“截长补短法”证明线段的和差问题

时间:2019-05-12 16:50:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《“截长补短法”证明线段的和差问题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《“截长补短法”证明线段的和差问题》。

第一篇:“截长补短法”证明线段的和差问题

“截长补短法”证明线段的和差问题典例分析 河大附中 桑静华

线段的和差问题常常借助于全等三角形的对应边相等,将不在一条直线的两条(或几条)线段转化到同一直线上.实际上是通过翻折构造全等三角形,目的是为了转移的边、角和已知条件中的边、角有机的结合在一起.在无法进行直接证明的情形下,利用“截长补短”作辅助线的方法常可使思路豁然开朗,问题迎刃而解。CED例

1、如图,已知AC∥BD、EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD•相等吗?请说明理由.

A

B 分析:证明一条线段等于另两条线段之和(差)常见的方法是:

(1)在长线段上截取一条线段等于短线段,再证明余下的线段等于另一条短 线段,这种方法叫“截长法”

(2)在其中一条短线段的延长线上截取另一条短线段,再证明它们与长线段相等,这种方法叫“补短法”.

FCEDC5E6D1A25634F(1)BA1234

证法一:如图(1)在AB上截取AF=AC,连结EF. 在△ACE和△AFE中

(2)B ACAF 12

AEAE ∴△ACE≌△AFE(SAS)

∵,∴,又,∴∠6=∠D 在△EFB和△BDE中

6D34 BEBE ∴△EFB≌△EDB(AAS)∴FB=DB ∴AC+BD=AF+FB=AB 证法二:如图(2),延长BE,与AC的延长线相交于点F ∵ ∴F4,又∵34 ∴∠F=∠3 在△AEF和△AEB中

F 312

AEAE ∴△AEF≌△AEB(AAS), ∴AB=AF,BE=FE 在△BED和△FEC中

56BEFE 4F ∴△BED≌△FEC(ASA)∴BD=FC, ∴AB=AF=AC+CF=AC+BD. 例

2、如图,在△ABC中,∠B=2∠C,A ∠BAC的平分线交BC于D,求证:AB+BD=AC.

分析1: 因为∠B=2∠C,所以AC>AB,可以在AC上取一点E,使得AB=AE,B

D 构造△ABD≌△AED,把AB边转移到AE上,BD转移到DE上,要证AB+BD=AC. 即可转化为证AE+BD=AE+EC,即证明BD=EC.

C

证明:在AC上取一点E,使AB=AE,连结DE.

在△ABD和△AED中,ABAEBADDAE ADADA

∴△ABD≌△AED(SAS).

∴ BD=DE,∠B=∠AED.

又∠AED=∠EDC+∠C=∠B=2∠C,B

∴ ∠EDC=∠C.

∴ ED=EC.

∴ AB+BD=AC. 分析2: 因为∠B=2∠C,所以AB<AC,可以在AB的延长线上取一点E,使得AE=AC,构造△AED≌△ACD,把AC边转移到AE上,DC转移到DE上,要证AB+BD=AC. 即可转化为证AB+BD=AB+BE,即证明BD=BE. B 证明:在AB的延长线上取一点E,使AC=AE,连结DE. 在△AED和△ACD中,AEACBADDAC

ADADE

E

D C

A

D C

∴ △AED≌△ACD(SAS).∴∠C=∠E.

又∠ABC=∠E+∠BDE=2∠C=2∠BDE,∴ ∠E=∠BDE.∴ BE=BD.

∴ AB+BD=AE=AC. A 分析3:若延长DB到点E,使得AB=BE,有AB+BD=ED,只要证出ED=AC即可. 证明:延长DB到点E,使AB=BE,连结AE,E B D 则有∠EAB=∠E,∠ABC=∠E+∠EAB=2∠E.

又∠ABC=2∠C,∴ ∠E=∠C. ∴ AE=AC.

又∠EAD=∠EAB+∠BAD=∠E+∠DAC=∠C+ ∠DAC=∠ADE,C ∴ AE=DE.

∴ AB+BD=EB+BD=ED=AE=AC.

学以致用:

1、如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC.求证:∠BAD+∠BCD=180°

ADB

C

第二篇:专题:线段的和差问题

专题:线段和差问题

线 段 的 和 差 问 题

几何中有许多题目要证明一线段等于另两线段的和(或差),解决这类问题常用的方法大体有五种,即,利用等量线段代换、截短法、接长法、利用面积证明、旋转等五种。

一、利用等量线段代换:证一线段等于另两线段的和(或差),只需证这条全线段的两部分,分别等于较短的两条线段,问题就解决了。

例1 已知:已知:如图,在△ABC中,∠B和∠C的角平分线BD、CD相交于一点D,过D点作EF∥BC交AB与点E,交AC与点F。求证:EF=BE+CF

例2 已知:如图,在△ABC中,∠ABC的平分线与∠ACB相邻外角∠ACG的平分线相交于D,DE∥BC交AB于E,交AC于F.求证:EF=BE-CF.AEFDB

CG

二、截长法(在第三条线段上截取一段等于第一条线段,然后证明余下的线段等于第二条线段)

三、补短法(延长一条线段,作出两条线段的和,然后证明这条线段等于第三条线段)

专题:线段和差问题

例3 如图所示,已知三角形ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.四、旋转法:通过旋转变换,而得全等三角形是解决正方形中有关题目类型的一种技巧。

例4 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,求证:EF=BE+FD

专题:线段和差问题

五、等积变换法:利用三角形的面积进行证明。

例5 已知:如图,已知在△ABC中,AB=AC,BD为AC边上的高,如果在BC上取一点F,过F作FG⊥AB于G,作FH⊥AC于H.求证:FG+FH=BD.练习:

1、已知:如图,△ABC中,∠BAC=90o,AB=AC,AE是过点A的一条直线且B,C在AE的异侧,BD⊥AE于D,CE⊥AE于E。求证:BD=DE+CE.ADBCE

2、如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于 D.求证:AD+BC=AB. 专题:线段和差问题

3、如图,已知在△ABC中,∠BAC为直角,AB=AC,BD平分∠ABC,CE⊥BD于E.求证CE=1/2 BD

4、已知:如图,在△ABC中,∠A=90º,D是AC上一点,BD=CD,P是BC上任一点,PE⊥BD于E,PF⊥AC于F.求证:PE+PF=AB.

第三篇:几何证明中的截长补短法

平面几何中截长补短法的应用 授课内容:湘教版九年级上册《证明》授课教师:张羽茂 授课时间:

讲评内容:证明中的“截长补短法”。

讲评目标:

1、通过讲评,查漏补缺,解决几何证明中截长补短法的应用。

2、规范学生证明过程的书写格式。

3、通过讲评提高审题能力,总结解题方法和规律。讲评重点:规范学生证明过程的书写格式

讲评难点:通过讲评,查漏补缺,解决图形中截长补短法的应用。教具准备:黑板、学生作业本

讲评过程:

一、谈话导入

1、公布全班的整体成绩。

2、表扬进步的学生。

二、讲评

如图,在△ABC中,AD平分∠BAC,∠

B=2∠C,求证:AB+BD=AC.方法一:(截长法)

方法二:(补短法)

三、课堂练习

1.已知:如图,在正方形ABCD中,AB=4,AE平分∠BAC.求AB+BE的长。

四、课后拓展

1.正方形ABCD中,点E在CD上,点F在BC上,∠

EAF=45。求证:EF=DE+BF。

五、板书设计

六、教学反思与总结

截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想。

截长:1.过某一点作长边的垂线

2.在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。

补短:1.延长短边

2.通过旋转等方式使两短边拼合到一起。

教师工作:

采集信息-----归类点评、指导纠借-----适时检测、落实纠错 学生操作:

作业分析---个体纠借---集体纠错---针对补偿---(依据答案)主动纠错---思考领悟---针对纠错---主动补偿---消除薄弱

教学流程:

作业分析——个体纠错——集体纠错——针对补偿——课堂小结。

第四篇:证明(二)中线倍长法和截长补短法[A.B]

周应坤数学(A.B班共用)电话:***

几何证明-常用辅助线姓名:

(一)中线倍长法:

例1、求证:三角形一边上的中线小于其他两边和的一半。

已知:如图,△ABC中,AD是BC边上的中线,求证:AD ﹤

分析:要证明AD ﹤1(AB+AC)21(AB+AC),就是证明AB+AC>2AD,也就是证明两条线段之和大于第三条线段,而我们只能用“三

2角形两边之和大于第三边”,但题中的三条线段共点,没有构成一个三角形,不能用三角形三边关系定理,因此应该进行转化。待证结论AB+AC>2AD中,出现了2AD,即中线AD应该加倍。

证明:延长AD至E,使DE=AD,连CE,则AE=2AD。

在△ADB和△EDC中,AD=DE

∠ADB=∠EDC

BD=DCC∴△ADB≌△EDC(SAS)∴AB=CE

又在△ACE中,AC+CE>AE∴AC+AB>2AD,即AD ﹤1(AB+AC)2

小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。它可以将分居中线两旁的两条边AB、AC和两个角∠BAD和∠CAD集中于同一个三角形中,以利于问题的获解。

课题练习:ABC中,AD是BAC的平分线,且BD=CD,求证AB=AC

例2: 中线一倍辅助线作法

ABC中

方式1: 延长AD到E,是BC边中线使DE=AD,连接BE方式2:间接倍长

作CF⊥AD于F,延长MD到N,作BE⊥AD的延长线于使DN=MD,连接连接CD例3:△ABC中,AB=5,AC=3,求中线AD的取值范围

例4:已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE

课堂练习:已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF

B

例5:已知:如图,在ABC中,ABAC,D、E在BC上,且DE=EC,过D作DF//BA交AE于点F,DF=AC.求证:AE平分BAC

A

F

CBE

D

第 1 题图

课堂练习:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE

作业:

1、在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。试探究线段AB与AF、CF之间的数量关系,并证明你的结论

2、已知:如图,ABC中,C=90,CMAB于M,AT平分BAC交CM于D,交BC于T,过D作DE//AB交BC于E,求证:CT=BE.A

M

B

E

T

C

3:已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF

4:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE5、在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。试探究线段AB与AF、CF之间的数量关系,并证明你的结论

(二)截长补短法 例1.已知,如图1-1,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC.A

D

求证:∠BAD+∠BCD=180°.分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转

化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,B可通过“截长补短法”来实现.证明:过点D作DE垂直BA的延长线于点E,作DF⊥BC于点F,如1-2 ∵BD平分∠ABC,∴DE=DF,AE

图1-

1C

在Rt△ADE与Rt△CDF中,

DEDF

ADCD

B

F

D

∴Rt△ADE≌Rt△CDF(HL),∴∠DAE=∠DCF.又∠BAD+∠DAE=180°,∴∠BAD+∠DCF=180°,即∠BAD+∠BCD=180° 例2.如图2-1,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB.图1-

2C

D

A

求证:CD=AD+BC.BE

C

图2-1

例3.已知,如图3-1,∠1=∠2,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD.求证:∠BAP+∠BCP=180°.B例4.已知:如图4-1,在△ABC中,∠C=2∠B,∠1=∠2.求证:AB=AC+CD.B

A

P

N

D

C

图3-1

A2

D

C

作业:

1、已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.2、五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:AD平分∠CDE

A

图4-

1AD

F

B

C

E

BE

C

D

A

(三)其它几种常见的形式:

1、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。例:如图1:已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF。EF

C

BD

12、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。

例:如图2:AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF

A

EF

C

BD

2M

练习:已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向形外作等腰直角三角形,如图4,求证EF=2AD。

E

F

A

BDC

43、延长已知边构造三角形:

E

例如:如图6:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求证:AD=BC

B A

DC

图64、连接四边形的对角线,把四边形的问题转化成为三角形来解决。

AD

例如:如图7:AB∥CD,AD∥BC求证:AB=CD。

CB

图75、有和角平分线垂直的线段时,通常把这条线段延长。

例如:如图8:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E。求证:BD=2CE

6连接已知点,构造全等三角形。

DA例如:已知:如图9;AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。

BC

图10

1九、取线段中点构造全等三有形。

例如:如图10:AB=DC,∠A=∠D 求证:∠ABC=∠DCB。DA

B MC

图10

第五篇:初一数学教案 线段的和差

第二课时

一、教学目标

1、理解两点间距离的感念和线段中点的感念及表示方法

2、学会线段中点的简单应用

3、借助具体情境,了解“两点间线段最短”这一性质,并学会简单应用

4、培养学生交流合作的意识,进一步提高观察、分析和抽象的能力

二、教学重点

线段中点的感念及表示方法

三、教学难点 线段中点的应用

四、学用具: 投影片、刻度尺

五、学过程:

(一)习回顾:线段长短比较的两种方法

(二)感念分析

1、线段性质和两点间距离 “想一想”

出示课本图片,从上面的两个事例中,你能发现有什么共同之处?(可让学生稍作讨论后回答)学生:选择直路,路程较短

让学生在黑板上画出图7-18(见课本),从A到B的几种路线,并用红色粉笔标出最短的路线

教师:你是怎样比较出最短的路线的? 学生:利用观察、测量 根据学生的画图,师生共同总结出线段的性质: “两点之间的所有连线中,线段最短”

两点之间的距离:两点之间的线段的长度叫做这两点之间的距离。要强调两点之间的线段的长度叫两点间的距离,而不是两点间的线段,线段是图形,线段的长度是数值。

教师:“两点间线段最短”的性质在实际生活中应用较广,你能否举一些例子?

学生:从A到B架电线,总是尽可能沿着线段AB架设等。

2、线段的中点

请按下面的步骤操作:(学生做)①

在一张透明纸上画一条线段AB ②

对折这张纸,使线段AB的两个端点重合 ③

把纸展开铺平,标明折痕点C

如图1:

ACB

教师:线段AC和线段BC相等吗?你可以用是么方法去说明? 学生1:相等。用刻度尺测出它们的长度,再比较 学生2:相等。用圆规测量比较

教师:象图1这样,点C把线段AB分成相等的两条线段AC与BC,点C叫做线段AB的中点。用几何语言表示:

AC=BC=1/2AB(或AB=2AC=2BC)

教师:刚才用折纸的方法找出AB的中点C,你还能通过什么方法得到中点C呢? 学生:用刻度尺去量出AB的长,再除以2,就得到点C(让学生板演)填空:如图2 已知点是线段的中点,点是线段的中点,ADCB

(1)AB=__ BC

(2)BC= __ AD(3)BD=_____AD “想一想”如图3,点P是线段的中点,点C、D把线段AB三等分。已知线段CP的长为1.5cm,求线段AB的长。如图3:

ACPDB

可让学生讨论后再作答(教师可作如下分析:如果能得到线段CP与线段AB之间的长度比,就能求出线段AB的长。)由学生回答,教师板书完成。

解:∵

点P把线段二等分,∴

AP=PB=1/2AB ∵

点C、D把线段AB三等分,∴

AC=CD=DB=1/3AB ∴

AP-AC=1/2AB-1/3AB=1/6AB, 即

CP=1/6AB ∴

AB=6CP=6×1.5=9cm

即AB的长为9cm 课内练习P172 1、2及 P17

谈谈收获:①

两点间距离的感念

线段的性质“两点间线段最短”及应用

线段的中点的感念及简单的应用 作业: 板书:

1、线段的性质:

例解:

2、两点之间的距离:

3、线段的中点:

(板演处)

下载“截长补短法”证明线段的和差问题word格式文档
下载“截长补短法”证明线段的和差问题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    和差问题

    和差问题 志向是天才的幼苗,经过热爱劳动的双手培育,在沃土里将成长为粗壮的大树,不热爱劳动,不进行自我教育,志向这根幼苗也会连根枯死。———书霍姆林斯基 方法:画线段图。 公......

    和差问题

    和差问题 教学目标: 1、通过直观演示的教学,让学生理解和差问题的特点及其解题思路,学会解决身边的数学问题。 2、了解数学在现实生活中的作用,体会学习数学的重要性. 教学重点:......

    作差法教案

    用作差比较法证明不等式 教学目标 1.理解,掌握比较法证明不等式. 2.提高分析、解决问题能力. 3.锻炼学生的思维品质(思维的严谨性、灵活性、深刻性).教学重点与难点: 求差比较法证明......

    解析法证明平面几何经典问题--举例

    五、用解析法证明平面几何问题----极度精彩!充分展现数学之美感!何妨一试?例1、设MN是圆O外一直线,过O作OA⊥MN于A,自A引两条直线分别交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.......

    和差问题教案

    和差问题教案 教学目标 1.会判断什么样的应用题属于和差问题.已知两个数的和以及两个数的差,要分别求这两个数就属和差问题,并掌握和差问题的特性,为以后继续学习和倍、差倍问题......

    和差问题、和倍问题、差倍问题(实用)

    第三、四讲:和差问题、和倍问题、差倍问题 教学目标:通过本次课的的学习,正确运用和差问题、和倍问题、差倍问题的有关公式,理清题意,解决实际问题。 教学重点:分清类型,正确运用不......

    和差问题(四年级)

    和差问题 【知识提要】 和差问题是已知大小两个数的和与两个数的差,求大小两个数各是多少的应用题。 解决和差问题的关键,是要搞清楚两个数的和与差,而这个“和”与“差”往往......

    和差问题说课稿

    用画图策略解决和差问题 尊敬的各位考官大家上午好! 我今天说课的课题是:用画图策略解决和差问题。下面我将从教材、教法学法、教学过程和板书设计五个方面对本节课的内容进行......