第一篇:高三物理教案 追及与相遇问题复习
高三物理教案 追及与相遇问题复习
一、相遇
指两物体分别从相距x的两地运动到同一位置,它的特点是:两物体运动的位移的矢量和等于x,分析时要注意:
⑴、两物体是否同时开始运动,两物体运动至相遇时运动时间可建立某种关系;
⑵、两物体各做什么形式的运动;
⑶、由两者的时间关系,根据两者的运动形式建立位移的矢量方程。
【例1】1999年5月11日《北京晚报》报道了一位青年奋勇接住一个从15层高楼窗口落下的孩子的事迹。设每层楼高是2.8m,这位青年所在的地方离高楼的水平距离为12m,这位青年以6m/s的速度匀速冲到楼窗口下方,请你估算出他要接住小孩至多允许他有的反应时间(反应时间指人从发现情况到采取相应行动经过的时间)。(g取10m/s2)【答案】0.8s
【针对练习1】一人站在离公路h=50m远处,如图所示,公路上有一辆汽车以v1=10m/s的速度行驶,当汽车到A点与在B点的人相距d=200m时,人以v2=3m/s的平均速度奔跑,为了使人跑到公路上恰与汽车相遇,则此人应该朝哪个方向跑?
【答案】此人要朝与AB连线夹角=arcsin(5/6)的方向跑
二、追及
指两物体同向运动而达到同一位置。找出两者的时间关系、位移关系是解决追及问题的关键,同时追及物与被追及物的速度恰好相等时临界条件,往往是解决问题的重要条件:
(1)类型一:一定能追上类
特点:
①追击者的速度最终能超过被追击者的速度。
②追上之前有最大距离发生在两者速度相等时。
【例2】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车前方相距18m的地方以6m/s的速度匀速行驶,则何时相距最远?最远间距是多少?何时相遇?相遇时汽车速度是多大?
【方法提炼】解决这类追击问题的思路:
①根据对两物体运动过程的分析,画运动示意图
②由运动示意图中找两物体间的位移关系,时间关系
③联立方程求解,并对结果加以验证
【针对练习2】一辆执勤的警车停在公路边,当警员发现从他旁边驶过的货车(以8m/s的速度匀速行驶)有违章行为时,决定前去追赶,经2.5s将警车发动起来,以2m/s2的加速度匀加速追赶。求:①发现后经多长时间能追上违章货车?②追上前,两车最大间距是多少?
(2)、类型二:不一定能追上类 特点:
①被追击者的速度最终能超过追击者的速度。
②两者速度相等时如果还没有追上,则追不上,且有最小距离。
【例3】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车后方相距20m的地方以6m/s的速度匀速行驶,则自行车能否追上汽车?若追不上,两车间的最小间距是多少?
【针对练习3】例3中若汽车在自行车前方4m的地方,则自行车能否追上汽车?若能,两车经多长时间相遇?
【答案】能追上。
设经过t追上;则有x汽+x0=x自;
3t2/2+4=6t
得t=(623)/3s,二次相遇
第二篇:运动学——追及与相遇问题
●“运动学”中的追及和相遇问题
1、“匀加速直线运动”追“匀速直线运动”:何时相距最远、何时相遇
2、“匀速直线运动”追“匀加速直线运动”:
处理方法:求出“速度相等”时的时间t,再求出各自的位移,然后利用“位移关系”讨论。
3、“匀速直线运动”追“匀减速直线运动”
三种情况:追上时仍在运动、追上时刚好停止、追上早已停止
处理方法:求出“匀减速物体速度减到0”的时间t,再求出各自的位移,然后利用“位移关系”讨论。
例:A、B两物体相距s=7m,A正以VA=4m/s向右匀速运动,而B此时做VB=10m/s、a=2m/s2的减速运动,问从此时开始经多少时间A追上B。
4、“匀减速直线运动”追“匀速直线运动”
处理方法:求出“速度相等”时的时间t,再求出各自的位移,然后利用“位移关系”讨论
例:汽车正以10m/s的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s2的匀减速运动,汽车恰好不碰上自行车、求关闭油门时汽车离自行车多远?
练:经检测汽车A的制动性能:以标准速度20m/s在平直公路上行使时,制动后40s停下来。现A在平直公路上以20m/s的速度行使发现前方180m处有一货车B以6m/s的速度同向匀速行使,司机立即制动,能否发生撞车事故?
第三篇:六年级总复习(百分比 比例 相遇 追及问题)
相遇问题
【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。【数量关系】 相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间
【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
解 392÷(28+21)=8(小时)答:经过8小时两船相遇。
例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
解 “第二次相遇”可以理解为二人跑了两圈。因此总路程为400×2 相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。
例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解 “两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。
追及问题
【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。
【数量关系】 追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马? 解(1)劣马先走12天能走多少千米? 75×12=900(千米)(2)好马几天追上劣马? 900÷(120-75)=20(天)列成综合算式 75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马。
例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。解 小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是
(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米。
例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
解 敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-16)]千米,甲乙两地相距60千米。由此推知
追及时间=[10×(22-16)+60]÷(30-10)=120÷20=6(小时)答:解放军在6小时后可以追上敌人。
例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
解 这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为 16×2÷(48-40)=4(小时)所以两站间的距离为(48+40)×4=352(千米)
列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙两站的距离是352千米。
例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?
解 要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为 180×2÷(90-60)=12(分钟)
家离学校的距离为 90×12-180=900(米)答:家离学校有900米远。
例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。
解 手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。
所以 步行1千米所用时间为 1÷[9-(10-5)]=0.25(小时)=15(分钟)跑步1千米所用时间为 15-[9-(10-5)]=11(分钟)跑步速度为每小时 1÷11/60=5.5(千米)答:孙亮跑步速度为每小时 5.5千米。按比例分配问题
【含义】 所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。
【数量关系】 从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数=比的前后项之和
【解题思路和方法】 先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。
例1 学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵? 解 总份数为 47+48+45=140 一班植树 560×47/140=188(棵)二班植树 560×48/140=192(棵)
三班植树 560×45/140=180(棵)答:一、二、三班分别植树188棵、192棵、180棵。
例2 用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。三条边的长各是多少厘米? 解 3+4+5=12 60×3/12=15(厘米)
60×4/12=20(厘米)60×5/12=25(厘米)
答:三角形三条边的长分别是15厘米、20厘米、25厘米。
例3 从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。
解 如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到
1/2∶1/3∶1/9=9∶6∶2 9+6+2=17 17×9/17=9 17×6/17=6 17×2/17=2 答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。
例4 某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人?
答:三个车间一共820人。
百分数问题
【含义】 百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需;分数既可以表示“率”,也可以表示“量”,而百分数只能表示“率”;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号“%”。
在实际中和常用到“百分点”这个概念,一个百分点就是1%,两个百分点就是2%。【数量关系】 掌握“百分数”、“标准量”“比较量”三者之间的数量关系: 百分数=比较量÷标准量 标准量=比较量÷百分数
【解题思路和方法】 一般有三种基本类型:(1)求一个数是另一个数的百分之几;(2)已知一个数,求它的百分之几是多少;(3)已知一个数的百分之几是多少,求这个数。
例1 仓库里有一批化肥,用去720千克,剩下6480千克,用去的与剩下的各占原重量的百分之几? 解(1)用去的占 720÷(720+6480)=10%(2)剩下的占 6480÷(720+6480)=90% 答:用去了10%,剩下90%。
例2 红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几? 解 本题中女职工人数为标准量,男职工比女职工少的人数是比较量 所以(525-420)÷525=0.2=20% 或者 1-420÷525=0.2=20% 答:男职工人数比女职工少20%。
例3 红旗化工厂有男职工420人,女职工525人,女职工比男职工人数多百分之几? 解 本题中以男职工人数为标准量,女职工比男职工多的人数为比较量,因此(525-420)÷420=0.25=25% 或者 525÷420-1=0.25=25% 答:女职工人数比男职工多25%。
例4 红旗化工厂有男职工420人,有女职工525人,男、女职工各占全厂职工总数的百分之几? 解(1)男职工占 420÷(420+525)=0.444=44.4%(2)女职工占 525÷(420+525)=0.556=55.6% 答:男职工占全厂职工总数的44.4%,女职工占55.6%。
例5 百分数又叫百分率,百分率在工农业生产中应用很广泛,常见的百分率有: 增长率=增长数÷原来基数×100% 合格率=合格产品数÷产品总数×100% 出勤率=实际出勤人数÷应出勤人数×100% 出勤率=实际出勤天数÷应出勤天数×100% 缺席率=缺席人数÷实有总人数×100% 发芽率=发芽种子数÷试验种子总数×100% 成活率=成活棵数÷种植总棵数×100% 出粉率=面粉重量÷小麦重量×100% 出油率=油的重量÷油料重量×100% 废品率=废品数量÷全部产品数量×100% 命中率=命中次数÷总次数×100% 烘干率=烘干后重量÷烘前重量×100% 及格率=及格人数÷参加考试人数×100%
第四篇:应用题--行程问题(相遇,追及问题)
列方程解应用题之
行程问题
教学目的
1.知识与能力: 使学生会分析不同类型的相遇及追及问题中的相等关系,列出一元一次方程解简单的应用题。
2.过程与方法: 使学生加强了解列一元一次方程解应用题的方法步骤。
3.情感态度与价值观: 通过小组合作,加强同学们之间的交流以及团结互助的精神。
教学重点
利用路程、速度、时间的关系,根据相遇及追及问题中的等量关系,列出一元一次方程。
教学难点
寻找相遇及追及问题中的等量关系。教学过程
一、导入
想一想回答下面的问题:
1、A、B两车分别从相距S千米的甲、乙两地同时出发,相向而行,两车会相遇吗?
2、如果两车相遇,则相遇时两车所走的路程与甲、乙两地的距离有什么关系?
3、如果两车同向而行,B车先出发a小时,在什么情况下两车能相遇?为什么?
4、如果A车能追上B车,你能画出线段图吗?
二、例题1
A、B两车分别停靠在相距240千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米。若两车同时相向而行,请问B车行了多长时间后与A车相遇?
三、练习1(1)挖一条长2200m 的水渠,由甲、乙两队从两头同时施工。甲队每天挖 130m,乙队每天挖90m,挖好水渠需要几天?
(2)A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。
若两车相向而行,请问B车行了多长时间后与A车相遇?
四、例题2
小明每天早上要在7:50之前赶到距离家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上他。
(1)爸爸追上小明用了多少时间?(2)追上小明时,距离学校还有多远?
五、练习2(3)A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。
若两车同向而行(B车在A车前面),请问B车行了多长时间后被A车追上?
(4)小王、叔叔在400米长的环形跑道上练习跑步,小王每秒跑5米,叔叔每秒跑7.5米。(1)若两人同时同地反向出发,多长时间两人首次相遇?(2)若两人同时同地同向出发,多长时间两人首次相遇?
六、归纳总结
1、如何区分相遇问题和追及问题?
2、解行程问题有何诀窍?相遇:相等关系:A车路程+B车路程=相距路程 追及:B车路程=A车先路程+A车后行路程 或B车路程=A车路程+相距路程
3、在列一元一次方程解行程问题时,我们常画出线段图来分析数量关系。用线段图来分析数量关系能够帮助我们更好的理解题意,找到适合题意的等量关系式,设出适合的未知数,列出方程。正确地作出线段图分析数量关系,能使我们分析问题和解问题的能力得到提高。
七、作业布置
导学案106-108练习。
第五篇:相遇问题之整理与复习教案
《整理与复习——解决问题》
宜宾市中山街小学校
张琴
教学内容:西师版教材8册二单元整理与复习(相遇问题)
教学目标:
1、能在具体情境中巩固相遇问题的数量关系,并形成解决此类问题的数学模型。
2、在经历解决问题的过程中,体验学习从日常生活中收集、提炼的方法和策略。
3、在自主探索与合作交流的过程中,初步学会表达解决问题的大致过程和结果,积累合作解决问题的经验。教学重难点:巩固相遇问题的解决方法,增强解决问题的策略意识。教学过程:
一 生活情境,导入复习
(板书课题:整理复习——相遇问题)
师:在二单元我们的解决问题一共学习了3个类型,今天我们将针对相遇问题进行整理和复习,我知道你们都是聪明的孩子,想不想在今天的学习中有所突破呢?
生:想。
师:请孩子们试着回忆:相遇问题都包含着3个量,它们分别是什么?它们之间有着什么样的数学关系呢?
生: 速度和 × 相遇时间=总路程(板书)师:孩子们真棒,现在我们就跟随这3个量以及它们的数量关系走进我们的复习之旅。
课件展示:(一组乐山大佛的照片)
师:乐山大佛是我们比较熟悉的景点,在去年假期,张老师一家与成都一个朋友相约到大佛游玩。计划行程时,遇到这样一道题,想请孩子们帮忙解决。
二、初级尝试整理
(课件)
张老师一家从宜宾出发,每小时行69千米。朋友一家同时从成都出发,每小时行112千米。两车行驶2小时后在乐山相遇。宜乐成高速公路长多少千米?
师:我们解决问题的步骤以前有:1读2找3思4写5验,今天老师想让孩子们再添一个步骤6分享(板书)。现在请同学们以这个步骤独立在题单上试着解答此题,并与同桌分享一下你的想法。
生独立完成后与同桌交流。师巡视。抽生汇报,说想法。生:(69+112)×2=181×2=362(千米)实时激励
师:同学们的掌声已经证明了你的优秀。
师:通过此题我们了解到:求总路程得已知速度和、相遇时间,那如果要求相遇时间又得知道些什么呢?(生:总路程、速度和)现在我们利用刚才此题的数学信息你能把这道题改编成求相遇时间的题吗?
生:能。
师:行,那我们来试试改编。步骤:先独立思考,再与同桌交流(把改编
好的题讲给同桌听就行,不用写下来),最后全班交流。
生独立思考、交流后,师抽生汇报。(展示课件)
宜乐成高速公路的距离长362千米,张老师一家从宜宾出发,每小时行69千米。朋友一家同时从成都出发,每小时行112千米。两车行驶几小时后相遇?
师:看看屏幕上的题,和你的想法一样吗?(一样)我们试着把它解决出来。
注意要求:列式解答并与同桌分享想法。
生独立解答,师巡视后抽生分析汇报,说解题想法。(把完成的作业用展示台展示出来)
362÷(69+112)=362÷181=2(小时)——计算有困难的同学可以提示用乘除法之间的关系来解决。
师:孩子们刚才表现非常棒,总路程÷速度和=相遇时间。那如果我们要把此题改编成求速度和的题能行吗?(能)你们又能解决吗?(能)那我们来说说求速度和需要的信息(生叙述)
师:回头看看刚才两题,(课件倒回去)这些题都是我们行程类相遇问题中的基本题型。而总路程、速度和、相遇时间就是我们要解决相遇问题所必须知道的量。利用速度和 ×相遇时间 = 总路程 这样一个基本数量关系,千变万化的相遇问题我们也能迎刃而解。三、一级尝试整理
师:现在孩子们有没有信心试着解决几道稍复杂的相遇问题? 生:有。
师:请看题单。读一读要求。
(课件)要求:
1、默读题后独立列式不解答。
2、试着说说你的想法。
1、宜乐成高速公路的距离长362千米,张老师一家从宜宾出发,朋友一家同时从成都出发,两车行驶2小时后在乐山相遇。张老师车每小时行69千米。朋友车每小时行驶多少千米?
2、宜乐成高速公路的距离长362千米。朋友车从成都出发,每小时行100千米。朋友车先行24千米后张老师车从宜宾出发,每小时行69千米。两车再过几小时相遇?
3、游完乐山大佛,张老师一家和朋友在乐山分手,张老师车以每时69千米的速度开往宜宾,朋友车以每时112千米的速度开往成都。经过2小时后,两车相距多少千米?
学生独立完成,师巡视指导。对于有困难的孩子,老师可以利用线段图帮助分析。
每一题都分别抽生汇报,说想法,引争论。作业展示(关注中差生,注意反馈信息,利用错题展示帮助分析)1、362÷2-69
2、(362-24)÷(100+69)
3、(70+80)×12(汇报时请学生说想法,老师带着孩子们画线段图分析,用手势分析等手段帮助理清总路程、相遇时间、速度和这3个量在之几道题中的隐藏障碍)
师:通过刚才的尝试,同学们解决了这3道题。现在我们回头整理一下,从1题中我们了解到求一个运动体的速度,得先利用总路程÷相遇时间=速度和。从2题中了解到两物体的出发时间不同而要求相遇时间得先减去先行物体所走的路程部分,剩下路程才是共同行驶的总路程。从3题中了解到背向而行求相距路程的解决方法与相向而行求总路程的解决方法一样。
师:通过刚才的试一试,我们挑战了有障碍条件的相遇问题,孩子们有没有兴趣继续挑战下去?
生:想。
四、高级尝试整理
师:请看屏幕,读一读要求。(独立思考后与同桌讨论解决方法)课件展示:
议一议,两位老师的出发地相距多少米?
张老师和郑老师同时从对面走来,郑老师每分钟走52米,张老师每分钟走48米。
一级挑战:如果他们走了10分钟,还相距50米,那么。。。高级挑战:如果他们走了10分钟交错而过,又相距50米,那么。。。
生独立完成,师巡视后抽生汇报。(板书)
1、(52+48)×10+50
2、(52+48)×10-50 学生汇报时,老师继续强调总路程、速度和、相遇时间这几个量的具体指向。
五、回顾总结,拓展思维
师:40分钟的时间真是短暂,这节课我们已经接近尾声。现在我们来回顾这节课,孩子们觉得自己收获了什么?小组讨论一下,晒晒自己的收获。完成题单最后的“通过整理知道:”
生:通过这节课的整理,我们学会了怎样解决相遇问题。
生:相遇问题条件不管怎么变化,它的数量之间的关系是不会变的。生:我知道了以后解觉相遇问题可以通过刚才这些数学模型来解答。。。。
师:是的,这一节课我们通过整理和复习得到了一系列解决相遇问题的策略与方法,也知道在生活中不同条件的相遇问题还有很多,但不管怎样变化,孩子们牢牢记住数量之间的关系不变,只要经过分析就一定能解决。
六、学以致用,当堂检验
师:知识的检验得用实践来证明,请孩子们回家后像老师一样整理出一份工程问题的复习学案出来好吗? 板书设计:
整理与复习——相遇问题
速度和 × 相遇时间=总路程
(69+112)×2
线段图:
解题6步骤:
=181×2 =362(千米)