一元二次方程的解法教学设计及反思(范文模版)

时间:2019-05-12 17:03:39下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《一元二次方程的解法教学设计及反思(范文模版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《一元二次方程的解法教学设计及反思(范文模版)》。

第一篇:一元二次方程的解法教学设计及反思(范文模版)

一元二次方程的解法教学设计及反思

发布者: 欧小毅

发布时间: 8/9/2011 PM 2:20:17 一元二次方程的解法教学设计及反思

学习目标

1、一元二次方程的求根公式的推导

2、会用求根公式解一元二次方程.

3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯 学习重、难点

重点:一元二次方程的求根公式. 难点:求根公式的条件:b-4ac≥0

学习过程:

一、自学质疑:

1、用配方法解方程:2x2-7x+3=0.

2、用配方解一元二次方程的步骤是什么?

3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?

二、交流展示:

刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax+bx+c=0(a≠0)呢?

三、互动探究:

一般地,对于一元二次方程ax+bx+c=0

(a≠0),当b-4ac≥0时,它的根是

222

2用求根公式解一元二次方程的方法称为公式法

由此我们可以看到:一元二次方程ax+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.

注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.

(2)在运用求根公式求解时,应先计算b-4ac的值;当b-4ac≥0时,可以用公式求出两个不相等的实数解;当b-4ac<0时,方程没有实数解.就不必再代入公式计算了.

四、精讲点拨:

1、用公式法解下列方程:

(1);

(2). 总结:其一般步骤是:

(1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)(2)求出b-4ac的值.(先判别方程是否有根)

(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根. 例

2、解方程:

(1)2x2-7x+3=0

(2)x2-7x-1=0(3)2x2-9x+8=0

(4)9x2+6x+1=0

五、纠正反馈: 做书上第P90练习。

222

2六、迁移应用:

3、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.

4、求方程 的两根之和以及两根之积

拓展应用:关于 的一元二次方程 的一个根是 ,则;方程的另一根是

教学反思:学生能运用公式解一元二次方程,但对求根公式的推导过程掌握比较困难。

“一元二次方程的解法——配方法”教学设计及反思

作者: 潘艳(初中数学

贺州八步初中数学二班)

评论数/浏览数: 2 / 101

发表日期:

2011-10-08 19:43:38

教学设计

一、教学目标

1.经历探究过程,会用配方法解较简单的一元二次方程(二次项系数为1).2.培养思考能力和探索精神.二、教学重点和难点

1.重点:用配方法解一元二次方程.2.难点:配方.三、教学过程

(一)基本训练,巩固旧知 1.完成下面的解题过程:(1)解方程:2x2-8=0;

解:原方程化成.开平方,得

,x1=,x2=

.(2)解方程:3(x-1)2-6=0.解:原方程化成.开平方,得

,x1=,x2=

.(二)尝试指导,讲授新课

(师出示下面的板书)

直接开平方法:

第一步:化成什么2=常数;

第二步:开平方降次;

第三步:解一元一次方程.师:上节课我们学习了用直接开平方法解一元二次方程.(指准板书)用直接开平方法解一元二次方程有这么三步,第一步化成什么2=常数;第二步开平方降次,把一元二次方程转化为一元一次方程 ;第三步解一元一次方程,得到两个根.师:按这三步,我们来做一个题目.(师出示例1)例1 解方程:x2-4x+4=5.(先让生尝试,然后师边讲解边板书,解题过程如下)

解:原方程化成(x-2)2=5.开平方,得x-2=,x1=+2,x2=-+2.(三)试探练习,回授调节 2.完成下面的解题过程:

解方程:9x2+6x+1=4;

解:原方程化成开平方,得

x1=

(四)尝试指导,讲授新课 师:下面我们再来做一个题目.(师出示例2)

x2=

.,.例2 解方程:x2+6x-16=0.师:(指准板书)怎么解这个一元二次方程?(稍停)还是要按这三步来做.按这三步来做,关键是哪一步?(稍停)关键是第一步,把方程化成什么2=常数的这种样子,也就是左边化成含有x的式子的平方,右边是一个常数这种样子.怎么化呢?大家自己先化一化.(生尝试,师巡视)师:下面我们一起来化.师:(指准方程)要把这个方程化成什么2=常数这种样子,首先要把常数项移到右边去(板书:解:移项,得x2+6x=16),然后在这个方程的两边加上32(板书:x2+6x+32=16+32),左边x2+6x+32等于什么?(稍停)等于(x+3)2(边讲边板书:(x+3)2),右边16+32等于25(边讲边板书:=25).这样我们把原方程化成了含有x的式子的平方=常数这种样子.师:方程化成这种样子,下面就很好做了.开平方,得x+ 3=±5(边讲边板书:开平方,得x+3=±5),解一元一次方程,得到两个根,x1=2,x2=-8(边讲边板书:x1=2,x2=-8).师:(指准解题过程)这个题目做完了,通过做这个题目,大家不难发现,解这个题目的关键是在 方程两边加上32,把方程的左边配成(x+3)2.这样做叫什么?叫配方(板书:配方).师:像这道例题那样,通过把方程左边配成平方形式来解一元二次方程的方法,叫配方法(板书:配方法).师:下面请大家做几个有关配方法的练习.(五)试探练习,回授调节 3.填空:

(1)x2+2·x·2+

;=(x+

(2)x2-2·x·6+

;=(x-

(3)x2+10x+

=(x+)2;(4)x2-8x+

=(x-)2.4.完成下面的解题过程: 解方程:x2-8x+1=0;

解:移项,得

配方,得

开平方,得

x1=

,x2=

5.用配方法解方程:x2+10x+9=0.(六)归纳小结,布置作业

..)2)2,师:这节课我们学习了什么?(稍停)我们学习了用配方法解一元二次方程.怎么用配方法解一元二次方程?(指准板书)和直接开平方法一样,都是这么三步,所不同的是,直接开平方法很容易把原方程化成什么2=常数这种样子,而配方法需要通过配方才能把原方程化成这种样子.课外补充作业: 6.填空:

(1)x2-2·x·3+

;=(x-

(2)x2+2·x·4+

;=(x+

(3)x2-4x+

=(x-

(4)x2+14x+

=(x+

7.完成下面的解题过程: 解方程:x2+4x-12=0.解:移项,得

配方,得

开平方,得

x1=,x2=)2)2)2;,.)2..8.用配方法解方程:x2-6x+7=0.四、板书设计

直接开平方法、配方法

例1

例2 第一步:化成什么2=常数; 第二步:开平方降次; 第三步:解一元一次方程.配方法解方程教学反思

本节共分3课时,第一课时引导学生通过转化得到解一元二次方程的配方法,第二课时利用配方法解数字系数的一般一元二次方程,第3课时通过实际问题的解决,培养学生数学应用的意识和能力,同时又进一步训练用配方法解题的技能。

在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,确实感到困难,因此在教学过程中及课后批改中发现学生出现以下几个问题:

1.在利用添项来使等式左边配成一个完全平方公式时,等式的右边忘了加。

2.在开平方这一步骤中,学生要么只有正、没有负的,要么右边忘了开方。

3.当一元二次方程有二次项的系数不为1时,在添项这一步骤时,没有将系数化为1,就直接加上一次项系数一半的平方。

因此,要纠正以上错误,必须让学生多做练习、上台表演、当场讲评,才能熟练掌握。

分解因式法解一元二次方程的教学设计和反思

发布者: 冯文娟

发布时间: 20/9/2011 PM 8:37:49 分解因式法解一元二次方程的教学设计和反思

一、教学目标

(一)知识与技能目标

1.会用分解因式法解能分解因式的一元二次方程。

2.能根据具体一元二次方程的特征,灵活选择方程的解法。

(二)过程与方法目标

1.能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性。

2.会用分解因式法(提公因式法,公式法)解某些简单的数字系数的一元二次方程。

3.通过设置问题串,学生体会分析问题的思考方法。、(三)情感与态度目标

通过学生探讨一元二次方程的解法,知道分解因式法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度。体验成功的喜悦,感受数学学习的乐趣,增加学习数学的兴趣。

二、教学重点、难点:

教学重点:应用分解因式法解一元二次方程。教学难点:形如“x²=ax”等方程的解法。

三、教学方法:列举法、讲授法、练习法等

四、教学过程:

一、创设问题情境,导入新课: 1.复习提问

(1)什么叫做因式分解?分解因式有那些方法?(2)方程(x-2)(x+3)=0是一元二次方程吗?如何解方程(x-2)(x+3)=0?试一试。

2.如果把(x-2)(x+3)=0转化为一般形式,利用公式法就比较麻烦,如果转化为x-2=0或x+3=0,解起来就变得简单多了.这种解一元二次方程的方法就是本节课要研究的一元二次方程的方法——因式分解法.

二、探索新知:

例1 解方程x2+2x=0.

解:原方程可变形x(x+2)=0 ∴ x=0或x+2=0 ∴ x1=0,x2=-2.

分析:第一步变形的方法是“因式分解”,第二步变形的理论根据是“如果两个因式的积等于零,那么至少有一个因式等于零”。第二步,对于一元二次方程,一边是零,而另一边易于分解成两个一次式时,可以得到两个一元一次方程,这两个一元一次方程的解就是原一元二次方程的解.用此种方法解一元二次方程就是用因式分解法解一元二次方程.由第一步到第二步实现了由二次向一次的“转化”,达到了“降次”的目的,解高次方程常用转化的思想方法.

课堂练习1:解方程①3x2-6x=0;②2x2=x;③3(x-2)-x(x-2)=0. 分析③题:原方程可变形为(x-2)(3-x)=0.则 x-2=0或3-x=0. 拓展与延伸:.解方程(4x+2)2=x(2x+1).

学生练习、板演.教师强化,引导,训练其运算的速度.

第一题学生口答,第二题学生笔答,板演. 体会步骤及每一步的依据.

例2 用因式分解法解方程x2+2x-15=0.

分析:用十字相乘法分解等式左边为(x+5)(x-3),原方程可变形为(x+5)(x-3)=0.

解:原方程可变形为(x+5)(x-3)=0. 得,x+5=0或x-3=0. ∴ x1=-5,x2=3.

总结因式分解的步骤:①方程化为一般形式;②方程左边因式分解;③至少一个一次因式等于零,得到两个一元一次方程;④两个一元一次方程的解就是原方程的解.

课堂练习2:①y2-y-6=0;②2x2+9x-5=0; 学生练习、板演、评价.教师引导,强化. 例3 解方程(3x+2)2=4(x-3)2

分析:根据平方差公式,原方程可变形为(3x+2)2-4(x-3)2=0.,再进一步变为[(3x+2)+2(x-3)][(3x+2)-2(x-3)]=0。

22解:原式可变形为(3x+2)-4(x-3)=0。

[(3x+2)+2(x-3)][(3x+2)-2(x-3)]=0 即:(5x-4)(x+8)=0. ∴ 5x-4=0或x+8=0. ∴x1=,x2=-8.

课堂练习3: 9(2x+1)2=(3x-1)2

学生练习、板演、评价.教师引导,强化。

(三)随堂练习:

① ﹙x+2﹚﹙x-4﹚=0

② 9x2+42x=-49

4x﹙2x+1﹚=3﹙2 x+1﹚

④ y2-16y+64=0 ⑤ 9x2-12=0

(四)课堂总结:

1.因式分解法的条件是方程左边易于分解,而右边等于零,关键是熟练掌握因式分解的知识,理论依据是“如果两个因式的积等于零,那么至少有一个因式等于零.”

2.因式分解法解一元二次方程的步骤是:(1)化方程为一般形式;(2)将方程左边因式分解;

(3)至少有一个因式为零,得到两个一元一次方程;(4)两个一元一次方程的解就是原方程的解. 但要具体情况具体分析.

3.因式分解的方法,突出了转化的思想方法,展示了由“二次”转化为“一次”的过程。

作业:教材P.21中1、2..五、板书设计

分解因式法解一元二次方程

一、例题

例1.„„ 例2„„例3„„

二、因式分解法的步骤

(1)(2)(3)(4)

三、练习

教学反思

本节课教学注重学生的基础,调动了学生学习的积极性、主动性,并激发了学生学习的兴趣,提高了课堂效率。通过堂上练习、课外作业连贯性的训练,既可以巩固基础知识,又可以把学生学习情况的信息反馈,这样可以了解学生的学习动态。在教学中我没有注意到由于《课程标准》中降低了分解因式的要求,根据学生已有的分解因式知识,学生仅能解决形如“x(x-a﹚=0、x2-a²=0”的特殊一元二次方程,但教学时一开始我就增加了学生的难度。所以在今后教学中,可以先出示一个较为简单的方程,让学生先各自求解,然后进行比较与评析,发现因式分解是解某些一元二次方程较为简便的方法,从而引出分解因式法,然后复习因式分解的基本方法再出示例题,最后总结因式分解法的基本思想和方法是:当一个一元二次方程一边是零,而另一边易于分解成两个一次因式时,可以使每一个因式等于零,分别解两个一元二次方程,得到的两个解就是原一元二次方程的解。怎样把方程进行快速而准确的因式分解依然是学生的难点,还需要继续训练与讲解,才能有效巩固教学目标.

第二篇:一元二次方程解法教学反思

用公式法解一元二次方程教学反思

张春元

通过本节课的教学,使我真正认识到了自己课堂教学的成功与失败。对我今后课堂教学有了一定引领方向有了很大的帮助。下面我就谈谈自己对这节课的反思。

本节课的重点主要有以下3点:

1.找出a,b,c的相应的数值

2.验判别式是否大于等于0

3.当判别式的数值符合条件,可以利用公式求根.在讲解过程中,我没让学生进行(1)(2)步就直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多.1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号

2、求根公式本身就很难,形式复杂,代入数值后出错很多.其实在做题过程中检验一下判别式着一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做着一步在到求根公式时可以把数值直接代入.在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果

3、板书不太理想。板书可以说在课堂教学也起关键作用,它可以帮学生温习本课的内容,而我许多本该板书的内容全部反映在大屏幕上,在继续讲一下个内容时,这些内容也就不会再出现,只给学生瞬间的停留,这样做也有欠妥当。

4、本节课没有激情,学习的积极性调动不起来,对学生地鼓励性的语言过于少,可以说几乎没有。

第三篇:《一元二次方程的解法》教学反思

《一元二次方程的解法》教学反思

《一元二次方程的解法》教学反思

一元二次方程是九年级上册第二单元内容,是今后学习二次函数的基础,是初中数学教材的一个重要内容。

一、课前思考。

1、学生基础。在七八年级学生已经学习过一元一次方程、二元一次方程组、分式方程的知识,有着很好的解题基础。

2、教学重点应放在解题方法上,让学生通过观察发现每一种解法的特征,是学生能够根据特征选择合适的解题方法。

3、应注意培养学生的解题技能,解题速度、解题的正确率,特别是利用配方法界一元二次方程时,必须让学生区分方程的配方与式子配方的不同。

4、每节课必须进行小测验,可根据题的难易程度不同,将题量控制在3——5道之间。

二、教学过程中学生出现的主要问题。

1、学生不善于观测,特别是在将四种方法全部学习完之后,学生不能很好的选择合适的方法。例如:能用直接开平方的题,确将其展开再配方;能利用十字相乘法分解因式的,却选择公式法等。

2、对符号处理的不正确,贴别是一个负的无理分数和一个分数相加时,总是将负号放在分数线的前面。

3、十字相乘法中,常数项分解为两个数相乘时,出现符号错误。

4、用配方法计算时错误率较高。

5、用公式法计算时,没有将b2--4ac的结果放在根号下。

三、教后反思

1、今后在将四种方法讲完之后,要用两节课的时间进行综合练习,第一节课可以采用让学生练习解题的方式,第二节课可以采用让学生说解法、让学生找解题错误之处方法进行。

2、增加小测验的力度,可以将题量减小,次数增加。这样不仅可以增加学生的信心,也可以通过不断的重复,增强学生的熟练程度。

3、为了让学生学会选择合适的方法解题,可以采用同桌互相按要求出题的方法,达到学生对各种解法特征的目的。

第四篇:《一元二次方程解法复习》教学反思

《一元二次方程解法复习》教学反思

本节课内容是在讲完一元二次方程的四种解法之后的一堂复习课,开始用四道小题引领大家复习四种解法的步骤,同学们大多数都能解出方程的解,但是,却不能口述解题步骤,还有些同学,计算错误,加上同学们很是紧张,所以,课堂前面显得耽误时间了。

后来我让学生在前面讲述做题过程和步骤,现在想想,好像这里没有必要!做完四道题后,进行小结,让同学们呢感受做题时简单的方法,在感受的同时进行小结,说明这四种方法的特点,然后,确定选择方法的先后顺序,再给出几道题,让同学们精挑细选,这里进行比较成功,让学生体会到简单的方法的美妙!最后,发展学生的发散思维,自主选择几道题,用你觉得更合适的方法进行解题!

整体看来,课程教学起到了很好的作用,能让大多数同学掌握了本节知识,但是,有很多不足,第一:师生板书太乱;第二:老师我语言不精练,总怕学生不明白,所以重复的话语太多;第三:课堂出现前松后紧,时间分配有问题;第四:老师随意性较强,应该注意仪表!等等,问题很多,希望本人在以后教学中,多像其他教师学习,取长补短,更上一层楼!

第五篇:一元二次方程的解法教学设计

一元二次方程的解法教学设计

教学目标:

(一)知识与技能:

1、理解并掌握用配方法解简单的一元二次方程。

2、能利用配方法解决实际问题,增强学生的数学应用意识和能力。

(二)过程与方法目标:

1、经历探索利用配方法解一元二次方程的过程,使学生体会到转化的数学思想。

2、在理解配方法的基础上,熟练应用配方法解一元二次方程的过程,培养学生用转化的数学思想解决实际问题的能力。

(三)情感,态度与价值观

启发学生学会观察,分析,寻找解题的途径,提高学生分析问题,解决问题的能力。

教学重点、难点:

重点:理解并掌握配方法,能够灵活运用用配方法解一元二次方程。

难点:通过配方把一元二次方程转化为(x+m)2=n(n≥0)的形式。教学方法:根据教学内容的特点及学生的年龄、心理特征及已有的知识水平,本节课采用问题教学和对比教学法,用“创设情境——建立数学模型——巩固与运用——反思、拓展”来展示教学活动。

教学过程 一 复习旧知

用直接开平方法解下列方程:(1)9x2=4(2)(x+3)2=0 总结:上节课我们学习了用直接开平方法解形如(x+m)2=n(n≥0)的方程。

二 创设情境,设疑引新

在实际生活中,我们常常会遇到一些问题,需要用一元二次方程来解决。

例:小明用一段长为 20米的竹篱笆围成一个矩形,怎样设计才可以使得矩形的面积为9米?

三 新知探究 提问:这样的方程你能解吗? x2+6x+9=0 ①

2、提问:这样的方程你能解吗? x2+6x+4=0 ②

思考:方程②与方程①有什么不同?能否把它化成方程①的形式呢?

归纳总结配方法:

通过配成完全平方式的方法,得到一元二次方程的解,这样的解法叫做配方法。

配方法的依据:完全平方公式

配方法的关键:给方程的两边同时加上一次项系数一半的平方

点拨:先通过移项将方程左边化为x2+ax形式,然后两边同时加上一次项系数一半的平方进行配方,然后直接开平方求解。

四 合作讨论,自主探究

1、配方训练

(1)x2+12x+()=(x+6)2(2)x2-12x+()=(x-)2(3)x2+8x+()=(x+)2(4)x2+mx+()=(x+)2 强调:当一次项系数为负数或分数时,要注意运算的准确性。

2、将下列方程化为(x+m)2=n(n≥0)的形式并计算出X值。(1)x2-4x+3=0(2)x2+3x-1=0 解:X2-4X+3=0 移向:得X2-4X=-3 配方:得X2-4X+2^2=-3+2^2(两边同时加上一次项系数一半的平方)即:(X-2)2=1 开平方,得:X-2=1或X-2=-1 所以:X=3或X=1 方程(2)有学生完成。

3、巩固训练:课本55页随堂练习第一题。五 小结

1、用配方法解二次项系数为一的一元二次方程的基本思路:先将方程化为(x+m)2=n(n≥0)的形式,然后两边开平方就可以得到方程的解。

2、用配方法解二次项系数为一的一元二次方程的一般步骤:(1)移项(常数项移到方程右边)

(2)配方(方程两边都加上一次项系数的一半的平方)(3)开平方(4)解出方程的根 六 布置作业习题2.3第1,2题

两个学生黑板上那解题,剩余学生练习本上计算。

下载一元二次方程的解法教学设计及反思(范文模版)word格式文档
下载一元二次方程的解法教学设计及反思(范文模版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《22.1 一元二次方程的解法》教学反思

    《22.1 一元二次方程的解法》教学反思 通过本节课的教学,使我真正认识到了自己课堂教学的成功与失败。下面我就谈谈自己对这节课的反思。这节课是一元二次方程解法的复习课,复......

    《一元二次方程的解法》教学设计5

    《一元二次方程的解法》教学设计 一、素质教育目标 (一)知识教学点:认识形如x2=a(a≥0)或(ax+b)2=c(a≠0,c≥0,a,b,c为常数)类型的方程,并会用直接开平方法解. (二)能力训练点:培养学生准确而简......

    《一元二次方程的解法》教学设计2

    《一元二次方程的解法》教学设计 一、素质教育目标 (一)知识教学点:1.正确理解因式分解法的实质.2.熟练掌握运用因式分解法解一元二次方程. (二)能力训练点:通过新方法的学习,培养学生......

    《一元二次方程的解法》教学设计3

    《一元二次方程的解法》教学设计 一、素质教育目标 (一)知识教学点: 1.熟练地运用公式法解一元二次方程,掌握近似值的求法. 2.能用公式解关于字母系数的一元二次方程. (二)能力训练点:......

    一元二次方程的解法教学设计(五篇材料)

    一元二次方程的解法教学设计一、教学目标: 1.理解开平方法解一元二次方程的依据是平方根的意义; 2.会用开平方法解一元二次方程; 3会用配方法解一元二次方程; 4.会用方法解系数......

    一元二次方程解法——配方法 教学设计

    《解一元二次方程——配方法》 教学设计 漳州康桥学校陈金玉 一、教材分析 1、对于一元二次方程,配方法是解法中的通法,它的推导建立在直接开平方法的基础上,他又是公式法的基......

    一元二次方程的解法(配方法)教学设计

    一元二次方程的解法(配方法)教学设计 一、教材版本:义务教育课程标准实验教科书数学(华师大版)九年级上册第二十三章第二节 二、教材结构与内容分析: 本节内容是初中数学九年级上......

    一元二次方程的解法小结

    一元二次方程的解法小结【学习目标】1.会选择利用适当的方法解一元二次方程;2.体验解决问题方法的多样性,灵活选择解方程的方法.【前置学习】一、自主学习(自主探究):1.独立思考·......