第一篇:沪科版九年级数学上22.2.2相似三角形的判定教学设计
《相似三角形的判定
(二)》教学设计
一、教学目标
1.初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法.
2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.
3.能够运用三角形相似的条件解决简单的问题.
二、重点、难点
1.重点:掌握两种判定方法,会运用两种判定方法判定两个三角形相似.
2.难点:(1)三角形相似的条件归纳、证明;
(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.
三、教学过程 课堂引入 1.复习提问:
(1)两个三角形全等有哪些判定方法?(2)我们学习过哪些判定三角形相似的方法?
BCB'C'AA'(3)全等三角形与相似三角形有怎样的关系?
(4)如图,如果要判定△ABC与△A’B’C’相似,是不是一定需要一一验证所有的对应角和对应边的关系? 有我们前面学过的预备定理知道:
三角形相似的判定方法 1 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
2.(1)提出问题:首先,由三角形全等的SSS判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?(2)带领学生画图探究;(3)【归纳】
三角形相似的判定方法2 如果两个三角形的三组对应边的比相等,那么这两个三角形相似.
3.(1)提出问题:怎样证明这个命题是正确的呢?(2)教师带领学生探求证明方法.
4.用上面同样的方法进一步探究三角形相似的条件:
(1)提出问题:由三角形全等的SAS判定方法,我们也会想如果一个三角形的两条边与另一个三角形的两条边对应成比例,那么能否判定这两个三角形相似呢?
(2)让学生画图,自主展开探究活动.(3)【归纳】
三角形相似的判定方法3 两个三角形的两组对应边的比相等,且它们的夹角相等,那么这两个三角形相似.
四、例题讲解
例(补充)已知:如图,在四边形ABCD中,∠B=∠ACD,AB=6,BC=4,AC=5,CD=71,求
2AD的长.
分析:由已知一对对应角相等及四条边长,猜想应用“两组对应边的比相等且它们的夹角相等”来证明.计算得出ABCD,结合∠
CDACB=∠ACD,证明△ABC∽△DCA,再利用相似三角形的定义得出关于AD的比例式CDAC,从而求出AD的长.
AD解:略(AD=25).
4AC
五、课堂练习1.教材P79 2.如果在△ABC中∠B=30°,AB=5㎝,AC=4㎝,在△A’B’C’中,∠B’=30°A’B’=10㎝,A’C’=8㎝,这两个三角形一定相似吗?试着画一画、看一看?
3.如图,△ABC中,点D、E、F分别是AB、BC、CA的中点,求证:△ABC∽△DEF.
六、布置作业 课后习题3,4,5.七、教学反思
为突破重点,分解难点,我选择题分组教学的方式,让学生对一类例题求解,然后引导学生归纳他们的共同特征,建构起他们的知识结构:一条直线上有三个角相等,就能证明左右两个三角形相似,还能得到一个有用的等积式。让学生体验与感悟演绎与归纳的数学思想。例一通过等边三角形翻折问题,是引入教学,例二通过矩形中直角的翻折,再次引发学生的认知冲突,诱发他们思考两道题是同类型的,联系紧密,区别只是三个等角的度数不相同,他们可能会猜测:这种相似关系与角的度数无关。让学生体验化归思想,让他们在复杂图形的分析中,把条件转化,向已经熟练掌握的知识转移,从而使问题得以解决。在教学后,我觉得有很多需要改进的地方。教学的方式过于单一,学生的参与面较低。主要是我没有调动好他们的情绪,说明我对课堂的驾驭能力还需要提高。教学内容还有待于进一步改进。尽管这是一堂题分组教学的实践课,也较好地完成了教学目标。但站在更高的角度来思考,反映出我还有些急燥,应该把这个题型至少要细分为基本图形的形成、基本图形的巩固、基本图形的拓展应用三个层次,用2-3课时的时间逐步推进教学,效果可能会更好。
第二篇:《相似三角形的判定》教学设计
《相似三角形的判定》教学设计
一.教学目标
1.使学生在经历探究相似三角形判定方法的过程中,初步掌握相似三角形的判定定理,理解它的证明方法,初步会运用相似三角形的三个判定定理来解决有关问题.
2.在探究判定方法的过程中,提高学生运用类比方法,猜想命题,再加以证明的研究问题的能力以及增强用化归思想解决问题的意识.
3.通过动手实践、观察、猜想、归纳、等数学探究活动,给学生创造成功的机会,使他们爱学、乐学、会学,同时培养学生勇于探索、积极合作的精神.二.教学重点和难点
重点:(1)探索两个三角形相似的条件的过程;(2)相似三角形判定定理的理解与初步应用。
难点:相似三角形的判定定理的证明. 三.教学方法:自主探究与小组合作相结合. 四.教学手段:多媒体辅助教学.
五.教学过程:
请学生出示课前按要求剪好的三角形,教师利用已知三角形模板验证两个三角形是否全等的同时请学生回答他裁剪方法的理论依据,借此复习全等三角形的判定方法.在此基础上教师要求学生动手剪一个三角形与已知三角形相似. 学生可能马上利用平行线截一个三角形,教师要求学生说出这种裁剪方法的依据——预备定理.在肯定答案的同时提出,那么如何判断三角形相似呢?目前你掌握的方法有哪些?教师提出:判定两三角形相似时,定义的条件过多,预备定理的使用要求具有局限性,那么是否还有其它的判定方法呢?本节课我们继续研究:相似三角形的判定
(二).“你认为我们可以从哪儿入手研究呢?”引导学生类比全等三角形的判定方法进行猜想. 引导学生利用相似三角形与全等三角形的区别与联系,把上述全等三角形判定定理中比值为1改成比值为正数“k”,就可得到相似三角形的判定方法,得到猜想.利用上述思路,证明猜想,得到判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简记:两角对应相等,两三角形相似. 判定定理2.3的证明过程由学生仿照定理1的证明完成.请二人上黑板板演. 猜想证明完毕,让学生观察、对比三个定理的证明方法,在证明过程中是否有共性?证法的本质是什么?让学生深入思考,感受三个判定定理的证法本质是一样的,即:将相似三角形的判定利用平移的方法,化归为预备定理的形式,最终转化为判断两个三角形全等,区别就在于全等的证明方法不同.
第三篇:相似三角形的判定教学设计
第2课时 相似三角形的判定(2)
教学目标
【知识与技能】
理解并掌握相似三角形的判定方法2、3.【过程与方法】
培养学生的观察、发现、比较、归纳的能力,感受两个三角形全等的两种判定方法SSS和SAS与三角形相似定理的区别与联系,体验事物间特殊与一般的关系.【情感、态度与价值观】
让学生经历从试验探究到归纳证明的过程,发展学生合理的推理能力.【重点】
两个三角形相似的判定方法2、3及其应用.【难点】
探究两个三角形相似的判定方法2、3的过程.教学过程
一、问题引入
1.两个三角形全等有哪些判定方法?(SSS,SAS,ASA,AAS定理.)
2.我们学习过哪些判定三角形相似的方法?
(三角形相似的定理 两角分别相等的两个三角形相似)3.全等三角形与相似三角形有怎样的关系?(全等三角形是特殊的相似三角形,相似比k=1)
4.如果要判定△ABC与△A'B'C'相似,是不是一定需要一一验证所有的对应角和对应边的关系?
二、新课教授
由三角形全等的SSS判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?
探究1:
利用刻度尺和量角器画△ABC和△A'B'C',使∠A=∠A',和都等于给定的值k,量出它们的第三组对应边BC和B'C'的长,它们的比等于k吗?另外两组对应角∠B与∠B'、∠C与∠C'是否相等?
改变∠A或k值的大小,再试一试,是否具有同样的结论? 师生活动:
教师提出问题,引导学生在稿纸上按要求画图.学生动手画图、测量,独立研究.学生通过小组交流得出结论,教师进行补充.三角形相似的判定方法2:两边成比例且夹角相等的两个三角形相似.探究2:
任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论.师生活动:
教师提出问题,引导学生在稿纸上画图.学生动手画图、测量,独立研究后再小组讨论.三角形相似的判定方法3:三边成比例的两个三角形相似.三、例题讲解
【例1】 在△ABC和△A'B'C'中,已知下列条件成立,判断这两个三角形是否相似并说明理由.(1)AB=5,AC=3,∠A=45°,A'B'=10,A'C'=6,∠A'=45°;(2)∠A=38°,∠B=97°,∠A'=38°,∠B'=45°;(3)AB=2,BC=,AC=,A'B'=1,A'C'=.【例2】 如图,BC与DE相交于点O.问(1)当∠B满足什么条件时,△ABC∽△ADE?(2)当AC∶AE满足什么条件时,△ABC∽△ADE?
分析:从图中可以看出,在△ABC与△ADE中,∠A=∠A,根据三角形相似的判定定理,只要∠B=∠D或AC∶AE=AB∶AD,都有△ABC∽△ADE.【例3】 如图,方格网的小方格是边长为1的正方形,△ABC与△A'B'C'的顶点都在格点上,判断△ABC与△A'B'C'是否相似,为什么?
四、巩固练习
1.根据下列条件,判断△ABC和△A'B'C'是否相似,并说明理由.(1)∠A=40°,AB=8cm,AC=15cm,∠A'=40°,A'B'=16cm,A'C'=30cm;(2)AB=10cm,BC=8cm,AC=16cm,A'B'=20cm,B'C'=16cm,A'C'=32cm.【答案】(1)相似,两组对应边的比相等,且夹角相等.(2)相似,三组对应边的比相等.2.图中的两个三角形是否相似?
【答案】(1)相似;(2)不相似.3.要做两个形状相同的三角形框架,其中一个三角形的三边长分别为3、4、5,另一个三角形的一边长为2,它的另外两边长为多少?你有几个答案?
五、课堂小结
师:通过本节课的学习,同学们有什么体会与收获?可以与大家分享一下吗? 学生发言:说说自己的体会与收获,教师根据学生的发言予以点评.教学反思
本节课主要是探究相似三角形的判定方法2和判定方法3,由于上节课已经学习了探究两个三角形相似的判定方法1,而本节课内容在探究方法上与上节课又具有一定的相似性,因此本课教学设计注意方法上的“新旧联系”,以帮助学生形成认知上的正迁移.此外,由于判定方法2的条件“相应的夹角相等”在应用中容易被学生忽视,所以教学中教师要强调以加深学生的印象.
第四篇:沪科八年级数学上教学总结
八年级上学期数学教学工作总结
2012-2013上学期的时光转瞬即逝,本学期的教学工作即将完成。本学期,我担任八年级(1)(2)班的数学教学工作,在教学的各方面严格要求自己,认真备课,及时批改学生作业。为了下学期的教学工作做得更好,做得更好,为了能在以后的工作中更好的发挥自己的优势,及时总结经验,吸取教训,现将一学期的工作总结如下:
一、业务学习
加强学习,提高思想认识,树立新的理念.坚持每周的政治学习和业务学习,紧紧围绕学习新课程,构建新课程,尝试新教法的目标,不断更新教学观念。注重把学习新课程标准与构建新理念有机的结合起来。通过学习新的《课程标准》,认识到新课程改革既是挑战,又是机遇。将理论联系到实际教学工作中,解放思想,更新观念,丰富知识,提高能力。
二、教育教学工作
教学工作是学校各项工作的中心,也是检验一个教师工作成败的关键。一学期以来,我在坚持抓好新课程理念学习和应用的同时,充分运用学校现有的教育教学资源,坚持备好每节课,上好每一堂课,各方面都取得了一定的效果。、备课深入细致
平时认真研究教材,多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。教案编写认真,并不断归纳总结经验教训。
2、注重课堂教学效果
针对八年级学生特点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点,突破难点,做到讲解清晰化,准确化,条理化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主观能动作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师尽量讲得少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。
3、虚心请教其他老师
在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听优秀老师的课,做到边听边讲,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。坚持参加校内外教学研讨活动,不断汲取他人的宝贵经验,提高自己的教学水平。经常向经验丰富的教师请教并经常在一起讨论教学问题。4、作业与练习
在作业批改上,认真及时,力求做到全批全改,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结.,以便在辅导中做到有的放矢。
5、课后辅导
在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩。
三、工作中存在的问题
1、教材挖掘不深入。
2、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。
3、新课标下新的教学思想学习不深入。对学生的自主学习, 合作学习, 缺乏理论指导。
4、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数,导致了教学中的盲目性。
5、教学反思不够。
四、今后努力的方向
1、加强学习,学习新课标下新的教学思想。
2、学习新课标,挖掘教材,进一步把握知识点和考点。
3、多听课,学习同科目教师先进的教学方法的教学理念。
4、加强转差培优力度,加强教学反思,加大教学投入。
第五篇:九年级数学上教学工作计划
九年级数学(上)教学工作计划 学情分析:
新学期,根据九年级合班的实际,首先是先摸清底子,稳住学生,然后根据学生学情分布情况,重新划分学习小组,对新合班过来的学生,做好各方面的工作,使他们迅速适应新环境,然后,尽快帮他们找到新的学习榜样和新学伴,帮他们树立竞争意识和发展意识以及创新意识,鼓励大家在新学期,获得更大的进步,取得更大的发展。
二、教学内容
本学期所教九年级数学包括: ,第二十一章《一元二次方程》 第二十二章《二次函数》 ,第二十三章《旋转》, 第二十四章《圆》、第二十五章《概率初步》。
代数三章,几何两章。而且本学期要授完下册第二十七章内容。
三、教学目标:
本学期的主要教学任务目标:
(1)根据学情,调整好教学进度,优化学习方法,激活知识积累。(2)形成知识网络,解决实际问题。(3)强化规范训练,提高应考能力。
(4)关注学生特长需求,做好学生心理疏导。
具体的说,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
知识技能目标会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。
四、提高学科教育质量的主要措施
1、认真做好教学工作。把认真教学作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,爱因斯坦如是说:激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写复习提纲,使知识来源于学生的构造。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生学习数学的良好习惯。这些习惯包括:认真做作业的习惯包括作业前清理好桌面,作业后认真检查;预习的习惯;认真看批改后的作业并及时更正的习惯;认真做好课前准备的习惯;在书上作精要笔记的习惯;妥善保管书籍资料和学习用品的习惯;认真阅读数学教材的习惯。
7、开展分层教学,布置作业设置不同层次分别适合于差、中、好学生,课堂上的提问照顾好好、中、差学生,使他们都得到发展。
8、进行个别辅导,优生提升能力,扎实打牢基础知识,后进生,一些关键知识,辅导后进生过关,为后进生以后的发展铺平道路。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩。