注重解决问题策略的自主优化(如列表法中的从两边开始,从中间开始,依据数据跳跃猜测等),并注重不同策略间的相互联系和影响,注重解决问题策略的局限性和一般性。
2.要注重逻辑思维能力的培养让学生在参与观察、猜想、证明、归纳等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初随意、无序的猜想到表格中的有序、有目的的猜想;从一般验证到表格中数据变化规律的发现;从列表法(8只兔0只鸡或8只鸡0只兔这两种情况中)很快自然联想到假设法(通过假设——计算——推理——解答的过程,掌握假设法的独特的特点)、代数法。学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。3.要注重数学思想的渗透“数学广角”是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。本节课作为本册教材“数学广角”中的唯一教学内容,也要求教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数据替代《孙子算经》原题中的大数据的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”解决问题,既渗透了函数的思想和方法又强调了解题策略的优化;用“假设法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。这些对于学生而言,无疑奠定了可持续发展的坚实基础。
4.要注重数学文化的传承鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,我们把《孙子算经》中关于鸡兔同笼问题的原题和《孙子算经》中用“抬腿法”这种特殊而灵巧的方法解决这一问题的过程,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味。【课时安排】 建议共分2课时:
第1课时鸡兔同笼(1)„„„„„„„„„„„„„„„„„„„„„„1课时 第2课时鸡兔同笼(2)„„„„„„„„„„„„„„„„„„„„„„1课时 【知识结构】
第1课时 鸡兔同笼(1)
【教学内容】
教材第103~105页例1及“做一做”、教材第106页练习二十四第1~3题。【教学目标】
1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
【重点难点】
用多种方法解决“鸡兔同笼”问题。【教学准备】
课件、列表法的表格卡片。
【情景导入】
1.师:同学们,今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”(PPT投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94条脚。鸡和兔各有几只?)(PPT展示今意。)2.这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。鸡兔同笼问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。你们有没有信心把这节课的内容学好呢? 【新课讲授】
(一)出示情景,获取信息
1.出示“鸡兔同笼”画面。为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”
2.我们一起来看看被关在同一个笼子里的鸡和兔。鸡和兔是两种不同的动物,但我们从数学的角度思考,它们有什么相同点和不同点呢?学生理解:相同点——鸡和兔都只有1个头;不同点——鸡只有2条腿,而兔有4条腿。
(二)列表法
1.我们先来猜猜,笼子中可能会有几只鸡几只兔呢?在猜测时要抓住哪个条件?(鸡和兔一共是8只。)
2.那是不是抓住了这个条件就一定能猜对呢?怎样才能确定猜的对不对呢?(把鸡的腿和兔的腿加起来看等不等于26条腿。)
3.现在就请同学们,把你们猜测的数据填在答题卡上。师巡视,可能会出现如下四种情况:① 随意猜,直到猜对为止;② 从鸡的只数开始尝试,直到符合26条腿为止;③ 从兔的只数开始尝试,直到符合26条腿为止;④ 对半分开始尝试,不断调整,直到符合26条腿为止。
4.我们把这种方法叫做列表法。(板书:列表法)
(三)直观画图法
1.师:刚才我们同学介绍了用列表法来解决这个问题,还有别的方法吗?谁愿意来给大家讲一讲?
2.生1:还可以用画图——先画好8个圆圈代表鸡和兔的8个头,再给每只动物先安上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。因为每只兔少算了2条腿,所以一次增加2条腿,这样一只鸡就变成了一只兔,要把10条腿安完,就要把5只鸡变成兔。所以在这个笼子里鸡有3只,兔有5只。(指名该生上台演示。)问:你们听懂他的方法吗?请同学们在练习本上画一画。
3.生2:我也是用画图法——先画好8个圆圈代表鸡和兔的8个头,但我是先给每只动物安上4条腿(也就是都看成兔。),这样一共有32条腿,多了6条腿。因为每只鸡多画了2条腿,所以一次减少2条腿,这样一只兔就变成了一只鸡,要去掉多的6条腿,就要从3只兔的身上各去掉2条腿,这样3只兔变成了鸡。所以在这个笼子里鸡有3只,兔有5只。(指名该生上台演示。)
师:画图的方法非常便于观察、非常容易理解。
4.你们觉得用猜想列表法或直观画图法解决鸡兔同笼问题怎么样?(生:我认为有局限性,当头和腿的数目较大时,用这两种方法会很麻烦。)
5.是呀!假如鸡和兔不是同关在一个笼子里,而是同关在一个养殖场里,鸡和兔共有1000只,它们共有2700条腿。问这个养殖场里的鸡和兔分别有多少只?如果用列表的方法或画图的方法来解决就太麻烦了。看来我们还有必要继续研究新的解题方法。
(四)思考交流你还能用什么办法来解决这个问题呢? 学生讨论后交流。A、假设法现在请同学们一起来看看XXX同学表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡)
①假设笼子里的8只全是鸡,那么笼子里就只能有多少条腿? ②与实际的腿数不符,腿的条数少算了多少条?
③假设全是鸡,是把4条腿的兔当成2条腿的鸡,这样每只兔就少了多少条腿? ④少算的10条腿是把多少只兔当成了鸡来算? ⑤鸡的只数怎么算?
B、列方程解在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)要用列方程的方法就必须找到等量关系式。通过得到的信息能写出哪些等量关系式呢?(兔的只数+鸡的只数=8;兔的腿数+鸡的腿数=26)(课件出示)
这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设其中一个未知数为x,再用含有字母的式子表示出另一个未知数。让我们来试试吧。
小结:请同学们回忆一下,在解决鸡兔同笼问题时,可以用哪些方法?(列表法、画图法、假设法或列方程。)
(五)现在我们就用刚才学到的这些方法来解决《孙子算经》中的原题,你会用列表法和画图的方法解决吗? 【课堂作业】
完成教材第105页“做一做”。运用列表法和画图法解决这两道题,然后交流订正。【课堂小结】
通过这节课的学习,你有什么收获?小结:鸡兔同笼问题可以用猜测列表法、假设法等多种方法解决,但数字较大时可以用列方程的方法。【课后作业】
1.完成教材第106页练习二十四第1~3题。2.完成练习册本课时的练习。
第1课时鸡兔同笼(1)
列表法;画图法;假设法;列方程。
中国有着历史悠久、成就辉煌的数学文化,出现了许多伟大的数学家和经典的数学名著。结合本节课的教学内容,教师通过向学生介绍记载“鸡兔同笼”问题的数学名著《孙子算经》,介绍古人解决鸡兔同笼问题的巧妙方法,使学生了解数学知识丰富的历史渊源,感受古人的聪明智慧,增强民族自豪感。在教学时,教师要渗透解决问题的思想方法。
第2课时 鸡兔同笼(2)
【教学内容】教材第104~105页例1及“做一做”、教材第106-107页练习二十四第4~6题。
【教学目标】
1.理解运用假设法和方程的方法去解决“鸡兔同笼”问题。
2.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
【重点难点】
运用假设法和方程的方法去解决“鸡兔同笼”问题。【教学准备】课件。
【情景导入】 1.复习:我们上节课学习了“鸡兔同笼”问题,大家回忆一下这种问题用什么方法来解决呢? 学生回顾交流。
解决方法:列表法、画图法、假设法和列方程。2.导入
假如鸡和兔不是同关在一个笼子里,而是同关在一个养殖场里,鸡和兔共有1000只,它们共有2700条腿。问这个养殖场里的鸡和兔分别有多少只?如果用列表的方法或画图的方法来解决就太麻烦了。看来我们还有必要继续研究新的解题方法。板书: 鸡兔同笼(2)【新课讲授】
一、假设法:
1.现在请同学们一起来看看例1。出示例1情景和表格。
表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡)
①假设笼子里的8只全是鸡,那么笼子里就只能有多少条腿? ②与实际的腿数不符,腿的条数少算了多少条?
③假设全是鸡,是把4条腿的兔当成2条腿的鸡,这样每只兔就少了多少条腿? ④少算的10条腿是把多少只兔当成了鸡来算? ⑤鸡的只数怎么算?
2.假设全是鸡一共就有16条腿。实际有26条腿,这样笼子里就少了10条腿,为什么会少了10条腿呢?(把兔当了鸡在算,一只兔当成一只鸡算少两条腿,那把几只兔当成了鸡算就会少算10条腿呢?即10里面有几个2就把几兔当成了鸡算,5个2,用五只兔当成了鸡算,这个五就表示应该有5只兔。)
3.上面的过程能用算式表示出来吗?请同学们试试看。(学生试着列算式,请一个学生到黑板上去板演。)4.假设全是鸡:(板书)8×2=16(条)(如果把兔全当成鸡一共就有8×2=16条腿。)26-16=10(条)(把兔看成鸡来算,4条腿的兔当成2条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿。)4-2=2(条)(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)
10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)
8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡。)5.算出来后,我们还要检验算的对不对,谁愿意口头检验。生:3×2+5×4=26(只),5+3=8(只)。师:看来做对了,最后写上答语。6.假设全是兔。
7.我们再回到表格中,看看右起第一列中的0和8是什么意思?(笼子里全是兔。)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿。)(课件出示:把一只鸡当成一只兔算,就多了两条腿。)8.先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌或小组讨论。(学生讨论写算式,然后指名板演。)8×4=32(条)(如果把鸡全看成兔一共就有8×4=32条腿。)32-26=6(条)(把鸡当成兔来算,两条腿的鸡当成4条腿兔算,每只鸡就多了两条腿,6条腿是多算了鸡的腿。)4-2=2(条)(假设全是兔,是把2条腿的鸡当成有4条腿的兔。所以4-2表示是一只鸡当成一只兔多算了2条腿。)
6÷2=3(只)鸡(那要把多少只鸡当成兔来算就会多算6条腿呢?就看6里面有几个2就是把几只鸡当成了兔算,所以6÷2=3就是现在鸡的只数。)8-3=5(只)兔
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这是解答鸡兔同笼问题的一种基本方法。(板书:假设法)
二、列方程解
1.在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)要用列方程的方法就必须找到等量关系式。通过得到的信息能写出哪些等量关系式呢?
(兔的只数+鸡的只数=8;兔的腿数+鸡的腿数=26)(课件出示)
2.这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设其中一个未知数为x,再用含有字母的式子表示出另一个未知数。让我们来试试吧。①如果我们设鸡的只数为x只,根据兔和鸡共有8只。那兔的只数就可以表示成:(8-x)只,因为一只鸡有2条腿,所以x只鸡就共有2x条腿。一只兔有4条腿,(8-x)只兔就有4(8-x)条腿。根据鸡和兔共有26条腿,可列出等式2x+4(8-x)=26。解:设鸡有x只,兔有(8-x)只。2x+4(8-x)=26 ② 如果我们设兔的只数为x只,根据兔和鸡共有8只。那鸡的只数就可以表示成:(8-x)只,因为一只兔有4条腿,所以x只兔就共有4x条腿。一只鸡有2条腿,(8-x)只鸡就有2(8-x)条腿。根据鸡和兔共有26条腿,可列了等式4x+2(8-x)=26。解:设有兔x只,鸡有(8-x)只。4x+2(8-x)=26 4x-2x=26-16 2x=10 x=5 所以鸡有8-5=3只
师:列方程的重点是找出等量关系,设其中一种动物的只数为x,然后根据脚数的等量关系式列出方程;哪种方程好解一点,(设兔的只数为x好解点。)所以我们可以设脚数多的兔为x,在解的时候容易一点。
小结:请同学们回忆一下,我们在解决鸡兔同笼问题时,一般利用什么方法更简单?(假设法或列方程)【课堂作业】
1.课件出示教材第105页“做一做”第1、2题。
运用假设法和列方程解决这两道题,然后说一说解题思路,并交流订正。2.完成教材第106页练习二十四第1~4题。
利用假设法和列方程解决这两道题,然后说一说解题思路,并交流订正。【课堂小结】
本节课你有什么收获?
小结:在用假设法求鸡兔同笼问题时,假设全是“鸡”,则先求出“兔”的只数,反之,假设全是兔,则先求出“鸡”的只数。列方程解决中最主要是找准数量关系式。【课后作业】
1.完成教材第107页练习二十四第5~6题。2.完成练习册本课时的练习。
第2课时 鸡兔同笼(2)例1 假设法: 假设全是鸡: 8×2=16(条)(如果把兔全当成鸡一共就有8×2=16条腿。)26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿。)4-2=2(条)(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)
10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)
8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡。)假设全是兔: 8×4=32(条)(如果把鸡全看成兔一共就有8×4=32条腿。)32-26=6(条)(把鸡当成兔来算,两条腿的鸡当成4条腿兔算,每只鸡就多了两条腿,6条腿是多算了鸡的腿。)4-2=2(条)(假设全是兔,是把两条腿的鸡当成有4条腿的兔。所以4-2表示是一只鸡当成一只兔多算了2条腿。)
6÷2=3(只)鸡(那要把多少只鸡当成兔来算就会多算6条腿呢?就看6里面有几个2就是把几只鸡当成了兔算,所以6÷2=3就是现在鸡的只数。)8-3=5(只)兔 列方程
解:设有兔x只,鸡有(8-x)只。4x+2(8-x)=26 4x-2x=26-16 2x=10 x=5 所以鸡有8-5=3(只)
本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。让学生获得亲自参与探究学习的体验。在教学中,从学生已有的生活经验出发,让学生亲身经历把实际问题抽象成数学模型并进行解释与应用的过程,能激发学生的兴趣,让他们全身心地投入学习。结合本节课的教学内容,教师安排了大量与“鸡兔同笼”有着类似数量关系的问题,让学生会用数学的思维方式去观察、分析周围世界,并且在这现实的、有意义的,富有挑战性的探索活动中,加深对数学知识的理解与掌握,感受到数学的真谛与价值。
第三篇:四年级下册《鸡兔同笼》教学设计
四年级下册《数学广角—鸡兔同笼》教学设计
南马小学 宋赞丽
一、教材分析:
《课标》中指出:数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为简的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。“鸡兔同笼”问题的解法包括:列表法、假设法、方程法等。由于本单元方程解法还没学,因此这里主要引导学生通过猜测、列表、假设等方法来解决问题,培养学生猜测、有序思考及逻辑推理的能力。
二、学情分析:
鸡兔同笼”问题,对于四年级学生而言,学生的逻辑推理能力还不是很强,自主探究解决问题困难较大,思维难度大,学生难以理解。特别是对于那些智力水平属于中下的学生来说更是不易。但是有一些学生在课外书中已经学习了相关的内容。教学这一内容时,学生的程度会参差不齐,有一定难度。因此,教学中教师要充分发挥引领作用,通过情景感受,化繁为简,猜测,列表,画图等方法帮助学生参与探究活动,使学生借助展开想象,促进数学思考,找到问题解决的方法。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。在这节课中,主要采用适时引导和学生小组合作探究相结合的教学方式,让学生在尝试、探索、合作交流中弄懂“鸡兔同笼”问题的基本结构特征,经历不同的方法解决“鸡兔同笼”问题的过程,体会解题策略的多样性,渗透化繁为简的思想,初步形成解决此类问题的一般性策略。
三、教学目标:
知识与技能:了解“鸡兔同笼”问题的结构特点,掌握用列表法和假设法解决问题,初步形成解决此类问题的一般性策略。合理利用假设法,通过化繁为简的思想,帮助学生探索出解决问题的一般方法。
过程与方法:通过自主探索,合作交流,经历用不同的方法解决“鸡兔同笼”问题的过程,体会解题策略的多样性,渗透化繁为简的思想。能用类比思想解决实际问题。
情感态度与价值观:感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
四、教学重点:理解掌握用不同的方法解决问题的不同思路和方法。
五、教学难点:运用不同的方法解决实际问题。
六、教学内容:人教版数学四年级下册P104-105。
七、教具准备:多媒体课件、学习单等。
八、教学过程:
(一)创设有效情景,激活生活经验策略
1.师:同学们,今天老师很高兴能跟大家一起度过一堂生动有趣的课。同学们有没有信心能上好这堂课?真棒!师:请同学们带着你们的信心和热情跟老师一起走进数学广角。我们一起来学习一道我国古代非常有名的数学趣题。
师:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(PPT投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头。从下面数,有94条脚。鸡和兔各有几只?)(PPT展示今意。)
2.师:这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。
师:其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。那么这个流传了上千年的问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。老师再问一次大家:你们有没有信心把这节课的内容学好? 【设计意图】结合课件谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。同时在学生猜测得不到正确结果的情况下,激发学生的探究兴趣,为下一环节引导学生经历“化繁为简”的解题策略做好铺垫。
(二)引导自主探究,感悟数学思想策略 1.探究用猜测列表法解决“鸡兔同笼”问题。
师:为了便于研究,我们可以先从简单的问题入手,来探讨解决这类问题好吗?出示例1
(1)师:请大家读题。思考:从上面数,有8个头,从下面数,有26只脚,分别是什么意思?所求问题是什么?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只? 师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只? 师评:他还发现了隐藏条件,审题真细心。
【设计意图】学生认知的规律是:由易到难。鸡兔同笼原题中的数据比较大,不利于首次接触该类问题的人们进行探究,根据化繁为简的思想,此题有效降低了问题的难度,为解决《孙子算经》中的较难“鸡兔同笼”问题搭好了桥,做了巧妙引领。
(2)列表法
师: 猜想,要求鸡和兔各有几只,咱们不妨猜一猜,好吗?(学生猜)
师:到底谁猜对了呢?我们来验证一下。解决问题要有理有据,不能随意猜。我们应该抓住什么样的条件来验证我们的猜测是否正确?首先要知道鸡和兔一共有8只,其次鸡的腿和兔的腿一共有26只,所以我们必须要把鸡的腿和兔的腿加起来看看等不等于26。这两个条件必须同时满足才是正确答案。
师:现在请同学们拿出你们的表格把你们的猜测的数据按顺序填到表格中并找到正确答案。
学生独立完成表格,之后交流完成情况,出示大屏幕的表格中。(像这样把我们的猜测按一定的顺序列成表格,这种方法叫列表法)。
师:观察这个表格,你找到答案了吗?答案是怎样的。【设计意图】列举法是学生最容易掌握的运算方法,这里就运用到了数学的枚举思想。用猜测尝试去作图验证,实际就是用枚举法来解决问题。虽然麻烦,但比较直观,它是掌握假设法的前提,本教学环节是下一教学环节的巧妙过渡。当头和脚的只数较多时,用列表法还是不容易找出答案,我们还有研究新方法的必要。猜想法和列表法都是解决问题的策略,但都有其局限性。教学中,既让学生理解、掌握和运用了这些策略,又未局限于这些基本的策略;既体现了解决问题策略的多样化,又通过表格规律的发现,为探索新策略奠定了不可缺少的基础;教师既关注了学生解决问题的结果,更关注了学生解决问题的过程与方法,并在不断提升学生解决问题的技能技巧。
2.探究用假设法解决“鸡兔同笼”问题。
师:列表的方法可以解决鸡兔同笼问题,但是如果数据很大,会发生什么情况?(繁琐)。有没有其他方法可以解决?请同学们四人一小组探讨一下还有没有其他方法可以解决。交流探讨结果。
(1)假设八只全是鸡
师:那么我们再来试一试。假设8只全是鸡,请同学们试着做。
生:8×2=16(只)脚。
师:题意要求一共有26只脚。
生:26-16=10(只)脚。
师:少了10脚。那么少的是谁的脚呢?
生:少了兔的脚。
生:4-2=2(只)脚。10÷2=5(只)兔。
生:8-5=3(只)鸡。(假设法A)
师:可能还有些同学有点迷糊,我们用画图法直观理解一下。
1)请画8个圆表示鸡,每只鸡2只腿,一共有16只脚。
2)还差10只脚,每只鸡再加两只脚变成兔子,共有5只鸡变成5只兔子。
3)最后剩下的3只就是鸡。
【设计意图】通过生的讲解与老师的精要提示,大部分学生肯定已经初步掌握了假设法,但是所有的学生都准确掌握方法且明白算理,还需要一个强化的过程。在这里用到了画图法是打开其他学生发散思维的钥匙。画图法直观形象,对其他学生的启发作用很大。此法貌似画图法,其实质仍然是列举法。
(2)假设八只全是兔
我假设8只全是兔。4×8=32.。(师在32后添加只脚)32-26=6(只脚)。(师:多了6只脚)。4-2=2(只脚)
师:为什么用4-2?
生丙:因为兔子多了,兔子有4只脚,鸡有2只脚。6÷2=3(只鸡)
师:等等,老师又不懂了!为什么用6÷2。
生丙:因为我多假设了兔,多了6只脚,这6只脚是鸡的。所以用6÷2=3(只鸡)
师:我还是没有听明白。请哪位同学给我再说说。
生丁自愿起来说清算理。
师故作明白状:哦,原来是多假设了兔的只数,所以多出来的脚应该是鸡的,所以要这样。
生丙继续:8-3=5(只)。因为兔子多算了3只,所以用8减去3等于5,答案是兔子有5只,鸡有3只。(假设法B)
师:现在大家清楚了吗?再引导学生回顾一遍。先怎么想?假设全是鸡,用总脚数减去鸡的脚数求出它们的相差数是10,再用相差的数除以每只鸡相差的2只脚,就得到了兔的只数,最后用总只数减去兔的只数就是实际鸡的只数。
师:你们从以上两种假设法中发现了什么?
假设全是鸡,先得到兔子的只数。
假鸡先得兔,假兔先得鸡。
师总结:假甲先得乙,假乙先得甲。
师:这种方法好吗?给这种方法起个名字,叫什么好呢?(假设法)。
【设计意图】假设法是本节课教学的难点。我在学生讲述假设法A时,故布疑团,循循善诱,把学生的思考方法与过程准确无误地呈现在全体学生面前,在展示关键步骤时,我扮演一位导演,“我还是没有听明白。请哪位同学给我再说说。”把教者需要给学生重点强调的地方,假借学生的口再重点反馈给其他学生。师故作明白状:“哦—原来是多假设了兔的只数,所以多出来的脚应该是鸡的,所以要这样。”看似是我的自言自语,其实是把此种方法的关键强调给学生,引起学生的注意。所以此步骤就是对学生掌握运用假设法的再一次强化,让所有的学生都掌握方法,并明白算理。教师没有一句是在讲解,都是学生在思考展示、相互启发、自我教育。
(3)小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
(4)师:现在我们能用上面的方法解决古人流传下来的问题了吗? 出示:鸡兔同笼,有35个头,94只脚,鸡兔各有几只? 学生独立自主完成。师(在学生运用假设法、例举法解决问题之后):解决“鸡兔同笼”,哪种方法比较简便? 生:假设法比较简便,例举法比较麻烦。
【设计意图】与教学最初设置的悬念遥相呼应,在学生进一步运用学习的新方法解决问题后,引导学生通过比较,找出最简便的解决问题的方法。用最简单的方法解决数学问题,永远是数学教学的真谛。这就是数学中化繁为简的思想。
(5)小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。
【设计意图】学生结合具体算法,先初步归纳总结出运用假设法解决鸡兔同笼问题的一般规律,教师再将之完善,归纳升华为运用解决鸡兔同笼这一类问题的一般规律。让学生发散思考、加深理解。
(三)突出数学运用,强化渗透应用策略
巩固练习:课本105页“做一做”的1、2题。
【设计意图】通过化繁为简的思想,帮助学生探索出解决问题的一般方法。学习的目的是为了应用。此环节有两个妙处:一是让数学知识来源于生活,又运用于生活,提高学生的应用能力与学习数学的兴趣;二是让学生能够认识“鸡兔同笼”这一类问题,掌握“鸡兔同笼”问题的变式,达到举一反三的目的。
(四)强化总结反思,发现数学规律策略
师:通过今天的学习,你有哪些收获? 你们对自己这节课还有什么问题?
(五)作业布置:课本106页练习二十四第一题
九、板书设计:
鸡兔同笼
1.猜测法 2.列表法 3.假设法
A、假设八只全是鸡 先得到兔的只数
8×2=16(只)26-16=10(只)4-2=2(只)10÷2=5(只)兔 8-5=3(只)鸡
B、假设八只全是兔 先得到鸡的只数
4×8=32(只)32-26=6(只)4-2=2(只)6÷2=3(只)鸡 8-3=5(只)兔
第四篇:四年级下册《鸡兔同笼》教学设计
四年级下册《鸡兔同笼》教学设计
四年级下册《鸡兔同笼》教学设计
教学内容:人教版《义务教育教科书.数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。
教材分析:“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
教学目标:
1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。
3.在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。
教学重点:
1.理解掌握解决问题的不同思路和方法。
2.学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。
教学难点:理解掌握假设法,能运用假设法解决数学问题。
教学具准备: 课件、表格
教学过程:
一、导入
师生谈话导入新知
(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。)
二、探究新知
1.质疑:提问:
(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?
(2)鸡和兔相比:什么比什么多?多多少?
(3)课件出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?
(4)尝试解决,交流想法;
(5)课件出示交换已知条件以后的题目。
(设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。)
2.教学例1
(1)出示例题1。
师:请同学们读一读,和前面的题目一样吗?什么地方不一样?
请同学们大胆的猜一猜鸡兔各有几只?猜的时候要注意什么?(共有8个头)
(设计理念:通过对比两题的已知和未知条件的不同培养学生认真审题的良好学习习惯,同时也为后面的猜测、有序整理、验证做好铺垫。)
(2)学生自由猜测。
师:大家的猜测有很多种,听起来有点乱,我们按顺序整理一下(出示表格)。
(3)验证猜想。
(4)观察发现规律。(5)总结概括:在数学中这种方法叫列表法。(板书)。
(设计理念:通过猜测让学生感知在解决类似问题时这是最基础的方法,然后通过列表法进行验证让学生感知有序整理可以找到问题的答案。最后通过观察、交流探讨发现鸡兔数量的变化引起腿数变化的规律,这样也积累了学生解决问题的经验。)
质疑:如果遇到鸡兔数目多的时候,这种方法行吗?怎么办呢?
3.探讨假设法:
a.假设全是兔。
1.师以童话故事的形式引入全是兔的情境。
2.集体探究,引导交流。
b.假设全是鸡。
1.师再次继续童话故事引入全是鸡的情境。
2.小组独立探究交流假设全是鸡的计算方法。
3.指名小组展示并叙述计算过程。
4.小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)
5.延伸:其实解决“鸡兔同笼”的问题还有其它方法,同学们如果有兴趣的话下来以后可以了解一下。
(设计理念:通过情境假设,让学生感知数学的趣味性,提高了学生探究新知的兴趣,也为假设法的探究增添了趣味。同时,学生又经历了自主探究、合作交流的学习过程,体验了解决问题的方法的多样性。为后面灵活的解决问题打下了基础。)
三、练习巩固
课件出示练习题。
四、课后总结
(设计理念:学生通过练习一方面加强了对列表法、假设法的巩固,另一方面学生运用所学知识灵活的解决问题,增强了学生的应用意识;通过小结收获整理课堂新知,培养学生归纳总结的能力。)
板书设计:
鸡兔同笼
1.列表法
2.假设法
第五篇:四年级下册鸡兔同笼教学设计
《鸡兔同笼》教学设计
【教学内容】四年级下册教科书103-104页内容及相关练习。【教材分析】
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。解决这类问题的方法包括:列表法、假设法、方程法等。教材把这一问题安排在四年级,学生还没有学过方程,因此这里主要引导学生通过猜测、列表、假设等方法来解决问题,培养学生猜测、有序思考及逻辑推理的能力,体会假设法的一般性。在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。【学情分析】
“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。“列表法”是学生比较容易接受的,也就是通过有序猜测和计算得出结论,“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理解,拓宽学生思维。
【教学建议】
1、教学中要注意渗透化繁为简的思想。
2、引导学生探索解决问题的策略和方法。
3、介绍有关鸡兔同笼问题的“趣解”,既激发学习的兴趣,又可以拓宽学生的思路。【教学目标】
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,了解列表法、假设法等解决问题的方法,在解决问题的过程中培养逻辑推理能力,增强应用意识和实践能力。
3、了解 “鸡兔同笼”问题解决的多种有趣方法,体验问题解决方法多样化。【教学重点】经历自主探究解决问题的过程,掌握运用列表法、假设法解决“鸡兔同笼”问题。【教学难点】理解掌握假设法,能运用假设法解决数学问题。【教学过程】
一、情境导入。
今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题,请看屏幕:(课件出示以下情境图)
师:你能说说这道题是什么意思吗?(说明:雉指鸡)让学生说说题意,然后出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”问题。(板书课题)有的同学已经在计算了,说说看鸡有多少只?兔有多少只?
【设计意图】结合课件呈现的情境图谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,同时在学生猜测得不到正确结果的情况下,激发学生的探究兴趣,为下一环节引导学生经历“化繁为简”的解题策略做好铺垫。
二、新知探究。
(一)感受化繁为简的必要性。刚才大家猜了好几组数据,但是我们验证后发现都不对,为什么这么多人都没有猜对呢?(数太大了)你们觉得什么情况下能够猜对?(数小一些)那咱们就换一道数小一些的。(课件出示例1)
笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26只脚。鸡和兔各有几只?
(二)自主尝试解决问题。
我们一起来看看在同一个笼子里的鸡和兔给我们带来了哪些数学信息? 找到题中信息:①鸡和兔共8只。②鸡和兔共有26条腿。③鸡有2条腿。④兔有4条腿。在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?
怎样才能确定猜测的结果对不对?(把鸡的腿和兔的腿加起来看是不是等于(把鸡的腿和兔的腿加起来看等不等于26)
这回给你们一点时间,把你猜测的数据在练习本上列个表,算一算,想一想:你算的对吗?(出示表格)
这回给你们一点时间,把你猜测的数据在练习本上算一算,想一想:你算的对吗?
(三)交流体会,掌握问题解决策略。
1、经历列表法的形成过程。
(1)经过同学们的研究,现在知道鸡和兔各有几只?
都谁和他的结果一样?你们有把握这次猜对了吗?怎么验证一下?
(2)说说你是怎样得出正确答案的?(引导学生说说解决问题的思路)预设学生思路:
●从鸡8只,兔0只开始推算。●从鸡0只,兔8只开始推算。
前两种情况可能做了充分预习,按照一定的顺序,列举出了所有情况,或者到得到正确答案为止。对这种有序思考的方法要给予肯定。
●直接猜出鸡有3只,兔有5只,验证后发现脚数正好是26只。
这种情况属于正好一下猜对了,教师提示不一定每次都能够猜得这么准。●从鸡有4只,兔有4只开始推算。
这种情况猜测的次数比较少,对于数据比较大的时候适用。
●有的同学还可能发现了每增加一只兔,减少一只鸡,脚就增加2只,这样就可以一下子算出需要增加几只兔,直接找到正确答案。这正是假设法的思路。如果有同学有这一发现,教师要及时引导学生表述准确,为后面的假设法学习做好铺垫。(3)小结收获。从刚才的列表情况看,你觉得怎样列表比较好?(4)运用列表法解决情境图中的鸡兔同笼问题。自主解决,交流方法并订正结果。
如果没有出现上面的第五种思路,教师小结可以提出。
小结:鸡兔的总只数不变,多一只兔子就会少一只鸡,增加两只脚;多一只鸡就会少一只兔子,减少两只脚。运用这一规律正好是我们解决这一问题的另一种方法。
2、探究假设法。
(1)问题预设:刚才大家找到了“鸡兔同笼”问题的解决办法,讨论中还发现了一种更简单的方法,如果运用这种推理方法,怎么解决呢?
(2)引导学生交流:发现假设成都是鸡或者都是兔,计算起来会更简便。交流时重点让学生说说每一步的意思。先假设成都是鸡,着重说说推理的过程。
同样,让学生说说,如果假设成都是兔,是什么情况? 小结收获。
(3)运用假设法解决情境图中的“鸡兔同笼”问题,再汇报交流。
【设计意图】让学生在自主尝试中找到用列表法解决“鸡兔同笼”问题的方法,引导学生有序思考,组织学生有层次地汇报和交流,让学生在这一过程中体会到:根据表中总脚数与题中数据的差,来调整数据,对假设法的探究起到了铺垫作用,同时对假设法的理解也更加深刻。
三、练习强化,深化认识。针对性练习,完成做一做第一题。独立完成,再集体交流订正。
四、阅读资料,丰富认识。
同学们,你们知道古人是怎样解决“鸡兔同笼”问题的吗?阅读105页的资料。
古人真是很聪明啊!今人更了不起,又发现了很多关于“鸡兔同笼”问题的趣解,你们想了解吗?介绍几种。
1、假设所有的鸡和兔子都训练有素,然后你拿着一个口哨,吹一下,所有动物收起一只脚,吹两下,收起两只脚,好了,现在鸡一屁股坐在地上了,小兔都“作揖”了,也就是还有两只脚站着,总脚数减去两倍的头的个数再除以二就是兔子的只数了。
2、假如鸡的翅膀也着地,也有四只脚,那么总脚数就是总只数乘4,减去实际的脚数,就是翅膀的数,翅膀都是鸡的,再除以2,就是鸡的只数。
五、谈话式小结。
同学们,今天你有什么收获?每种方法都明白了吗?你最喜欢哪种方法? 提示学生做题时要根据题目选择合适的方法来解决问题。
【设计意图】通过完成做一做的第一题,巩固解决“鸡兔同笼”问题的基本方法,了解古时候的解法,使学生对我国的古代文化产生浓厚的兴趣,最后的小结梳理一下几种方法,引导学生反思学过的方法,为以后的学习奠定基础。【板书设计】 鸡兔同笼
列表法
鸡 8 3
0
兔
0 1 2
5
脚 16 18 20 22 24 26 28 30 32 假设法
都是鸡: 脚:8×2=16(只)少了:26-16=10(只)兔:10÷(4-2)=5(只)鸡:8-5=3(只)
都是兔: 脚:8×4=32(只)多了:32-26=6(只)鸡:6÷(4-2)=3(只)兔:8-3=5(只)