新课标人教B版数学必修2教案 2.2.2直线方程的几种形式(二)

时间:2019-05-12 17:55:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《新课标人教B版数学必修2教案 2.2.2直线方程的几种形式(二)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《新课标人教B版数学必修2教案 2.2.2直线方程的几种形式(二)》。

第一篇:新课标人教B版数学必修2教案 2.2.2直线方程的几种形式(二)

付国教案

2.2.2直线方程的几种形式

(二)教学目标:掌握直线方程的一般式 教学重点:掌握直线方程的一般式 教学过程:

一、点斜式、两点式都是二元一次方程.直线的方程都可以写成二元一次方程,反过来,二元一次方程都表示直线.我们知道,在直角坐标系中,每一条直线都有倾斜角α.当α≠90°时,直线有斜率,方程可写成下面的形式:

y=kx+b

当α=90°时,它的方程可以写成x=x0的形式.

由于是在坐标平面上讨论问题,上面两种情形得到的方程均可以看成是二元一次方程.这样,对于每一条直线都可以求得它的一个二元一次方程,就是说,直线的方程都可以写成关于x、y的一次方程.

反过来,对于x、y的一次方程的一般形式 Ax+By+C=0.(1)其中A、B不同时为零.

(1)当B≠0时,方程(1)可化为yACx BB

(2)当B=0时,由于A、B不同时为零,必有A≠0,方程(1)可化为

付国教案

它表示一条与y轴平行的直线.

这样,我们又有:关于x和y的一次方程都表示一条直线.我们把方程写为

Ax+By+C=0

这个方程(其中A、B不全为零)叫做直线方程的一般式.

直线与二元一次方程是一对多的,同一条直线对应的多个二元一次方程是同解方程

二、1、已知一直线l沿x轴正方向移动3个长度单位,再沿Y轴负方向平移1个长度单位,又回到原来的位置。求斜率k。

分析:不妨设直线l的方程为y=kx+b(直观、方便)方法一:利用恒等变换。(平移?)

方法二:利用向量的平移(即直线的方向向量)方法三:从一般到特殊(以点代线)

2、直线方程为(3a-2)x+y+8a=0,若直线不过

第二篇:人教b版高一数学必修二:第二章平面解析几何初步2.2.2直线方程的几种形式教学设计

《直线方程的几种形式》教学设计

课程分析:本节课是在学习了直线斜率和倾斜角基础上,对直线方程几种形式的探究。直线方程的几种形式是以后研究直线与圆、直线与圆锥曲线的基础,是今后学习整个解析几何的基础,因此,本节课必须重视基础知识、基本方法的学习和掌握,在激发学生学习兴趣、提高学生学习能力上下功夫。

教学重点:各种直线方程的推导,直线的点斜式方程是直线方程的重中之重;

教学难点:理解各种直线方程形式的局限性,求直线方程的灵活性,理解直线方程与二元一次方程的对应关系。

学情分析:通过前面内容的学习,学生已经对解析几何这一数学学科有了基本的了解,知道了解析几何是用代数方法研究几何问题。由于这一节学生基础不是很好,但学习积极性较高,思维活跃,所以教学中既要放手给学生,又要注意引导学生,让学生始终是课堂的主人。

设计理念:本节课的课型为“新授课”,采用“问题探究式”的教学方法。遵循“探索---研究---运用”的三个层次,提出问题,采用多角度、不同形式的探究过程,让学生积极参与到教学活动中来,并且始终处于积极的问题探究和辨析思考的学习气氛中,让学生动脑思、动口议、动手做,充分发挥学生的主体地位,而且教师要启发的恰到好处。采用多媒体辅助教学,增强直观性,增大课堂容量,提高效率。

学习目标:掌握由一点和斜率导出直线方程的方法;掌握直线的点斜式、斜截式、两点式和截距式方程,并能根据条件熟练地求出直线的方程。通过由一点和斜率导出直线方程的方法的研究,体会数形结合思想,锻炼用代数方法解决几何问题的能力;通过不同形式的自主学习和探究活动,体验数学发现和创新的历程。发扬学生积极参与、大胆探索的精神以及合作意识;通过让学生体验成功,增强学习数学的兴趣和信心。教学过程:

一、复习引入

问题1:什么叫做直线的方程?方程的直线? 问题

2、A(x1,y1)、B(x2,y2)是直线l上任意两点,其中x1 x2,则直线l的斜率k=__________;垂直于x轴的直线,斜率k________,平行于x轴或与x轴重合的直线,斜率k_______。

3、怎样确定一条直线?

(点评:复习旧知,强调直线的方程、方程的直线的概念,并引导学生发现直线方程是直线上任意一点坐标(x,y)的关系式,为推导直线方程作铺垫)

二、概念形成

合作探究:

1.已知直线l过点P0(x0,y0),且斜率为k,直线l的方程是什么?

(点斜式方程是本节课的重点和基础,用探究点的形式让学生自主探索,发现结论,化难为易,突出重点。)(实录:教师分析,由直线方程的定义可知,要求直线l的方程,就是求直线l上任意一点P(x,y)中x、y满足的关系式,那么怎样利用已知条件求(x,y)满足的关系式?学生在教师引导下,导出结论。教师大屏幕展示正确结论,学生对照订正,从而肯定自己的想法,修正不足,由此提高学生学习的自觉性。根据学生回答,教师归纳出点斜式方程,并板书方程,强调方程特征。点出课题“直线方程的几种形式”,强调点斜式方程是本节课的重中之重,板书课题。)

思考:

1推导过程为什么要求点P(x,y)为直线l上不同于P0(x0,y0)的任意一点? 2在直线方程中,k取遍所有实数,可得无数条直线,这些直线都一定过哪一个点?方程表示经过该点的所有直线吗?由此,点斜式方程的适用范围是什么?

3当斜率不存在时,直线的方程是什么?k=0时,直线方程是什么?

(对问题,学生都能回答,教师鼓励并适时点评。教师提出问题:该直线是否能表示过定点P0(x0,y0)的所有直线?通过观察,学生发现,方程并不能表示直线,也就是斜率不存在时并不能用点斜式方程。根据以上,学生得出结论,教师小结,并在板书的方程上做好重点标记,学生顿悟并记忆方程。)

三、应用举例 例1求下列直线的方程:(1)直线:过点(2,1),k=-1;(2)直线:过点(-2,1)和点(3,-3)(点评:(1)题直接套用公式,使学生熟悉并掌握公式;(2)题需要先求斜率,再任选一点套用公式。学生练习,教师巡视,给予个别指导。)

四、概念深化

合作探究:

引申:已知两点A(x1,y1)、B(x2,y2),其中,求直线AB的方程。

(点评:通过点斜式方程的学习,学生已具备独立推导的能力。而此探究点,仅是把点和斜率用字母表示,是点斜式方程的运用。因此学生“跳一跳,就能摘到桃子”。此探究点的设计,既熟练了点斜式方程的运用,又得出了新的方程形式。通过自主探究,提高了学生分析问题、解决问题的能力,而且学生充分体验到了成功的喜悦,增强了学生的自信心。学生独立思考并在学案上完成,教师点评并表扬学生,指出同学们已经得出了直线方程的另两种形式:斜截式和两点式。强调每种形式方程的特征,并让学生领悟记忆。引导学生小结1点斜式方程是基础;2斜截式和两点式方程的适用范围;3斜截式和两点式方程的特征,并板书方程。)

五、能力提高 提高性练习:

直线l在x轴上的截距为a,在y轴上的截距为b,且,求证直线l的方程是.(点评:学生会有多种解题方式,让学生叙述做法,互相交流,互相学习,有利于培养学生的多种思维方式。而在众多方法中,两点式是最为合适的方法。学生通过比较得出应针对条件选择方程形式,而且通过探索得出一般结论,这对于提高学生思维的深刻性和敏捷性大有好处。学生在学案上完成,针对学生解答,教师作点评。得出截距式方程并板书,引导学生分析结构特征及方程的适用范围,学生顿悟并记忆。)针对性练习:直线经过两点(3,0),(0,4),求直线方程.(点评:此题考察直线方程的截距式形式,只要是认真听课的学生都能回答,因此大大增强了学生的自信心。找一基础稍差学生回答,但回答得非常好,教师不失时机地给予表扬。)

六、总结反思

1、知识方面:直线方程的四种形式及适用范围;

2、题型方法:题型是知道条件求直线方程;方法是针对不同的条件选用不同方程形式; 点评:学生通过回顾反思,对本节内容有一个系统认识。3分钟交流讨论,学生回顾并总结,教师做点评并完善,在黑板上用箭头标出四种方程形式的关系,突出点斜式的地位。总结内容用多媒体展示。

七、随堂检测

1、直线的点斜式方程()A、可以表示任何一条直线 B、不能表示过原点的直线 C、不能表示与x轴垂直的直线 D、不能表示与y轴垂直的直线

3、过两点(5,7)、(1,3)的直线方程为__________.(点评:通过检测,巩固所学知识,查缺补漏,将课堂延伸,使学生将课堂所学内容再认识和升华。5分钟定时检测,教师巡视,订正答案)课后反思:本节课按照学生从特殊到一般的认知规律设计,遵循“探索---研究---运用”三个层次。环环相扣,步步为营,成功完成了教学任务。点斜式方程是本节课的重点,为突出重点,采用问题探究式,一步步设计台阶,学生自主导出结论。各种直线方程的适用范围是本节课的难点,为了突破难点,采用多媒体教学,让学生体会直线在运动变化过程中的不同。整节课的设计完全以学生为中心,真正把课堂还给了学生,课堂效果很好。总之,教学无止境,只有不断学习,用先进的教育教学理论充实自己,才能在教学之路上走得更远,取得更多、更好的成绩。

第三篇:新课标人教B版数学必修2教案 2.3.1圆的标准方程

付国教案

2.3.1圆的标准方程

教学目标:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程.

教学重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程. 教学过程:

一、复习:有什么性质的点的轨迹称为圆?

二、建立圆的标准方程 1.建系设点

C是定点,可设C(a,b)、半径r,且设圆上任一点M坐标为(x,y). 2.写点集

根据定义,圆就是集合P={M||MC|=r}. 3.列方程

由两点间的距离公式得:

4.化简方程 将上式两边平方得:

222(xa)(yb)r(1)

方程(1)就是圆心是C(a,b)、半径是r的圆的方程.我们把它叫做圆的标准方程.

三、圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?(1)这是二元二次方程

付国教案

(2)展开后没有xy项

(3)括号内变数x,y的系数都是1(4)点(a,b)、r分别表示圆心的坐标和圆的半径(5)当圆心在原点即C(0,0)时,方程为 x2y2r2.(6)圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r三个量确定了且r>0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a、b、r,可以根据条件,利用待定系数法来解决.

四、例1已知两点 P1(3,8)和 P2(4,7),求以 P1P2 为直径的圆的方程,并且判断点M(3,7)、N(2,2)、Q(1,4)是在圆上,在圆内,还是在圆外

例2求以C(1,3)为圆心,并且和直线 3x-4y-7=0 相切的圆的方程.例3某圆拱桥的—孔圆拱的示意图.该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱A2P2的长度(精确到0.01m)

小结:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程

第四篇:人教A版高中数学必修二第三章《直线与方程》测试题

必修二第三章《直线与方程》测试题

一、单选题

1.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()

A.7

B.0或7

C.0

D.4

2.已知直线l过点且与直线垂直,则l的方程是()

A.

B.

C.

D.

3.已知直线在两坐标轴上的截距相等,则实数

A.1

B.

C.或1

D.2或1

4.已知直线,则它们的图象可能为()

A.

B.

C.

D.

5.已知点,若直线与线段有交点,则实数的取值范围是()

A.

B.

C.

D.

6.当点到直线的距离最大时,m的值为()

A.3

B.0

C.

D.1

7.已知直线和互相平行,则它们之间的距离是()

A.4

B.

C.

D.

8.一条直线经过点,并且它的倾斜角等于直线倾斜角的2倍,则这条直线的方程是()

A.

B.

C.

D.

9.若三条直线,与直线交于一点,则()

A.-2

B.2

C.

D.

10.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是

()

A.

B.

C.6

D.

11.直线过点,且、到的距离相等,则直线的方程是()

A.

B.

C.或

D.或

12.已知点在直线上,点在直线上,线段的中点为,且满足,则的取值范围为()

A.

B.

C.

D.

二、填空题

13.若A(-2,3),B(3,-2),C(4,m)三点共线则m的值为________.14.设直线的倾斜角是直线的倾斜角的,且与轴的交点到轴的距离是3,则直线的方程是____________.15.在平面直角坐标系xOy中,设定点A(a,a),P是函数y=

(x>0)图象上一动点.若点P,A之间的最短距离为2,则满足条件的实数a的所有值为________.

16.过点作直线,若直线经过点,且,则可作直线的条数为__________.三、解答题

17.已知直线,.(1)若,求的值;

(2)若,求的值.18.过点的直线,(1)当在两个坐标轴上的截距的绝对值相等时,求直线的方程;

(2)若与坐标轴交于、两点,原点到的距离为时,求直线的方程以及的面积.19.如图,已知三角形的顶点为A(2,4),B(0,-2),C(-2,3),求:

(1)直线AB的方程;

(2)AB边上的高所在直线的方程;

(3)AB的中位线所在的直线方程.

20.已知一组动直线方程为.(1)

求证:直线恒过定点,并求出定点的坐标;

(2)

若直线与轴正半轴,轴正半分别交于点两点,求面积的最小值.21.在中,边上的高所在直线的方程为,的平分线所在直线方程为,若点的坐标为.

(1)求点和点的坐标;

(2)求边上的高所在的直线的方程.

22.已知直线经过点,斜率为

(Ⅰ)若的纵截距是横截距的两倍,求直线的方程;

(Ⅱ)若,一条光线从点出发,遇到直线反射,反射光线遇到轴再次反射回点,求光线所经过的路程。

参考答案

1.B

2.A

3.D

4.C

5.C

6.C

7.D

8.B

9.C

10.D

11.C

12.A

13.-3

14.或者,15.-1或

16.4

17.解:(1)∵直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,由l1⊥l2,可得

1×(m﹣2)+m×3=0,解得.

(2)由题意可知m不等于0,由l1∥l2

可得,解得

m=﹣1.

18.解:(1),和;

(2)依题,直线斜率存在,设其为,设方程为,即,原点到的距离,则,所以直线的方程为;的面积

19.解:(1)由已知直线AB的斜率==3,∴直线AB的方程为y=3x-2,即3x-y-2=0.(2)设AB边上的高所在的直线方程为y=-x+m,由直线过点C(-2,3),∴3=+m,解得m=,故所求直线为y=-x+,即x+3y-7=0.(3)AB边的中位线与AB平行且过AC中点(0,),∴AB的中位线所在的直线方程为y=3x+,即6x-2y+7=0.20.解:(1)直线方程,整理可得:恒成立,由此,解得,由此直线恒过定点(4,1).

(2)直线分别交x轴的正半轴,轴正半分别交于点两点,设直线方程为其中.令,;

令,所以,当时取等号,.

21.解:(1)由已知点应在边上的高所在直线与的角平分线所在直线的交点,由得,故.

由,所以所在直线方程为,所在直线的方程为,由,得.

(2)由(1)知,所在直线方程,所以所在的直线方程为,即.

22.解:(Ⅰ)由题意得。

直线的方程为,令,得

令,得

∵的纵截距是横截距的两倍

解得或

∴直线或,即或

(Ⅱ)当时,直线,设点关于的对称点为,则,解得,关于轴的对称点为

光线所经过的路程为

第五篇:人教A版高中数学必修二第三章《直线与方程》测试题

必修二第三章《直线与方程》测试题

一、单选题

1.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()

A.7

B.0或7

C.0

D.4

2.已知直线l过点且与直线垂直,则l的方程是()

A.

B.

C.

D.

3.已知直线在两坐标轴上的截距相等,则实数

A.1

B.

C.或1

D.2或1

4.已知直线,则它们的图象可能为()

A.

B.

C.

D.

5.已知点,若直线与线段有交点,则实数的取值范围是()

A.

B.

C.

D.

6.当点到直线的距离最大时,m的值为()

A.3

B.0

C.

D.1

7.已知直线和互相平行,则它们之间的距离是()

A.4

B.

C.

D.

8.一条直线经过点,并且它的倾斜角等于直线倾斜角的2倍,则这条直线的方程是()

A.

B.

C.

D.

9.若三条直线,与直线交于一点,则()

A.-2

B.2

C.

D.

10.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是

()

A.

B.

C.6

D.

11.直线过点,且、到的距离相等,则直线的方程是()

A.

B.

C.或

D.或

12.已知点在直线上,点在直线上,线段的中点为,且满足,则的取值范围为()

A.

B.

C.

D.

二、填空题

13.若A(-2,3),B(3,-2),C(4,m)三点共线则m的值为________.14.设直线的倾斜角是直线的倾斜角的,且与轴的交点到轴的距离是3,则直线的方程是____________.15.在平面直角坐标系xOy中,设定点A(a,a),P是函数y=

(x>0)图象上一动点.若点P,A之间的最短距离为2,则满足条件的实数a的所有值为________.

16.过点作直线,若直线经过点,且,则可作直线的条数为__________.三、解答题

17.已知直线,.(1)若,求的值;

(2)若,求的值.18.过点的直线,(1)当在两个坐标轴上的截距的绝对值相等时,求直线的方程;

(2)若与坐标轴交于、两点,原点到的距离为时,求直线的方程以及的面积.19.如图,已知三角形的顶点为A(2,4),B(0,-2),C(-2,3),求:

(1)直线AB的方程;

(2)AB边上的高所在直线的方程;

(3)AB的中位线所在的直线方程.

20.已知一组动直线方程为.(1)

求证:直线恒过定点,并求出定点的坐标;

(2)

若直线与轴正半轴,轴正半分别交于点两点,求面积的最小值.21.在中,边上的高所在直线的方程为,的平分线所在直线方程为,若点的坐标为.

(1)求点和点的坐标;

(2)求边上的高所在的直线的方程.

22.已知直线经过点,斜率为

(Ⅰ)若的纵截距是横截距的两倍,求直线的方程;

(Ⅱ)若,一条光线从点出发,遇到直线反射,反射光线遇到轴再次反射回点,求光线所经过的路程。

下载新课标人教B版数学必修2教案 2.2.2直线方程的几种形式(二)word格式文档
下载新课标人教B版数学必修2教案 2.2.2直线方程的几种形式(二).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    人教新课标版高一必修二《兰亭集序》教案2

    人教新课标版高一必修二《兰亭集序》教案2 教学目标: 1、积累:了解书序的特点;掌握文中一些重要词语,如多义词“信”“修”“期”“致”“临”等、虚词“毕”“咸”“所以”等......

    新课标人教A版必修2全套教案

    第一章:空间几何体 1.1.1柱、锥、台、球的结构特征 一、教学目标 1.知识与技能 (1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述......

    《荷塘月色》教案(人教新课标版必修2)

    荷塘月色【背景材料】一、作者简介朱自清原名自华,字佩弦,号秋实。祖籍浙江省绍兴市,1898 年生于江苏省东海县。1903 年随家定居扬州,故自称“我是扬州人”。1916 年中学毕业后,......

    人教新课标必修2指导教案:离骚

    高考资源网(ks5u.com) 您身边的高考专家 6 离 骚 名师导航 内容感知 《离骚》是我国古代一首伟大的抒情长诗,历来以其可与日月争辉的光芒照耀诗坛。全诗373句,是屈原的思想结晶......

    高中数学《直线的方程》教案5 新人教A版必修2[范文模版]

    直线的方程 一、教学目标 (一)知识教学点 在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的......

    高中数学《直线的方程》教案8 新人教A版必修2

    直线的一般式方程 教学目标 (1)掌握直线方程的一般式AxByC0(A,B不同时为0)理解直线方程的一般式包含的两方面的含义:①直线的方程是都是关于x,y的二元一次方程; ②关于x,y的二元一......

    高一数学必修2直线与方程知识点总结

    导语:聪明出于勤奋,天才在于积累。我们要振作精神,下苦功学习。下面由小编为您整理出的高一数学必修2直线与方程知识点总结的相关内容,一起来看看吧。(一)高一数学必修2直线与方程......

    高中数学必修2新课标人教A版教案5篇

    目录 第一章:空间几何体 ................................................................................................................................................