《6.6 一次函数、一元一次方程和一元一次不等式》教学设计

时间:2019-05-12 17:08:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《6.6 一次函数、一元一次方程和一元一次不等式》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《6.6 一次函数、一元一次方程和一元一次不等式》教学设计》。

第一篇:《6.6 一次函数、一元一次方程和一元一次不等式》教学设计

八年级数学

《6.6 一次函数、一元一次方程和一元一次不等式》教学设计

教学目标:

1.经历实际问题中的数量关系的分析、抽象初步体会一元一次不等式与一元一次方程、一次函数的内在联系.2.了解不等式、方程、函数在解决问题过程中的作用和联系.3.通过解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用,并以此激发学生学习数学的信心和兴趣.教学重点:通过具体实例,初步体会一次函数、一元一次方程和一元一次不等式的内在联系.

教学难点:了解不等式、方程、函数在解决问题过程中的作用和联系.教学过程:

一、热身训练

填空:

(1)方程2x+4=0解是_______ ;(2)不等式2x+4>0的解集为________;

(3)不等式2x+4<0的解集为________.复习一元一次方程和一元一次不等式的解法.

设计思路:通过解一元一次方程、一元一次不等式为一次函数、一元一次方程和一元一次不等式的内在联系的探讨作好铺垫.

二、探索归纳

1.一次函数y=2x+4的图像是一条经过点(,),点(,)的直线.

2.试根据一次函数y=2x+4的图像说出方程2x+4=0的解和不等式2x+4>0、2x+4<0的解.

初步感受一次函数、一元一次方程和一元一次不等式的内在联系.函数刻画现实世界数量之间变化的关系,方程刻画现实世界数量之间的相等关系,不等式刻画现实世界数量之间的不等关系.

归纳总结:

一次函数、一元一次方程、一元一次不等式有着紧密的联系.已知一次函数的表达式,当其中一个变量的值确定时,可以由相应的一元一次方程确定另一个变量的值.

当其中一个变量的取值范围确定时,可以由相应的一元一次不等式确定另一个变量的取值范围. 设计思路:

通过观察函数图像直接找出一元一次方程的解和一元一次不等式的解集.凸显数形结合的数学思想.让学生初步感受一次函数、一元一次方程和一元一次不等式三者的特点,体会它们之间的关系,初步形成对数学整体性的认识.

三、例题讲解

例 一根长25cm的弹簧,一端固定,另一端挂物体.在弹簧伸长后的长度不超过35cm的限度内,每挂1kg质量的物体,弹簧伸长0.5cm.设所挂物体的质量为x kg,弹簧的长度为y cm.写出y与x之间的函数表达式,画出函数图像,并求这根弹簧在所允许的限度内所挂物体的最大质量. 你还能用什么方法解决这个问题?

尝试用不同的方法解决问题.

函数求值和变量范围确定的问题可以通过方程、不等式解决.

设计思路:

1.例题是弹簧挂物问题,学生不难列出一次函数的关系式,画出函数图像.2.通过函数图像的观察结合实际意义,学生容易想到,当弹簧的长度为35 cm时,物体A的质量最大,从而利用方程解决问题.3.题目中的“不超过”其实暗含的是不等式的模型,所以很自然会考虑用不等式解决问题.四、巩固练习

1.x取什么值时,函数y=-2(x+1)+4的值是正数?负数?非负数? 2.声音在空气中的传播速度(简称音速)y(m/s)与气温x(℃)之间的3函数表达式为y=5 x+331.求:

(1)音速为340 m/s时的气温;

(2)音速超过340 m/s时的气温范围.变式训练:

3.试根据一次函数y=2x+4的图像说出方程2x+4=6的解和不等式2x+4>6、2x+4<6的解.

尝试:

一辆汽车行驶了35 km后,驶入高速公路,并以105 km/h的速度匀速行驶了x h.试根据上述情境,提出一些问题,并用一次函数、一元一次方程或一元一次不等式求解.

学生自己先做,两人板演.变式训练与前面的探索活动相呼应,培养学生的逻辑思维能力,进一步渗透数形结合的数学思想.由学生自己先做(或互相讨论),然后回答.设计思路:

如果已知一次函数的解析表达式,那么当其中一个变量的值确定时,可以用相应的一元一次方程确定另一个变量的值;当其中一个变量的范围确定时,可以用相应的一元一次不等式确定另一个变量的范围.教师应根据学生情况选择题目,要注意题目的针对性,并结合学生出现的问题进行讲评.开放式问题的设计,可以使学生进一步加强对三者关系的认识.五、课堂小结

这节课你有什么收获?

函数、方程、不等式都是刻画现实世界中量与量之间变化过程的重要模型,三者之间相互联系.尝试对知识方法进行归纳、提炼、总结,形成理性的认识,内化数学的方法和经验.设计思路: 一方面,函数求值和变量范围确定的问题可以通过方程、不等式解决;另一方面,与方程、不等式有关的数量相等与大小比较的问题,也可以通过函数图像加以解决

六、布置作业

必做:P165习题6.6第2、3题. 选做:P166习题6.6第4题.已知函数y1=2x-4与y2=-2x+8的图像,观察图像并回答问题:(1)x取何值时,2x-4>0?(2)x取何值时,-2x+8>0?

(3)x取何值时,2x-4>0与-2x+8>0同时成立?

(4)求函数y1=2x-4与y2=-2x+8的图像与x轴所围成的三角形的面积?

设计思路:

教师应根据学生情况选择题目.

第二篇:一元一次不等式与一次函数教学设计

在教学工作者开展教学活动前,通常需要用到教学设计来辅助教学,借助教学设计可以提高教学效率和教学质量。那么你有了解过教学设计吗?以下是小编为大家收集的一元一次不等式与一次函数教学设计,希望能够帮助到大家。

教学目标:

(知识与技能,过程与方法,情感态度价值观)

(一)教学知识点

1.一元一次不等式与一次函数的关系.2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.(二)能力训练要求

1.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.2.训练大家能利用数学知识去解决实际问题的能力.(三)情感与价值观要求

体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的`作用.教学重点

了解一元一次不等式与一次函数之间的关系.教学难点

自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.教学过程

创设情境,导入课题,展示教学目标

1.张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。你能帮帮张大爷选择一种电话卡吗?

2.展示学习目标:

(1)、理解一次函数图象与一元一次不等式的关系。

(2)、能够用图像法解一元一次不等式。

(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。

积极思考,尝试回答问题,导出本节课题。

阅读学习目标,明确探究方向。

从生活实例出发,引起学生的好奇心,激发学生学习兴趣

学生自主研学

指出探究方向,巡回指导学生,答疑解惑

探究一:一元一次不等式与一次函数的关系。

问题1:结合函数y=2x-5的图象,观察图象回答下列问题:

(1)x取何值时,2x-5=0?

(2)x取哪些值时, 2x-5>0?

(3)x取哪些值时, 2x-5<0?

(4)x取哪些值时, 2x-5>3?

问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y<1 ?

你是怎样求解的?与同伴交流

让每个学生都投入到探究中来养成自主学习习惯

小组合作互学

巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。答疑展示中存在的问题。

探究二:一元一次不等式与一次函数关系的简单应用。

问题3.兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题:

(1)何时哥哥分追上弟弟?

(2)何时弟弟跑在哥哥前面?

(3)何时哥哥跑在弟弟前面?

(4)谁先跑过20 m?谁先跑过100 m?

你是怎样求解的?与同伴交流。

问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.让学生体会数形结合的魅力所在。理解函数和不等式的联系。

精讲点拨

移动通讯公司开设了两种长途通讯业务:全球通使用者先缴50元基础费,然后每通话1分钟付话费0.4元;神州行不交月基础费,每通话1分钟付话费0.6元。若设一个月内通话x分钟,两种通讯方式的费用分别为y1元和y2元,那么(1)写出y1、y2与x之间的函数关系式;(2)在同一直角坐标系中画出两函数的图象;(3)求出或寻求出一个月内通话多少分钟,两种通讯方式费用相同;(4)若某人预计一个月内使用话费200元,应选择哪种通讯方式较合算?

在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。

提高学生应用数学知识解决实际问题的能力

达标检测

展示检测内容

积极完成导学案上的检测内容,相互点评。

反馈学生学习效果

知识与收获

引导学生归纳探究内容

学生回顾总结学习收获,交流学习心得。

学会归纳与总结

布置作业

教材P51.习题2.6知识技能1;问题解决2,3.板书设计

§2.5 一元一次不等式与一次函数(一)

一、学习与探究:

1.一元一次不等式与一次函数之间的关系;

2.做一做(根据函数图象求不等式);

3.试一试(当x取何值时,y>0);

4.议一议

二、精讲点拨:

三、知识与收获:

四、课后作业:

【一元一次不等式与一次函数教学设计】相关文章:

1.《一次函数与一元一次不等式》说课稿

2.一元一次不等式组数学教学设计

3.一元一次不等式教学设计

4.《一元一次不等式、一元一次方程、一次函数》的说课稿

5.一次函数与方程不等式教学反思

6.《一元一次不等式组》教学设计模板

7.实际问题与一元一次不等式教学设计

8.《一元一次不等式》说课稿

9.一元一次不等式组的教学反思

第三篇:一元一次不等式与一次函数_教学设计_教案

教学准备

1.教学目标

教学知识点:

1、一元一次不等式与一次函数的关系.

2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较. 能力训练要求:

1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.

2、训练大家能利用数学知识去解决实际问题的能力. 情感与价值观要求:

体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.

2.教学重点/难点

教学重点:解一元一次不等式与一次函数之间的关系.

教学难点:自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.

3.教学用具

课件

4.标签

一元一次不等式与一次函数

教学过程

一、创设问题情境,引入新课

[师]上节课我们学习了一元一次不等式的解法,那么,是不是不等式的知识是孤立的呢?本节课我们来研究不等式的有关应用.

二、新课讲授

1、一元一次不等式与一次函数之间的关系.

[师]大家还记得一次函数吗?请举例给出它的一般形式. [生]如y=2x-5为一次函数. [师]在一次函数y=2x-5中,当y=0时,有方程2x-5=0; 当y>0时,有不等式2x-5>0; 当y<0时,有不等式2x-5<0.

由此可见,一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于0时即为方程,当函数值大于或小于0时即为不等式. 下面我们来探讨一下一元一次不等式与一次函数的图象之间的关系.

2、做一做.

作出函数y=2x-5的图象,观察图象回答下列问题.(1)x取哪些值时,2x-5=0?(2)x取哪些值时,2x-5>0?(3)x取哪些值时,2x-5<0?(4)x取哪些值时,2x-5>3? 请大家讨论后回答:

[生](1)当y=0时,2x-5=0,∴x=(),∴当x=()时,2x-5=0.

(2)要找2x-5>0的x的值,也就是函数值y大于0时所对应的x的值,从图象上可知,y>0时,图象在x轴上方,图象上任一点所对应的x值都满足条件,当y=0时,则有2x-5=0,解得x= .当x> 时,由y=2x-5可知y>0.因此当x> 时,2x-5>0;

(3)同理可知,当x< 时,有2x-5<0;(4)要使2x-5>3,也就是y=2x-5中的y大于3,那么过纵坐标为3的点作一条直线平行于x轴,这条直线与y=2x-5相交于一点B(4,3),则当x>4时,有2x-5>3.

3、试一试

如果y=﹣2x-5,那么当x取何值时,y>0?

[师]由刚才的讨论,大家应该很轻松地完成任务了吧.请大家试一试. [生]首先要画出函数y=﹣2x-5的图象

从图象上可知,图象在x轴上方时,图象上每一点所对应的y的值都大于0,而每一个y的值所对应的x的值都在A点的左侧,即为小于﹣2.5的数,由﹣2x-5=0,得x=-2.5,所以当x取小于﹣2.5的值时,y>0.

4、议一议

兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函数关系式,画出函数图象,观察图象回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20m?谁先跑过100m?(4)你是怎样求解的?与同伴交流. [师]大家应先画出图象,然后讨论回答:

[生][解]设兄弟俩赛跑的时间为x秒.哥哥跑过的路程为y1,弟弟跑过的路程为y2,根据题意,得y1=4x;y2=3x+9 从图象上来看:

(1)当0<x<9时,弟弟跑在哥哥前面;(2)当x>9时,哥哥跑在弟弟前面;(3)弟弟先跑过20 m,哥哥先跑过100m;

(4)从图象上直接可以观察出(1)、(2)小题,在回答第(3)题时,过y 轴上20这一点作x轴的平行线,它与y1=4x,y2=3x+9分别有两个交点,每一交点都对应一个x值,哪个x的值小,说明用的时间就短.同理可知谁先跑过100 m.

三、课时小结

本节课讨论了一元一次不等式与一次函数的关系,并且能根据一次函数的图象求解不等式.

课堂小结

学了这节课,你有什么收获?

课后习题 完成课后练习题。

板书

一元一次不等式与一次函数

第四篇:一元一次不等式与一次函数(二)教学设计(范文模版)

第一章

一元一次不等式和一元一次不等式组

5.一元一次不等式与一次函数

(二)贵州省清镇市第三中学

唐礼猛

一、学生知识状况分析

学生的知识技能基础:学生在前面已经学习过一次函数,会求一次函数的表达式和画一次函数的图象,在本章上一节课中,又学习了一元一次不等式与一次函数的关系,结合一元一次不等式与一次函数的图象解决实际问题,具备了数形结合意识。

学生活动经验基础:在相关知识的学习过程中,学生已经利用一元一次不等式与一次函数的关系解决了一些简单的现实问题,感受到了一元一次不等式与一次函数的关系解决问题的重要性和作用;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析

数学教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个数学教学的远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本节课是八下第一章第五节《一元一次不等式与一次函数》第二课时的内容,从属于“数与代数”这一数学学习领域,因而务必服务于数与代数教学的远期目标,同时也应力图在学习中逐步达成学生的有关情感态度目标。教科书基于学生对一元一次不等式与一次函数的关系认识的基础之上,提出了本课的具体学习任务,本节课的教学目标是:

1、掌握一元一次不等式与一次函数的关系,会运用不等式解决函数有关问题。

2、通过具体问题初步体会一次函数的变化规律与一元一次不等式解集的联系。

3、感知不等式、函数、方程的不同作用与内在联系,并渗透“数形结合”思想。

4、训练大家能利用数学知识去解决问题的能力.5、体验数、图形是有效地描述现实世界的重要手段.三、教学过程分析 本节课设计了五个教学环节:第一环节:情境引入;第二环节:探究、合作学习;第三环节:运用巩固、练习提高;第四环节:课堂小结;第五环节:布置作业。

第一环节:情境引入

活动内容:

放假期间很多人热衷于旅游,而旅行社瞅准了这个商机,会打着各式各样的优惠来吸引你,那么究竟应该选哪一家呢?下面我们一起来探究这里的奥妙。

活动目的:让学生在一个比较熟悉的氛围中接触学习主题,有利于他们启动思维。活动效果:引发了学生的兴趣。

第二环节:探究、合作学习

活动内容:学生在分组讨论的基础上,大胆提出自己解决问题的方法,教师点评。1.[例1]某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用?其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?

请大家先计划一下,你选哪家旅行社?

分析:首先我们要根据题意,分别表示出两家旅行社关于人数的费用,然后才能比较.而且比较情况只能有三种,即大于,等于或小于.解:设该单位参加这次旅游的人数是x人,选择甲旅行社时,所需费用为y1元,选择乙旅行社时,所需的费用为y2元,则

y1=200×0.75x=150x

y2=200×0.8(x-1)=160x-160 当y1=y2时,150x=160x-160,解得x=16;当y1>y2时,150x>160x-160,解得x<16;当y1<y2时,150x<160x-160,解得x>16.因为参加旅游的人数为10~25人,所以当x=16时,甲乙两家旅行社的收费相同;当17≤x≤25时,选择甲旅行社费用较少,当10≤x≤15时,选择乙旅行社费用较少.由此看来,选哪家旅行社不仅与旅行社的优惠政策有关,而且还和参加旅游的人数有关,那么在以后的旅行中,大家一定不要想当然,而是要精打细算才能做到合理开支,现在,你学会了吗?

活动目的:此处主要是想让学生经历运用不等式解决实际问题的过程。

活动效果:学生对这类问题比较感兴趣,兴趣是最好的老师,所以在分组讨论交流的过程中,都积极的参与并能大胆提出自己解决问题的办法。

活动内容:

借助刚才的经验,学生借助函数关系建立不等式,解决问题。

2.下面,我们要到商店走一趟,看看商家又是如何吸引顾客的,我们又应该想何对策呢?

[例2]某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%.乙商场的优惠条件是:每台优惠20%.(1)分别写出两家商场的收费与所买电脑台数之间的关系式.(2)什么情况下到甲商场购买更优惠?(3)什么情况下到乙商场购买更优惠?(4)什么情况下两家商场的收费相同?

解:设要买x台电脑,购买甲商场的电脑所需费用y1元,购买乙商场的电脑所需费用为y2元.则有

(1)y1=6000+(1-25%)(x-1)×6000=4500x+1500 y2=80%×6000x=4800x

(2)当y1<y2时,有4500x+1500<4800x 解得,x>5 即当所购买电脑超过5台时,到甲商场购买更优惠;(3)当y1>y2时,有4500x+1500>4800x.解得x<5.即当所购买电脑少于5台时,到乙商场买更优惠;(4)当y1=y2时,即4500x+1500=4800x 解得x=5.即当所购买电脑为5台时,两家商场的收费相同.活动目的:此处主要是想起到示范作用,让学生经历运用不等式解决实际问题的过程,进一步体会不等式和函数是刻画现实世界的有效数学模型。活动效果:学生表现得在运用不等式解答问题时,借助函数建立不等关系还是有困难,规范解题不够合理,仍需在作业过程中教师给予适当的指导。

第三环节:运用巩固、练习提高

活动内容:

红枫湖门票是每位45元,20人以上(包含20人)的团体票七五折优惠,现在有18位游客买20人的团体票

(1)比买普通票总共便宜多少钱?

(2)不足20人时,多少人买20人的团体票才比普通票便宜?

活动目的:给学生提供进一步巩固对建立方程模型的基本过程和方法的熟悉机会。解:略.活动效果:多数学生能达到要求

第四环节:课堂小结

活动内容:

本节课我们进一步巩固了不等式在现实生活中的应用,通过这节课的学习,我们学到了不少知识,真正体会到了学有所用.活动目的:让学生进一步体会了应用不等式解决现实生活中的问题的作用。

第五环节:布置作业

习题1.7第1、2题.四、教学反思

1、在一元一次方程的应用中,学生虽然已经接触过做一做和例题这类应用问题,但在本节需要借助函数关系建立不等式,因此做一做和例题这类应用问题对学生来说可能会有一定难度,教学时要引导学生复习以前所学过的有关内容。

2、教学过程中要为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的 4 语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。

3、这堂课教得生动活泼,教学效果好,在一定程度上体现了新课程理念。让学生感受数学与实际结合的魅力。本节课的可贵之处还在于在引导学生从身边的现实问题转化为数学模型的过程中,教师始终把自己摆在组织者、引导者、参与者的立场上,让学生自己通过分析、实践、探究、总结等活动进行学习,培养学生发现问题,提出问题和解决问题的能力。这节数学课的课堂教学应该说较好地体现了素质教育的真谛。

第五篇:一元一次不等式与一次函数(一)教学设计

第一章

一元一次不等式和一元一次不等式组

5.一元一次不等式与一次函数

(一)贵州省清镇市第三中学

唐礼猛

一、学生知识状况分析

学生的知识技能基础:学生在前面已经学习过一次函数,会求一次函数的表达式和画一次函数的图象,在本章前面几节课中,又学习了一元一次不等式概念,具备了解一元一次不等式的基本技能;

学生活动经验基础:在相关知识的学习过程中,学生已经利用一次函数和一元一次不等式解决了一些简单的现实问题,感受到了一次函数和一元一次不等式解决问题的必要性和作用;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析

数学教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个数学教学的远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课属于八下第一章第五节《一元一次不等式与一次函数》第一课时内容,从属于“数与代数”这一数学学习领域,因而务必服务于数与代数教学的远期目标,同时也应力图在学习中逐步达成学生的有关情感态度目标。教科书基于学生对一元一次不等式和一次函数认识的基础之上,提出了本课的具体学习任务,本节课的教学目标是:

1、了解一元一次不等式与一次函数的关系.2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较

3、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.4、训练大家能利用数学知识去解决实际问题的能力.5、体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.三、教学过程分析

本节课设计了五个教学环节:第一环节:情境引入;第二环节:活动探究、合作学习;第三环节:运用巩固、练习提高;第四环节:课堂小结;第五环节:布置作业。

第一环节:情境引入

活动内容:

上节课我们学习了一元一次不等式的解法,那么,是不是不等式的知识是孤立的呢?

活动目的:以“旧”引“新”,由原有的知识为基础,探讨新的内容。

活动效果:学生在回忆中探索本课时的内容,从而降低了学生们“入室”的门槛.第二环节:活动探究、合作学习

活动内容:

下面我们来探讨一下一元一次不等式与一次函数的图象之间的关系.1.导探激励

作出函数y=2x-5的图象,观察图象回答下列问题.(1)x取哪些值时,2x-5=0?(3)x取哪些值时,2x-5<0?(2)x取哪些值时,2x-5>0?(4)x取哪些值时,2x-5>3?

学生活动:讨论后回答。

活动目的:通过作函数图象、观察函数图象,进一步理解函数概念,并从中初步体会一元一次不等式与一次函数的内在联系。(1)当y=0时,2x-5=0, ∴x=55, ∴当x=时,2x-5=0.22(2)要找2x-5>0的x的值,也就是函数值y大于0时所对应的x的值,从图象上可知,y>0时,图象在x轴上方,图象上任一点所对应的x值都满足条件,当y=0时,则555.当x>时,由y=2x-5可知 y>0.因此当x>时,2x-5>0;2225(3)同理可知,当x<时,有2x-5<0;2有2x-5=0,解得x=(4)要使2x-5>3,也就是y=2x-5中的y大于3,那么过纵坐标为3的点作一条直线平行于x轴,这条直线与y=2x-5相交于一点B(4,3),则当x>4时,有2x-5>3.活动效果:学生由讨论可见,一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于0时即为方程,当函数值大于或小于0时即为不等式。

2.想一想 活动内容:

如果y=-2x-5,那么当x取何值时,y>0? 学生活动:在刚才讨论的基础上,学生尝试解决问题。

活动目的:通过具体问题初步体会一次函数的变化规律与一元一次不等式解集的联系。

首先要画出函数y=-2x-5的图象,如图:

从图象上可知,图象在x轴上方时,图象上每一点所对应的y的值都大于0,而每一个y的值所对应的x的值都在A点的左侧,即为小于-2.5的数,由-2x-5=0,得x=-2.5,所以当x取小于-2.5的值时,y>0。活动效果:通过完成这题进一步培养了学生的数形结合意识。3.达测深化

活动内容:先画出图象,然后讨论回答。

兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题:

(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?

(3)谁先跑过20 m?谁先跑过100 m?(4)你是怎样求解的?与同伴交流.活动目的:感知不等式、函数、方程的不同作用与内在联系。

[解]设兄弟俩赛跑的时间为x秒.哥哥跑过的路程为y1,弟弟跑过的路程为y2,根据题意,得

y1=4x y2=3x+9 函数图象如图:

从图象上来看:

(1)当0<x<9时,弟弟跑在哥哥前面;(2)当x>9时,哥哥跑在弟弟前面;(3)弟弟先跑过20m,哥哥先跑过100m;(4)从图象上直接可以观察出(1)、(2)小题,在回答第(3)题时,过y 轴上20这一点作x轴的平行线,它与y1=4x,y2=3x+9分别有两个交点,每一交点都对应一个x值,哪个x的值小,说明用的时间就短.同理可知谁先跑过100 m.活动效果:绝大部分学生都能画出函数图象,并能借助函数图象完成上述问题。

第三环节:运用巩固、练习提高

1.已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.活动内容:让学生分小组交流后作出解答,教师进行点评。

活动目的:一方面对上环节中解决此类问题的方法进行巩固,另一方面,让学生在合作学习的过程中进一步体验一元一次不等式与一次函数的图象之间的结合是解决此类问题核心所在.解:如图所示:

当x取小于7的值时,有y1>y2.4活动效果:学生在解答上述问题时,表现出极大的兴趣,90%的学生能够顺利完成.第四环节:课时小结

活动内容:

本节课讨论了一元一次不等式与一次函数的关系,并且能根据一次函数的图象求解不等式。

活动目的:让学生通过自我反思性活动增强对相关知识和方法的理解水平。感受到数学的作用。

第五环节:布置作业

读一读

习题1.6 1、2

四、教学反思

1、函数、方程、不等式都是刻画现实世界中量与量之间变化规律的重要模型。本节的目的就是通过具体例子渗透三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用。本节课的教学过程中应注意引导学生初步体会从整体中把握部分的思维方法,渗透函数、方程、不等式思想和数形结合等重要的数学思想,拓宽学生视野。相信学生并为学生提供充分展示自己的机会

2、教学过程中要为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。

3、注意改进的方面:

在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。

下载《6.6 一次函数、一元一次方程和一元一次不等式》教学设计word格式文档
下载《6.6 一次函数、一元一次方程和一元一次不等式》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一次函数与一元一次不等式(5篇模版)

    初三数学: 一次函数与一元一次不等式导学案 课型:新授设计人:审核:时间;2010.8.21 学习目标:1、认识一元一次不等式与一次函数问题的转化关系 2.学会用图象法求解不等式 3.进一步理解......

    一次函数与一元一次不等式练习题

    一次函数与一元一次不等式练习题 一、选择题 1.直线y=x-1上的点在x轴上方时对应的自变量的范围是 A.x>1B.x≥1C.x0(k≠0)的解集是x>-3,则直线y=-kx+2与x•轴的交点是__________. 8.已......

    教案-一元一次不等式与一次函数

    一元一次不等式与一次函数教案 一.课题: 一元一次不等式与一次函数 二.课型:新授课 三.教学目标 1.认知目标:利用一次函数图象来解决一元一次不等式 2.能力目标:看图解题 3.情感......

    一元一次不等式与一次函数教案

    课内比教学教案 教学内容一元一次不等式与一次函数 柳河中学八年级 尹正明 一、教学目的与要求 1.体会一元一次不等式的知识在现实生活中的应用; 2.通过用不等式的知识去解......

    一元一次不等式教学设计

    一元一次不等式导学提纲 主备课人:辛高鹏 审核:初二数学组 时间:2011.4 教学目标: 掌握一元一次不等式的解法,能熟练的解一元一次不等式 教学重点:是掌握解一元一次不等式的步......

    一元一次不等式教学设计

    一元一次不等式教学设计 李寨中学 樊利军 一、学习目标 1.了解一元一次不等式的定义。 2.掌握一元一次不等式的解法。 3.培训学生运用类比方法处理相关内容的能力。 二、能力......

    一元一次不等式教学设计

    一元一次不等式教学设计 歇马镇中心学校 吴秀珍 教学目标:掌握一元一次不等式的解法,能熟练的解一元一次不等。 教学重点:掌握解一元一次不等式的步骤。 教学难点:必须切实......

    《一元一次不等式》教学设计

    《一元一次不等式1》教学设计 课标要求: 能解数字系数的一元一次不等式,并能在数轴上表示出解集,能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。 内容分析:......