第一篇:塑性成形工艺及模具设计课程教案
精编资料
自由锻工艺过程设计方法.2,模具形状对金属塑性变形和流动的影响.3,课堂进行一简单锻件的自由锻工艺过程设计.六,所需学时2学时第八次讲课...工艺
《塑性成形工艺及模具设计》课程教案之二《锻造工艺学》辅导教案
关 小 军
材料科学与工程学院 材料加工工程系
第一次讲课
一、讲授内容
第一章
绪论
一、锻造工艺学及其性质
二、锻造生产的特点及其在国民经济中的作用
三、我国锻造生产的历史,现状及发展趋势
四、锻造生产方法的分类及工艺流程
五、课程的任务。
第二章
锻造用原材料及下料方法 第一节
锻造用钢锭及型材
一、钢锭及其冶炼.二、钢锭的结构
三、钢锭的内部缺陷
四、型材及其常见缺陷
第二节
下料方法
一、剪切法
二、锯切法
三、砂轮片切割法
四、折断法
五、气割法
六、其它下料方法
二、难点
1、钢锭和型材的缺陷产生原因及其危害。
2、各种下料方法的原理。
三、基本概念
偏析、夹杂、缩孔、疏松、溅疤、划痕、折迭、粗晶环
四、思考题
1、试阐述镇静钢锭的结构及其主要缺陷的产生部位。
2、钢锭常见缺陷有哪些?它们产生的原因和危害性是什么?
3、常见的型材缺陷有哪些?它们产生的原因和危害性是什么?
4、锻造用型材常采用哪些方法下料?各自有何特点?
5、铸锭作为锻造坯料时如何下料?
五、要求重点掌握的知识点
1、钢锭结构及其常见内部缺陷。
2、型材及其常见缺陷。
3、常用下料方法及其选择原则。
六、所需学时
2小时
第二次讲课
一、讲授内容
第三章
锻造的热规范 第—节
金属的锻前加热
一、加热的目的二、加热方法
第二节
金属加热时产生的缺陷及防止措施
一、氧化
二、脱碳
三、过热
四、过烧
五、裂纹
第三节
锻造温度范围的确定
一、始锻温度的确定
二、终锻温度的确定
第四节
金属的加热规范
一、加热规范制定的原则及方法
二、钢锭的加热规范
三、中、小型钢坯的加热规范
二、难点
1、氧化和脱碳的共性和异性。
2、过热和过烧的相关性及其区别
3、加热过程温度应力、组织应力和残余应力的产生机理及其应力分析。
4、始锻温度和终锻温度正确选择的必要性。
5、加热速度的影响因素及其影响规律。
三、基本概念
加热规范、氧化、脱碳、过热、过烧、过热温度、过烧温度、始锻温度、终锻温度、锻造温度范围、金属加热规范、最大可能的加热温度、允许的加热温度、温度头、均热保温、最小保温时间、最大保温时间
四、思考题
1、试说明锻前加热的目的和方法。
2、氧化和脱碳有哪些共性和异性?
3、氧化和脱碳可产生哪些危害?如何防止?
4、过烧和过热有哪些危害? 如何防止?
5、导致裂纹产生的内应力有几种?清阐述它们相应的应力状态。
6、通常圆柱形坯料产生加热裂纹的危险位置在何处?原因何在?如何防止?
7、锻造温度范围的确定原则和基本方法是什么?
8、怎样确定碳钢的始锻和终锻温度?它们受到哪些因素的影响?
9、为什么要制定合理的加热规范?加热规范包括哪些内容?其核心问题是什么?
10、两种不同概念的加热速度实质上反映了什么因素的影响?
11、选择加热速度的原则是什么?提高加热速度的措施有哪些?
12、均热保温的目的是什么?
13、冷锭和热锭的加热规范各有什么特点?为什么?、五、要求重点掌握的知识点
1、锻前加热的目的和方法。
2、加热金属的常见缺陷及其危害。
3、金属加热过程中缺陷的产生原因和防止措施。
4、加热规范的内容、制定原则和方法。
六、所需学时
2学时
第三次讲课
一、讲授内容
第三章
锻造的热规范 第五节
少无氧化加热
一、快速加热
二、介质保护加热
三、少无氧化火焰加热
第六节
金属的锻后冷却
一、锻后冷却常见缺陷产生的原因和防止措施
二、锻件的冷却方法
三、锻件的冷却规范
第七节
锻件的热处理
一、中、小锻件热处理
二、大型锻件热处理
二、难点
1、少无氧化火焰加热法的工作原理。
2、冷却过程温度应力、组织应力和残余应力的产生机理及其应力分析。
3、冷却速度的影响因素及其影响规律。
三、基本概念
冷却规范、白点、网状碳化物
四、思考题
1、少无氧化加热主要有哪几种方法?其中火焰加热法的基本工作原理是什么?
2、金属断后冷却常见缺陷有哪些?各自产生原因是什么?
3、为什么硬钢锻后冷却易产生表面纵向裂纹?
4、金属锻后冷却规范一般包括哪些内容?
5、锻件热处理的目的是什么?
6、中小锻件通常采用哪些热处理?各自作用是什么?
7、通常大锻件采用哪些热处理?各自作用是什么?
五、要求重点掌握的知识点
1、少无氧化加热方法及其工作原理。
2、金属锻后冷却常见缺陷及其危害。
3、金属锻后冷却中缺陷的产生原因和防止措施。
4、冷却规范的内容、制定原则和方法。
5、常用的锻件热处理方法。
六、所需学时
2学时
第四次讲课
一、讲授内容
第四章
自由锻主要工序分析 第—节
概述
一、影响金属塑性变形流动的几个基本因素
二、局部加载时沿加载方向的应力分布规律
三、金属塑性变形的不均匀性
四、塑性变形时金属的流动方向
第二节
镦粗
一、镦粗工序的主要质量问题和变形流动特点
二、镦粗时的注意事项
第三节
拔长
—、矩形截面坯料的拔长
二、圆截面坯料的拔长
三、空心件拔长
二、难点
1.金属塑性变形的基本规律和影响因素。2.在几种变形工序中金属流动规律的分析。
3.镦粗时金属流动特点及其缺陷产生机理(包括圆截面和矩形截面坯料)。4.拔长时金属流动特点及其缺陷产生机理(包括矩形截面、圆截面和空心截面坯料)。
三、基本概念
镦粗、拔长、镦粗比、锻造比、进料比(相对送进量)、相对压缩程度
四、思考题
1、导致金属塑性变形不均匀性的原因是什么?
2、镦粗和拔长各有哪些用途?
3、镦粗工序主要存在哪些质量问题?试分析它们产生的原因及其预防措施。
4、拔长工序主要存在哪些质量问题?试分析它们产生的原因及其预防措施。
5、为什么采用平砧小压缩量拔长圆截面坯料时效率低且质量差?应怎样解决?
6、空心件拔长时孔内壁和端面裂纹产生的原因是什么?应采取哪些措施加以解决?
五、要求重点掌握的知识点
1、金属塑性变形所遵循的基本规律和影响因素。
2、镦粗、拔长工序的金属受力分析。
2、镦粗、拔长工序的金属变形和流动特点。
3、镦粗、拔长时常见金属缺陷、产生机理及其预防措施。
六、所需学时
3学时
第五次讲课
一、讲授内容
第四章
自由锻主要工序分析
第四节
冲孔
一、冲孔的受力变形分析
二、冲孔的质量分析
第五节
扩孔
一、冲子
二、芯轴
三、辗压
第六节 弯曲
第七节 其它工序(补充内容)
一、错移
二、扭转
二、难点
1、冲孔时受力、变形和缺陷产生原因的分析。
2、扩孔时受力、变形和缺陷产生原因的分析。
3、弯曲时受力、变形和缺陷产生原因的分析。
三、基本概念
冲孔、走样、扩孔、弯曲
四、思考题
1、试阐述开式冲孔时金属变形和流动特点并画出相应的应力、应变图。
2、冲孔时易出现哪些质量问题?应采取什么措施解决?
3、试阐述冲子扩孔时金属变形和流动特点并画出相应的应力、应变图。
4、芯轴扩孔时金属主要沿切向流动的原因是什么?此时锻件尺寸变化特点是什么?应怎样防止壁厚不均?
5、辗压扩孔的工艺特点是什么?生产时易产生哪些质量缺陷?怎样防止?
6、弯曲时坯料易产生哪些缺陷?它们产生的原因是什么?
五、要求重点掌握的知识点
1、冲孔、扩孔、弯曲工序的应力、应变分析。
2、冲孔、扩孔、弯曲工序的金属变形和流动特点。
3、冲孔、扩孔、弯曲工序中常见的加工缺陷种类、产生原因及其预防措施。
六、所需学时
2学时
第六次讲课
一、讲授内容
第五章 自由锻工艺
第—节 自由锻件的分类
第二节 自由锻件变形方案的确定 第三节 自由锻工艺过程的制定
一、锻件图的制定
二、确定坯料的重量和尺寸
三、确定变形工艺和锻造比
四、确定锻造设备吨位
第四节
大型锻件锻造的特点(自学)—、钢锭冶金质量对锻件的影响
二、大型钢锭的加热特点
三、热锻变形对金属组织和性能的影响
四、大锻件变形工艺分析
二、难点
自由锻件变形方案的确定
三、基本概念
机械加工余量、锻造余块、试样余块、锻件工称尺寸、锻造比
四、思考题
1、自由锻工艺的特点及其主要用途是什么?不同材料自由锻面临的主要问题是什么?为什么?
2、试述自由锻件的分类及其采用的基本工序。
3、自由锻工艺过程的制定包括哪些内容?
4、锻造比对锻件组织和力学性能有哪些影响?其选择与锻件大小有何关系?
5、确定自由锻设备吨位有几种方法?为什么水压机锻造所依据的变形力能参数不同?
五、要求重点掌握的知识点
1、常见自由锻件的分类。
2、自由锻件变形方案的选择原则和实际应用。
3、考虑机械加工余量、锻造公差、锻造余块、试样余块等影响所绘制的锻件图。
4、坯料重量的计算方法。
5、变形工艺特别是工序顺序、工序尺寸、锻造比等的确定。
6、设备吨位的计算公式。
六、所需学时 1学时
第七次讲课与课堂练习
一、讲授内容
第五章 第三节
五、自由锻工艺过程制定举例 第六章
模锻成形工序分析
第一节 概述
二、难点
1、如何掌握自由锻工艺过程设计方法
3、所选择的自由锻过程中各工序尺寸的确定。
三、思考题
模具形状对金属变形和流动的主要影响表现在哪些方面?
五、要求重点掌握的知识点
1、自由锻工艺过程设计方法。
2、模具形状对金属塑性变形和流动的影响。
3、课堂进行一简单锻件的自由锻工艺过程设计。
六、所需学时
2学时
第八次讲课
一、讲授内容
第六章 模锻成形工序分析 第二节
开式模锻
一、开式模锻各阶段的应力应变分析
二、开式模锻时影响金属成形的主要因素 第三节
闭式模锻
一、闭式模锻的变形过程分析
二、坯料体积和模膛体积变化对锻件尺寸的影响
三、打击能量和模压力对成形质量的影响
四、各类锻压设备闭式模锻的特点
二、难点
1、开式模锻的应力应变分析。
2、闭式模锻的变形过程分析。
三、基本概念
开式模锻、闭式模锻、飞边槽
四、思考题
1、试分析开式模锻三变形阶段的应力应变状态及其成形特点。
2、开式模锻时影响金属成形主要有哪些因素?
3、飞边槽由几部分组成?它们各自的作用是什么?
4、桥口阻力与哪些因素有关?怎样依据模膛充满的难易程度或设备类型来确定桥口尺寸?
5、闭式模锻的优点是什么?它的正常生产条件及其用途是怎样的?
6、试述闭式模锻三变形阶段的变形情况。
7、闭式模锻模壁受力情况与锻件尺寸关系有何关系?
8、闭式模锻时坯料和体积的变化反映在锻件的哪些尺寸上?影响它们变化的因素有哪些?
五、要求重点掌握的知识点
1、开式模锻各阶段的应力应变图及其分析。
2、模膛尺寸和形状对金属成形的影响。
3、飞边槽的作用、类型及其选择。
4、终锻前坯料尺寸和形状对金属成形的影响。
5、坯料自身性质不均对金属成形的影响。
6、设备工作速度对金属成形的影响。
7、闭式模锻的变形过程分析。
8、坯料体积、模膛体积、打击能量和模压力变化对闭式模锻成形质量的影响。
六、所需学时
2学时
第九次讲课
一、讲授内容
第六章
模锻成形工序分析 第四节 挤压
一、挤压的应力应变分析
二、挤压时筒内金属的变形流动
三、关于“死区”的应力应变分析
四、挤压时常见缺陷的分析
五、径向挤压 第五节
顶镦
一、顶镦
二、电热镦粗
三、在带有导向的模具中镦粗
二、难点
1、挤压的应力应变分析
2、挤压筒内金属的变形流动特点、规律及其影响因素。
3、关于“死区”的应力应变分析及其对成形质量的不良影响。
4、常见挤压缺陷及其预防措施。
5、径向挤压的变形分析及其张力计算。
6、两种顶镦情况模具设计原则。
三、基本概念
挤压、正挤压、反挤压、挤压比、径向挤压、张模力、顶镦
四、思考题
1、试进行挤压过程的应力-应变分析并阐明轴向应力突变的原因。
2、平底凹模正挤压时金属在挤压筒内的流动主要有哪三种情形?为什么?
3、平底凹模正挤压时Α区最小主应力σ3的数值受到哪三种因素的影响?它们的影响规律是怎样的?
4、试讨论在各种不同的具体条件下平底凹模内正挤时所出现的金属变形和流动情况。
5、“死区”产生的原因是什么?一般“死区”存在哪两种变形情况?
6、“死区”容易产生哪些缺陷?怎样防止?
7、挤压时常存在哪些缺陷?可采取什么措施防止?
8、径向挤压变形过程的主要特征是什么?张模力与何因素有关?
9、挤压缩孔产生的原因是什么?挤压制品裂纹的产生与哪些因素有关?
五、要求重点掌握的知识点
1、挤压的应力应变分析
2、挤压筒内金属的变形流动特点、规律及其影响因素。
3、“死区”产生原因、应力应变分析及其对成形质量的不良影响。
4、常见挤压缺陷的形成原因及其预防措施。
5、径向挤压的用途、变形分析及其张模力计算。
6、顶镦用途及其模具设计原则。
六、所需学时
2学时
第十次讲课
一、讲授内容
第七章 模锻工艺
第一节 常用模锻设备及其工艺特点(自学)
一、模锻锤
二、热模锻压力机
三、螺旋压力机
四、平锻机
第二节 模锻工艺及模锻件分类
一、长轴类锻件
二、短轴类(圆饼类)锻件
三、顶镦类锻件
四、复合类型锻件
第三节 模锻件图设计
一、锤上模锻锻件图设计
二、热模锻压力机上模锻件图设计特点
三、螺旋压力机上模锻件图设计特点
四、平锻机上模锻件图设计特点
二、难点
1、鉴于《塑性成形设备》课程的讲授在本课程之后,因此,“常用模锻设备及其工艺特点”的知识理解较为困难,建议作为一般了解的知识由学生自学。
2、不同模锻设备上模锻件图的设计特点比较。
3、分模面和冲孔连皮的确定。
4、顶镦的三规则。
三、基本概念
分模面、锻件形状复杂系数、模锻斜度、冲孔连皮
四、思考题
1、简述各类模锻件所采用的主要变形工布。
2、模锻件的冷、热锻件图的作用各是什么?其锻件图设计内容与自由锻件相比有何不同?
3、锤上模锻选择分模位置的最基本原则是什么?
4、为什么模锻件的正偏差大于负偏差?它的机械加工余量和公差怎样选择和确定?
5、模锻斜度和圆角半径的作用是什么?为什么它们应选择合适值?
6、锤上模锻时有几种形式的冲孔连皮?为什么要选择厚度合适的冲孔连皮?
7、试比较各类模锻设备上模锻件图设计特点。
五、要求重点掌握的知识点
1、模锻工艺和模锻件的分类原则及其主要类别。
2、模锻件图设计的主要内容和方法。
3、各类模锻设备上模锻件图设计特点,特别是分模面、机械加工和锻造公差、模锻斜度等的选择原则。
4、冲孔连皮的作用、类型及其选择。
5、顶镦三规则的正确应用。
六、所需学时
3学时
第十一次讲课
一、讲授内容
第七章 模锻工艺
第四节 模锻工艺过程制定的内容和模锻工艺方案选择
一、模锻工艺过程制定的内容
二、模锻工艺方案选择 第五节 模锻变形工步的确定
一、长轴类锻件制坯工步选择
二、难点
1、计算毛坯的设计、简化和计算毛坯图绘制。
2、金属流动繁重系数及其在制坯工步选择中的作用。
三、基本概念
模锻工艺过程、计算毛坯图、金属流动繁重系数
四、思考题
1、模锻工艺过程主要有哪些工序组成?它的制定包括哪些内容且较自由锻工艺过程相比有什么变化?
2、模锻工艺方案选择主要涉及哪些方面?基本原则是什么?
3、试述计算毛坯图的内容及其在制坯工步中的作用。
4、长轴类锻件通常采用的主要制坯工步有哪些?如何确定?
5、金属流动繁重系数是如何反映制坯工作量的大小?它在制坯工步选择中有何作用?
五、要求重点掌握的知识点
1、模锻工艺过程与自由锻工艺过程的异同点。
2、计算毛坯的有关计算及其相应图的绘制。
3、复杂计算毛坯的简化。
4、应用金属流动繁重系数选择长轴类锻件的制坯工步。
六、所需学时:
2学时
第十二次讲课
一、讲授内容
第七章 模锻工艺
第五节 模锻变形工步的确定
二、短轴类锻件制坯工步选择
三、顶镦类锻件变形工步确定
二、难点
1、短轴类锻件的制坯工步选择原则。
2、确定粗大部分杆类锻件变形工步的有关计算和原则。
3、在聚集工步设计时有关注意事项。
三、基本概念
成形镦粗(预成性)、滚压、局部镦粗(聚集)、顶镦规则
四、思考题
1、短轴类锻件通常采用的主要制坯工步有哪些?经坯料镦粗后的制坯尺寸确定原则是什么?
2、在热模锻压力机上可采用何种短轴类锻件制坯工步?原因何在?
3、顶镦类锻件通常采用的主要制坯工步有哪些?
4、试比较分别在凸模内或凹模内聚集的优缺点。
5、为什么要确定冲孔芯料的合理厚度?正确的设计原则是什么?
6、试比较在透孔和不透孔锻件中分别采用平冲头和尖冲头进行冲孔成形的优缺点。
五、要求重点掌握的知识点
1、短轴类锻件主要制坯工步。
2、短轴类锻件坯料镦粗后的制坯尺寸确定原则。
3、在热模锻压力机上和螺旋压力机上短轴类锻件制坯工步的特点。
4、顶镦类锻件主要制坯工步。
5、不同模式聚集工步的特点。
6、冲孔芯料的设计原则、冲孔成形工步以及冲头的选择。
7、几种不同情况的管类锻件局部顶镦变形。
六、所需学时:
2学时
第十三次讲课
一、讲授内容
第七章 模锻工艺
第六节 坯料尺寸的确定
一、长轴类锻件
二、短轴类锻件
三、顶镦类锻件
第七节 设备吨位的确定
一、模锻锤吨位的确定
二、热模锻压力机吨位的确定
三、螺旋压力机吨位的确定
四、平锻机吨位的确定
二、难点
1、不同类型锻件的坯料制定方法。
2、顶镦类锻件计算毛坯图及坯料直径确定原则。
三、思考题
1、试比较模锻坯料尺寸与自由锻坯料尺寸确定的异同点。
2、试阐述长轴类模锻件坯料尺寸确定的一般步骤。
3、试阐述短轴类模锻件坯料尺寸确定的一般步骤。
4、试阐述顶镦类锻件的坯料选择原则及其机理。
5、带孔锻件坯料直径确定的原则是什么?
6、模锻设备吨位有哪几种方法?
四、要求重点掌握的知识点
1、长轴类、短轴类和顶镦类模锻件坯料尺寸确定的一般步骤。
2、顶镦类锻件计算毛坯图。
3、带孔锻件坯料直径确定原则。
4、各类模锻设备吨位计算公式的正确使用。
五、所需学时:
2学时
第十四次讲课
一、讲授内容
第八章 锻模设计
第—节 锤用锻模
一、模锻模膛设计
二、制坯模膛设计
三、锻模结构设计
二、难点
1、预锻模膛、终锻模膛的结构及其设计。
2、终锻时锻件缺陷产生原因的分析。
三、基本概念
终锻模膛、预锻模膛、钳口、折迭
四、思考题
1、锻模设计包括哪些内容?常用的模锻工步有哪些?
2、终锻模膛设计包括哪些主要内容?
3、热锻件图与锻件图有何差异?绘制时应注意哪些问题?
4、试述飞边槽的组成及其常见结构型式。
5、试述钳口的作用及其常见结构型式。
6、预锻模膛的采用原因及其作用什么?它所引起的不利影响是什么?
7、终锻时产生折迭和充不满的原因分别是什么?应采取什么措施加以抑制?
8、为什么锤上模锻高肋件时要采用预锻?设计该模膛的主要出发点是什么?通常在设计中应采取哪些方法?
9、什么情况下终锻和预锻模膛的设计基本相同?此时两者之间还存在哪些差异?
五、要求重点掌握的知识点
1、锻模设计的内容和常用的模锻工步。
2、终锻模膛和预锻模膛设计的内容和方法。
3、热锻件图绘制。
4、飞边槽和钳口的选择。
5、终锻时锻件缺陷产生的原因和防止措施。
6、采用预锻模膛的必要性及其设计原则。
六、所需学时:
2学时
第十五次讲课
一、讲授内容
第八章 锻模设计
第—节 锤用锻模
二、制坯模膛设计
三、锻模结构设计
二、难点
1、滚压模膛的设计原则和公式。
2、拔长模膛的设计原则和公式。
3、模膛的布排要点。
4、平衡锁扣及其对应的模膛中心位置确定。
5、错移力的平衡和导向。
三、基本概念
滚压工步、成形工步、锁扣、锻模中心、模膛中心、模块中心、错移力
四、思考题
1、制坯工步主要采用哪几种模膛?这些模膛的作用是什么?
2、滚压模膛有几种结构形式?它们的设计原则如何?
3、拔长模膛有几种分类原则?其设计内容及其相应方法是什么?
4、弯曲模膛和成形模膛的设计要点分别是什么?
5、试述镦粗台和压扁台的作用、设计方法及其在模块上的位置。
6、试述切断模膛在模块上的位置和设计方法。
7、锻模结构设计应着重解决哪些问题?什么情况下锻模中心和模膛中心重合?
8、终锻和预锻模膛布排设计的中心任务是什么?
9、锻模中心和模膛中心不重合时会产生哪些不良后果?
10、为什么要确定带平衡锁扣模膛的中心位置?一般中心位置有几种情况?
11、错移力产生的原因是什么?应从哪两方面考虑减小它的不良影响?
12、欲减小错移力的影响模具结构设计中主要采用哪些方法?
13、模具的主要破坏形式有哪些?各自产生的原因是怎样的?
14、试比较平衡锁扣和导向锁扣的异同点。
五、要求重点掌握的知识点
1、模锻时常用的制坯工步及其确定原则。
2、制坯工步采用的模膛及其作用。
3、各种制坯模膛的结构类型、设计内容、设计原则和相关公式。
4、锻模结构设计的目的和任务。
5、终锻和预锻模膛布排设计的中心任务。
7、各种制坯模膛在模快上的位置选择。
8、锻模中心和模膛中心的重合问题。
9、平衡锁扣的类型及其在锻模结构中的作用。
10、错移力产生的原因、危害及其消除措施。
11、模具破坏的主要形式及其产生原因。
12、基于强度考虑的锻模有关尺寸设计。
13、模块尺寸设计。
六、所需学时
3学时
第十六次讲课
一、讲授内容
第八章 锻模设计
第二节 热模锻压力机用锻模
一、模膛设计特点
二、锻模结构特点
第三节 螺旋压力机用锻模
一、锻模设计特点
二、锻模结构特点
第四节平锻机用锻模(自学)
一、平锻模的固定及固定空间
二、平锻模结构设计特点
三、模膛设计
二、难点
1、热模锻压力机预锻模膛的设计要点。
2、热模锻压力机的锻模闭合高度。
3、螺旋压力机锻模设计特点。
三、基本概念
模具闭合高度、压力机最小闭合高度
四、思考题
1、热模锻压力机要采用哪些变形工步?其预锻和终端模膛设计与锤上模锻相比有哪些特点?
2、热模锻压力机的锻模结构有什么特点?
3、螺旋压力机的锻模设计与锤上模锻相比有哪些特点?其锻模模块有哪几种紧固形式?
4、螺旋压力机锻模的导向装置有几种类型?各自用途如何?
5、平锻机模具分为哪三个部分?它由几个分模面?其结构设计特点如何?
6、平锻机模具固定空间最重要的参数是什么?依据何在?
五、要求重点掌握的知识点
1、热模锻压力机采用的变形工步及其锻模设计特点。
2、热模锻压力机的锻模结构特点。
3、螺旋压力机采用的变形工步及其锻模设计特点。
4、螺旋压力机的锻模结构特点。
六、所需学时
2学时
第十七次讲课
一、讲授内容
第八章 锻模设计
第五节 自由锻锤上模锻与胎模锻锻模
一、胎模锻锻模
二、固定模模锻锻模 第六节 锻模材料
一、锤锻模用材料
二、摩擦压力机锻模用材料
三、热模锻压力机锻模用材料
四、平锻机锻模用材料 五,液压机锻模用材料 第七节 锻模设计实例
一、锻件图设计
二、计算锻件的主要参数
三、锻锤吨位的确定
四、确定飞边槽的型式和尺寸 五,终锻模膛设计
六、预锻模膛设计
七、绘制计算毛坯图
八、制坯工步选择
九、确定坯料尺寸
十、制坯模膛设计
十一、锻模结构设计
十二、连杆模锻工艺流程
二、难点
1、热锻模具材料的基本性能。
2、模膛设计时考虑实际生产经验对有关设计计算尺寸的修改和形状的简化。
三、思考题
1、胎模锻与自由镦相比有哪些优点?其锻模按用途分为哪三大类?
2、固定胎模锻在模锻时上、下模块为什么易错移?应采取哪些措施加以防止?
3、热锻模具材料应具备哪些基本性能?
4、各类锻压设备可共同采用哪两种热锻模具材料?其道理是什么?
四、要求重点掌握的知识点
1、胎模锻特点、种类及其用途。
2、固定胎模结构及其安装。
3、热锻模具材料的基本性能。
4、常用热锻模具材料及其选用原则。
5、初步了解和掌握锻模及其工艺设计的全过程。
五、所需学时
2学时
第十八次讲课
一、讲授内容
第九章 模锻的后续工序
第一节 切边、冲孔及其模具设计
一、切边和冲孔的基本方式及模具类型
二、切边模
三、冲孔模和切边冲孔复合模 四,切边力和冲孔力的计算
第二节 精压和校正的应用及模具设计
一、精压
二、校正
第三节 模锻件的表面清理
二、难点
1、切边模和冲孔模中凸凹模的作用特点。
2、切边模模具闭合高度及其与凸模高度的关系。
3、切边冲孔复合模设计。
三、基本概念
简单模、连续模、复合模、精压、切边模具闭合高度、压力机最大封闭高度、压力机最小封闭高度
四、思考题
1、试比较切边模和冲孔模中凸、凹模的作用。
2、试比较热切(冲)和冷切(冲)两种工作方式的特点。
3、切边模有哪几部分组成?它有几种类型?
4、切边凹模有哪几种刃口?它们各自用途是怎样的?
5、为什么要合理确定切边模凸、凹模之间的间隙?
6、切边模具闭合高度及其凸模高度怎样确定?
7、精压工序的目的是什么?试阐述它的分类和变形特点。
8、校正工序的目的是什么?试阐述它的分类和用途。
9、试阐述表面清理工序的目的和方法。
五、要求重点掌握的知识点
1、切边模和冲孔模的组成部分及其作用和设计方法。
2、精压工序的目的、分类和变形特点。
3、校正工序的目的、分类和确定原则。
4、表面清理工序的目的和方法。
六、所需学时
2学时
参考资料:
1、吕 炎.《锻造工艺学》.机械工业出版社, 1995年
2、张志文.《锻造工艺学》.机械工业出版社, 1983年
3、汪大年.《塑性成性原理》.机械工业出版社, 1987年
4、李培武, 杨文成.《塑性成形设备》.机械工业出版社, 1994年
5、崔忠圻.《金属学与热处理》.机械工业出版社, 1994年 所需总学时: 38学时
所授课程的重点、难点、要点、基本概念、基本要求和有关教学参考资料、辅助资料,课程进度和学时分配等等。
第二篇:塑性成形工艺及模具设计期末考试复习资料材型专业
一.填空题
伸长类变形:当作用于毛坯变形区的拉应力的绝对值最大时,在这个方向上的变形是伸长变形,这种冲压变形为伸长类变形。(胀形、圆孔翻边、扩口、拉形等)压缩类变形:当作用于毛坯变形区内的压应力的绝对值最大时,在这个方向上的变形是压缩变形,这种冲压变形为压缩类变形。(筒形件拉深、缩口等。)拉深系数及拉深比:拉深系数(反映切向变形程度的大小)是拉深后零件的直径与拉深前毛坯的直径之比。它反映了毛坯外边缘在拉伸后切向压缩变形的大小。拉深系数的倒数称为拉深比,也可作为拉深变形程度的参数。冲裁变形过程:弹性变形阶段;塑性变形阶段;断裂分离阶段。锻造温度范围:从始锻温度到终锻温度之间的温度区间。加热规范:指金属毛坯从装炉开始到出炉结束的整个过程中,炉温和料温随时间变化的规定。厚向异性指数:是评定板料压缩类成形性能的一个重要参数,r值是板料试件单向拉伸试验中宽度应变εb与厚度应变εt之比,即r=εb/εt平面方向性系数的定义、意义:板料由于冶炼、轧制的原因,在板平面不同方向上的板料性能有差别,板料的这种特性被称为板平面方向性。在圆筒形零件拉深中,由于板料的板平面方向性导致拉深件口部形成凸起的耳朵现象,因而,板平面方向性也称为凸耳参数。△r越小,板料的各向性能越均匀;△r越大,则板料的各向异性越严重。所以,在冲压生产中应尽量用低△r值的板料,以保证冲压成形的顺利实施,提高冲压产品质量。
计算毛坯的定义及做法:计算毛坯是指根据平面应变假设进行计算并修正所得的具有圆形截面的中间坯料。做法:一般根据冷锻件图作计算毛坯图,首先从锻件图上选取若干具有代表性的截面,计算出轴向各横截面积,然后在坐标纸上绘制计算毛坯截面图。详细见P33 排样、搭边的定义:冲裁件在条料,带料或板料上的布置方法叫排样;排样时冲裁件之间以及冲裁件与条料侧边之间留下的工艺废料叫搭边。搭边的作用:补偿了定位误差和剪板误差,确保冲出合格件;增加条料刚度,方便调料送进,提高劳动效率;避免冲裁时调料边缘的毛刺被拉入模具,从而提高模具的寿命。
锻模中心:锻模燕尾中心线与键槽中心线的交点,它位于锤杆的轴心线上。模膛中心:锻造时模膛承受锻件反作用力的合力作用点。模块中心:对角线的交点
压力中心:冲压力合力的作用点,应该通过压力机滑块的中心线。
飞边槽的作用:
1、造成足够大的横向金属流动阻力,促使模膛充满。
2、容纳坯料上的多余金属,起补偿与调节作用。
3、对锤类设备有缓冲作用。
锻造工步根据作用的分类及具体内容(第一类制坯工步,第二类制坯工步的内容):1.制坯工步与制坯模膛、其主要作用是重新分配坯料体积或改变坯料轴线形状,使坯料沿轴线的截面面积与锻件大致相适应。它包括镦粗、压扁、拔长、卡压、成形、弯曲等工步或模膛。2模锻工步与模锻模膛、其主要作用是使坯料按照所用模膛的形状形成锻件或基本形成锻件,这种工步称为模锻工步,所用模膛称为模锻模膛,有终锻、预锻两种。3切断工步与切断模膛、其作用是将锻件从棒料上切开分。
模锻斜度的定义及具体内容:为了便于从模膛中取出锻件,模锻上平行于锤击方向的表面必须具有斜度,称为模锻斜度;模锻斜度与模膛深度与宽度有关。模锻斜度分为外壁斜度和内壁斜度,外壁斜度用a表示,内壁斜度用β表示,一般外壁斜度比内壁斜度大2~5度。
冲孔连皮的定义及形式:由于锤上模锻不能靠上下模的突起部分把金属完全排挤掉,因此不能锻出通孔。终锻后留有的金属薄层,称为冲孔连皮。冲孔连皮通常有五种形式,分别是平底连皮、斜底连皮、带仓连皮、拱底、压凹。作用:造成必要的横向阻力,迫使金属填充模膛;补偿下料误差;具有缓冲作用。钳口的组成及作用:钳口是由夹钳口和钳口颈组成;作用:1锻件起模2在锻模制造时,钳口浇注模膛检验件的浇口。
二、简答题
简述冲裁件的断面特征及形成原因
冲裁件断面形成明显的区域性特征,即塌角、光亮带、剪裂带和毛刺,塌角是当凸模压入材料时,刃口附近的材料被牵拉变形的结果,在大间隙和软材料冲裁时,塌角尤为明显,光亮带是塑性变形阶段刃口切入板料后,材料被模具侧面挤压形成的,光亮带光滑、垂直、断面质量好。剪裂带是在断裂分离阶段造成的撕裂面剪裂带表面粗糙,不与板平面垂直,往往是后续变形时的裂纹源,毛刺是在出现微纹时形成的,冲头继续下行,使已形成的毛刺拉长,并残留在冲裁件上。
拉深变形的特点
1、变形区为毛坯的凸缘部分,与凸模端面接触的部分基本上不变形。
2、毛坯变形区在切向压应力和径向拉应力的作用下,产生切向压缩和径向拉伸的“一拉一压”的变形。
3、极限变形参数主要受到毛坯传力区的承载能力的限制。
4、拉深件的口部有增厚、底部圆角处有减薄的现象称为“危险断面”(底部的厚度基本保持不变)
5、拉深工件的硬度也有所不同,愈靠近口部,硬度愈高(这是因为口部的塑性变形量最大,加工硬化现象最严重)
6、有起皱、拉裂两个主要缺陷。简述弯曲变形的特点
1、外层受拉应力发生拉应变,内层受压应力发生压应变。
2、外层拉裂与内层起皱是限制弯曲的主要因素
3、弯曲精度的主要影响因素为弹性恢复
4、窄板弯曲是平面应力,立体应变状态;宽板弯曲是立体应力,平面应变状态。影响板料弯曲回弹的主要因素是什么
1.材料的力学性能σs/E越大,回弹越大。2.相对弯曲半径r/t越大,回弹越。
3.弯曲中心角α,α越大,变形区的长度越长,回弹积累值也越大,故回弹角△α越大。4.弯曲方式及弯曲模。
5.工件的形状,一般而言,弯曲件越复杂次弯曲成形角的数量越多,回弹量就越小。简述螺旋压力机模锻工艺特点
1.工艺用途广,因为螺旋压力机具有锤和压力机的双重工作特性,因而能满足各种主要锻压工序的力能要求。能在螺旋压力机上实现的锻压工序有:普通模锻精密模锻、镦粗、挤压、精整、压印、弯曲、切边、冲孔和校正等。
2.锻件精度高。因螺旋压力机的行程不固定,锻件精度不受自身弹性变形的影响;同时,螺旋压力机上一般装有下顶出器,又可采用特殊结构的组合模,可减小或消除锻件上的模锻斜度和余块,尤其配上少无氧化加热设备,可得到净化毛坯甚至成品零件
其缺点是:1.螺旋压力机的螺杆和滑块间是非刚性联接,滑块承受偏心载荷的能力差,不适宜于多模膛模锻。2.螺旋压力机每分钟行程次数少、打击速度低,所以生产率不高,且不宜用拔长类制坯工序。
三段式加热规范,试用文字说明加热规范的内容
[V]金属允许的加热速度;[Vm]最大可能的加热速度。
第一段保温的目的:
1、减小温差,使内外温度相差不大,近似相等
2、缩短下阶段的保温时间使。
第二阶保温的目的:
1、消除前段温差,是内外温度近似相等
2、缩短下一阶段的保温时间。第三段保温的目的:消除前段温差,借助扩散作用使成分组织均匀。
试述减少闭式模锻模膛工作压力的设想,分流腔的设计原则及分流腔的基本形式
减小模腔工作压力的设想:通常,模锻时的工作压力主要包括材料的理想变形抗力和变形抗力和阻力。理想变形抗力可用下式表示;piymln(R),式中,ym为锻件材料的名义流动应力;1-RR为相对面积缩减率。工作压力随相对面积缩减率R的增加而增加,当R=1时,增至无限大。相对面积缩减率R也称为变形强度,它是工件与模膛接触面积与其总的表面积之比,挤压相对面积缩减率:R=(AO-A1)/AO,A0为试样截面积,A1为产品截面积。模锻相对面积缩减率:R=(A-F)/A,F为自由表面积,(A-F)为产品与模具接触面积,A为产品总的表面积。挤压时R值为常数。开式模锻时,由于工件自由表面的减小而使R值增大。因此,如果能控制R值的增加就可减小工作压力。
分流降压腔的设置原则:分流降压腔的位置应选择在模膛最后充满的部位,确保模膛完全充满后多余金属才分流多余金属分流时在模膛内所产生的压力应比模膛刚充满时所产生的压力略有增加,以免増加总的模锻力和加快模膛的磨损。
分流腔的结构形式:
1、孔式分流腔
2、在毛坯上预留分流孔或形成减压轴
3、端部轴向分流孔热模锻压力机模锻工艺和模具设计有哪些特点
1、行程速度慢,一次行程打击中金属变形量大,且坯料中部变形大,金属沿水平方向流动剧烈。向高度方向流动较缓慢,充填模膛较困难,通常需要采用预锻。
2、热模锻压力机行程固定,不便于进行拔长、滚压等制坯工步。对于截面积变化较大的锻件,需配备其他设备进行制坯。
3、具有顶出装置,某些长轴类锻件可以竖立起来进行模锻或挤压,可以采用较小的模锻斜度进行模锻,可以提高锻件精度。
4、行程固定且变形力由机架本身承受,为了防止设备闷车,上模与下模不能压靠,期间必须留有间隙。
5、载荷是静压力,不便于制坯,坯料表面的氧化皮不易去除,因此,需配备氧化皮清除装置。
6、模具内金属变形剧烈,因此,模具寿命一般较低,所以需要采用较好的模具钢和模具润滑剂,为了提高终锻模膛的使用寿命,锻压机上模锻采用预锻是有必。
7、由于是静压力,模具可以采用镶块组合结构,它可以由上、下模板、各种垫板,上、下模块、导向装置、顶料装置等部件组成。它比整体结构的锤锻模要复杂和强大,初次投资费用较大。因此,锻压机的模具设计不仅仅是设计模膛和镶需要较为全面的考虑,设计结构合理的模架,做到适应性强,经济合理,可靠耐用。锤上模锻工艺特点是什么
(1)在模膛中是在一定速度下,经过多次连续锤击而逐步成形的。(2)锤头的行程、打击速度均可调节,能实现轻重缓急不同的打击,因而可进行制坯工作(3)由于惯性作用,金属在上模模膛中具有更好的充填效果。(4)锤上模锻适应性广,可生产多种类型的锻件,可以单膛模锻,也可以多膛模锻。锻前加热的目的
1提高金属的塑性2降低变形抗力,使金属易于流动成型并获得良好的锻后组织。制坯公工步:
1圆饼锻件制坯工步的选择:圆饼类锻件一般采用镦粗制坯,形状较为复杂的,易用成形镦粗制坯,其目的是避免终锻时产生折叠,兼有除去氧化皮,从而提高锻件表面质量和提高锻模寿命的作用。2长轴类锻件制坯工步的选择:长轴类锻件有直长轴线、弯曲轴线、带枝芽的和叉形件等四种。由于形状的需要,长轴类锻件的模锻工序由拔长、滚挤、弯曲、卡压、成形等制坯工步和预锻工步所组成
另外两个简答题
1给一个制坯工步的图形,填出各制坯的工步名称(如连杆)。一共8步。(毛坯、镦粗、拔长、滚挤、卡压、成型、弯曲、预断、终锻)2给一个凹模图,画出排样图和冲裁后的零件图。
三.问答题
简述冷锻件图和热锻件图的含义及其用途,锻件图有那些设计内容,锤锻模设计步骤是什么 冷锻件图:以零件图为基础,加上机械加工余量和锻造公差后绘制而成的。用途用于最终锻件检验是机械加工部门制订加工工艺、设计加工夹具的依据,简称为锻件图。
热锻件图:把冷锻件图上所有的尺寸加1~1.5%,为热锻件图。用途:用于锻模的设计和制造。设计内容:(1)选择分模面的位置和形状(2确定机械加工余量、余块和锻件公差3)确定模锻斜度:(4)确定圆角半径;(5)确定冲孔连皮的形式和尺寸;(6)制定锻件技术条件:(7)绘制锻件图。
锤模锻设计步骤:1.根据零件图制定锻件图2.计算锻件的主要参数,锻件在水平的投影面积、锻件的周边长度,体积和重量。3.决定设备吨位,为了能分析比较,需用两个以上不同的公式进行计算4.做热锻件图,确定终锻模膛5.决定飞边槽的形式和尺寸6.画计算毛坯图7.选择制坯工步8.决定坯料尺寸,计算下料长度9.设计预锻模膛10.设计制坯模膛11.模具结构设计,考虑是否采用锁扣模膛布置和模块尺寸,模具的安装和调整,模具的起重运输,模具材料,加工及热处理12.绘制锻模图,切边模图等。什么是冲裁间隙,为什么说冲裁间隙是重要的 凸模与凹模工作部分的尺寸之差称为间隙。冲裁模间隙都是指的双面间隙。间隙之所以重要,体现在以下几个方面
1)裁间隙对冲裁件质量的影响
(1)间隙对断面质量的影响,模具间隙合理时,凸模与凹模处的裂纹(上下裂纹)在冲压过程中相遇并重合,此时断面塌角较小,光面所占比例较宽,毛刺较,容易去除。断面质量较好;如果间隙过大,凸模刃口处的裂纹较合理间隙时向内错开一段距离,上下裂纹未重合部分的材料将受很大的拉伸作用而产生撕裂,使塌角增大,毛面增宽,光面减少,毛刺肥而长,难以去除,断面质量较差。
间隙过小时,凸模与凹模刃口处的裂纹较合理间隙时向外错开一段距离上下裂纹中间的一部分材料,随着冲裁的进行将进行二次剪切,从而使断面上产生二个光面,并且,由于间隙的减小而使材料受挤压的成分增大,毛面及塌角都减少,毛刺变少,断面质量最好。因此,对于普通冲裁来说,确定正确的冲裁间隙是控制断面质量的一个关键。
(2)冲裁间隙对尺寸精度的影响材料在冲裁过程中会产生各种变形,从而在冲裁结束后,会产生回弹,使制件的尺寸不同于凹模和凸模刃口尺寸。其结果,有的使制件尺寸变大,有的则减小。其一般规律是间隙小时,落料件尺寸大于凹模尺寸,冲出的孔径小于凸模尺寸;间隙大时,落料}件尺寸小于凹模尺寸,冲出的孔径大于凸模尺寸。2)冲裁间隙对冲压力的影响
一般来说,在正常冲裁情况下,间隙对冲裁力的影响并不大,但间隙对卸料力推件力的影响却较大。间隙较大时,卸料及推料时所需要克服的摩擦阻力小,从凸模上卸料或从凹模内推料都较为容易,当单边间隙大到15%~20%料厚时,卸料力几乎等于零。3)冲裁间隙对冲模寿命的影响
由于冲裁时,凸模与凹模之间,材料与模具之间都存在摩擦。而间隙的大小则直接影响到摩擦的大小。间隙越小,摩擦造成的磨损越严重,模具寿命就越短,而较大的间隙,可使摩擦造成的磨损减少,从而提高了模具的寿命。
第三篇:塑性成形实验报告
金属塑性成形原理实验报告
实验项目:Ansys软件分析平面问题和轴对称问题
材料参数:弹性模量E=210Gpa 泊松比:u=0.33 屈服强度σ
摩擦系数v=0.26
尺寸:15×25(mm)
s=350Mpa
实验步骤:
1、建模
1)问题的类型:设置单元类型、属性
(1).设置计算类型。ANSYS Main Menu: Preferences →select Structural → OK(2).选择单元类型。执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select(Solid # Quad 4node 42)
→OK
2)材料模型
执行Main Menu→Preprocessor →Material Props →Material Models →
Structural →Linear →Inelastic,在EX框中输入2.1e5,在PRXY框中输入0.3,选择OK并关闭对话框。
3)建立几何形状
选择Main Menu→Preprocessor →modeling →create→areas,如图所示:
4)划分网格
Preprocessor →Meshing →Mesh Tool→Volumes Mesh→Tet→Mapped,.采用
Mapped网格划分单元。
执行Main Menu-Preprocessor-Meshing-Mesh-Volume-Mapped:
5)建立接触
2、施加边界条件并求解
执行Main Menu-Solution-Apply-Structural-Displacement,拾取目标平面等,单击OK按钮。然后出现如图窗口,选择“UY”,再单击OK按钮。加载荷后结果:
1)定义求解参数
2)求解
执行Main Menu-Solution-Solve-Current LS,弹出一个提示框。执行file-close,单击OK按钮求解运算。
3、结果处理 1)读入结果数据
2)查看结果
轴对称问题:
平面应变问题
平面应力问题
结论:同一种材料,外形尺寸不变时,在不同的受力状态下,应力分布是不同的,且受到的最大应力也不一样。
第四篇:为铁路货车装货口盖成形工艺及模具设计
为铁路货车装货口盖成形工艺及模具设计
作者:齐齐哈尔铁路车辆集团 高
广军
摘要:分析了装货口盖成形
工艺性,并进行了理论计算和模拟验证,由此制定了该工件的成形工艺、模具设计方案。
关键词:工艺分析;起伏成形;数值模拟;模具设计前言
我公司作为铁路货车出口基地,在出口车市场上占有相当大的份额,澳大利亚粮食漏斗车是我公司继2000年以后又一次向西方发达国家出口的铁路货车。装货口盖(图1)是该车的重要外覆盖件,生产数量多、质量要求高。
工件材质09CuPCrNi,是铁路货车常用的耐侯钢,具有良好的抗腐蚀性和较高的强度,但它的成形性能比08-F或Q235要差一些。从产品结构上看,零件中部加
强筋是典型起伏成形,而两侧则是弯曲成形。从近年来我厂生产实践验证,该类
材料屈服强度较高、塑性较差,成形时容易出现破裂、翘曲等质量问题。成形工艺分析及工艺计算
起伏成形是一种使材料局部区域发生变形、拉薄,造成局部凹进或突起,来改变毛坯形状的冲压加工方法。这种方法提高了工件自身的刚度,而且使工件的外形美观,同时工件在组装焊接时,抗热应力变形的强度也得到提高。
装货口盖成形的难点就在于中部加强筋的成形,主要有两个方面的问题:其一是由于板料变形产生拉薄,加上塑性较差,极易导致成形部位破裂;其二是成形时,材料流动的速度和方向不一样,工件内部应力分布不均匀,造成板料失稳起皱、翘曲。而且后者靠增加工序等手段是很难修复的。
2.1 成形极限判断
首先,根据加强筋的形状和材料性能,计算材料在一次成形工序中的极限伸长率(图2)即:
由此可确定,装货口盖加强筋可以一次成形。
2.2 压边力的计算
装货口盖加强筋起伏成形时,在筋端头处,板料要向凸筋流动,以补充材料的不足。这样在筋端头部分的材料应力状态与椭圆形件拉深相似,径向产生拉应力,切向产生压应力。如果不用压边,该处将会失稳起皱。其压边力:
从计算结果看,所需的压边力较大,应该采用设备驱动压边。
2.3 成形数值模拟及工艺方案的确定
我厂自2000年初开始实施“铁路货车产品开发并行工程”以来,现已装备了数值模拟软件--Dy-naform。它是由ETA公司研制的基于LS-DANA的饭金冲压仿真分析系统的专业软件,是专门处理板材成形有限元分析的数值模拟系统。基于工艺计算结果,在计算机上利用冲压成形数值模拟系统Dynaform进行了成形模拟分析。分析结果的应力云图见图3。
从数值模拟分析结果看,在压边力的作用下,加强筋端头的褶皱基本消除,但在工件长边的两侧出现较大的波浪翘曲现象。主要是由于在压筋时,每个加强筋端头成形致使板料产生的内应力相互作用,从而出现波浪翘曲现象,直接影响后序侧边弯曲。
通过数值模拟分析,可以预知,采用先压加强筋,再进行两侧长边折弯的工艺方法会产生难以修复的质量问题。
考虑到工件两侧是弯曲成形,可以采用复合工序的手段,利用双动压力机,先完成工件两侧的弯,然后再压加强筋(图4所示)。这样第一个动作完成了工件的弯曲成形,又负责压筋时的压边,尤其是在完成弯曲成形后,工件的弯曲部位起到了拉延坎的作用,两道拉延坎的阻力再加上第一个动作设备自身的压力,完全阻止了工件长边两侧材料的流动,使加强筋两端成形完全处于胀形状态。另外由于弯曲成形在先,增加了工件的自身刚度,阻止了压筋时导致的翘曲现象。模具设计
前文已经确定了装货口盖冲压成形的工艺方案。下面将介绍复合成形模具的结构设计。在模具设计时,适当减小压筋凹模的圆角r,r=2t(t为板厚),第一是考虑压筋凹模的圆角较易磨损,减小凹模圆角可以预留磨损量,第二是使筋在不破裂的前提下,使加强筋的轮廓更加清晰、美观。另外压筋是靠凸模和凹模圆角成形,所以在压筋凸模下方的凹模部分采用镂空方式,以避免成形时出现干涉现象。
实践证明,压筋同样存在回弹现象,这里的回弹是指压形后加强筋的实际高度值,要比设计凸模高度值小。为了保证筋的尺寸,压筋凸模高度取16mm。
在第一个动作弯曲成形时,为了提高成形平面度、减小弯曲回弹,采用弹性压料,弹性压料装置在全部成形终了时,兼作卸件器。压筋凹模镶在压料板上。
模具主要结构见图5。模具工作过程如下:
弯曲上模下行,接触板料,并在压料板的作用下压紧板料,弯曲七模继续下行,完成弯曲成形后负责压紧坯件。压筋上模下行,压筋凸模接触坯件,压筋上模继续下行,完成加强筋胀形。压筋上模上行,弯曲上模上行,压料板在弹簧力的作用下将工件顶出弯曲凹模。至此,完成工件的全部成形。结束语
通过对装货口盖成形工艺分析,对可能出现的质量问题作了预测,找到了较为可靠的复合工艺方法,利用弯曲成形来抑制或改善压筋的质量缺陷,同时也简化了工艺过程,提高了生产效率。
模具投人使用后,顺利完成了澳大利亚粮食漏斗车装货口盖的压制工作,工件外观光滑、棱线清晰,无开裂、无翘曲。可以认为,装货口盖冲压成形工艺分析及模具结构设计,对铁路货车生产中的类似覆盖件成形,都有借鉴价值。
第五篇:《金属塑性成形原理》复习题
《金属塑性成形原理》复习题 1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点? 塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;
塑性变形---当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;
塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能 的加工方法,也称塑性加工或压力加工;
塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高 2.试述塑性成形的一般分类。
Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类 1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。可分为一次成型和二次加工。
一次加工:
①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。分纵轧、横轧、斜轧;
用于生产型材、板材和管材。
②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。分正挤压、反挤压和复合挤压;
适于(低塑性的)型材、管材和零件。
③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。生产棒材、管材和线材。
二次加工:
①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形 状和尺寸的加工方法。精度低,生产率不高,用于单件小批量或大锻件。
②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从 而获得与模腔形状、尺寸相同的坯料或零件的加工方法。分开式模锻和闭式模锻。
2)板料成型一般称为冲压。分为分离工序和成形工序。
分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;
成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。
Ⅱ.按成型时工件的温度可分为热成形、冷成形和温成形。
3.试分析多晶体塑性变形的特点。
1)各晶粒变形的不同时性。不同时性是由多晶体的各个晶粒位向不同引起的。
2)各晶粒变形的相互协调性。晶粒之间的连续性决定,还要求每个晶粒进行多系滑移;
每个晶粒至少要求有 5个独立的滑移系启动才能保证。
3)晶粒与晶粒之间和晶粒内部与晶界附近区域之间的变形的不均匀性。
Add:
4)滑移的传递,必须激发相邻晶粒的位错源。
5)多晶体的变形抗力比单晶体大,变形更不均匀。
6)塑性变形时,导致一些物理,化学性能的变化。
7)时间性。hcp系的多晶体金属与单晶体比较,前者具有明显的晶界阻滞效应和极高的加工硬化率,而在立方晶系金属中,多晶和单晶试样的应力—应变曲线就没有那么大的差别。
4.试分析晶粒大小对金属塑性和变形抗力的影响。
①晶粒越细,变形抗力越大。晶粒的大小决定位错塞积群应力场到晶内位错源的距离,而这个距离又影响位错的数目n。晶粒越大,这个距离就越大,位错开动的时间就越长,n也就越大。n越大,应力场就越强,滑移就越容易从一个晶粒转移到另一个晶粒。
②晶粒越细小,金属的塑性就越好。
a.一定体积,晶粒越细,晶粒数目越多,塑性变形时位向有利的晶粒也越多,变形能较均匀的分散到各个晶粒上;
b.从每个晶粒的应力分布来看,细晶粒是晶界的影响区域相对加大,使得晶粒心部的应变与晶界处的应变差异减小。这种不均匀性减小了,内应力的分布较均匀,因而金属断裂前能承受的塑性变形量就更大。
5.什么叫加工硬化?产生加工硬化的原因是什么?加工硬化对塑性加工生产有何利弊? 加工硬化----随着金属变形程度的增加,其强度、硬度增加,而塑性、韧性降低的现象。加工硬化的成因与位错的交互作用有关。随着塑性变形的进行,位错密度不断增加,位错反应和相互交割加剧,结果产生固定割阶、位错缠结等障碍,以致形成胞状亚结构,使位错难以越过这些障碍而被限制在一定范围内运动。这样,要是金属继续变形,就需要不断增加外力,才能克服位错间强大的交互作用力。
加工硬化对塑性加工生产的利弊:
有利的一面:可作为一种强化金属的手段,一些不能用热处理方法强化的金属材料,可应用加工硬化的方法来强化,以提高金属的承载能力。如大型发电机上的护环零件(多用高锰奥氏体无磁钢锻制)。
不利的一面:①由于加工硬化后,金属的屈服强度提高,要求进行塑性加工的设备能力增加;
②由于塑性的下降,使得金属继续塑性变形困难,所以不得不增加中间退火工艺,从而降低了生产率,提高了生产成本。
6.什么是动态回复?为什么说动态回复是热塑性变形的主要软化机制? 动态回复是在热塑性变形过程中发生的回复(自发地向自由能低的方向转变的过程)。
动态回复是热塑性变形的主要软化机制,是因为:
①动态回复是高层错能金属热变形过程中唯一的软化机制。动态回复是主要是通过位错的攀移、交滑移等实现的。对于层错能高的金属,变形时扩展位错的宽度窄,集束容易,位错的交滑移和攀移容易进行,位错容易在滑移面间转移,而使异号位错相互抵消,结果使位错密度下降,畸变能降低,不足以达到动态结晶所需的能量水平。因为这类金属在热塑性变形过程中,即使变形程度很大,变形温度远高于静态再结晶温度,也只发生动态回复,而不发生动态再结晶。
②在低层错能的金属热变形过程中,动态回复虽然不充分,但也随时在进行,畸变能也随时在释放,因而只有当变形程度远远高于静态回复所需要的临界变形程度时,畸变能差才能积累到再结晶所需的水平,动态再结晶才能启动,否则也只能发生动态回复。
Add:动态再结晶容易发生在层错能较低的金属,且当热加工变形量很大时。这是因为层错能低,其扩展位错宽度就大,集束成特征位错困难,不易进行位错的交滑移和攀移;
而已知动态回复主要是通过位错的交滑移和攀移来完成的,这就意味着这类材料动态回复的速率和程度都很低(应该说不足),材料中的一些局部区域会积累足够高的位错密度差(畸变能差),且由于动态回复的不充分,所形成的胞状亚组织的尺寸小、边界不规整,胞壁还有较多的位错缠结,这种不完整的亚组织正好有利于再结晶形核,所有这些都有利于动态再结晶的发生。需要更大的变形量上面已经提到了。
7.什么是动态再结晶?影响动态再结晶的主要因素有哪些?动态再结晶是在热塑性变形过程中发生的再结晶。动态再结晶和静态再结晶基本一样,也会是通过形核与长大来完成,其机理也是大角度晶界(或亚晶界)想高位错密度区域的迁移。
动态再结晶的能力除了与金属的层错能高低(层错能越低,热加工变形量很大时,容易出现动态再结晶)有关外,还与晶界的迁移难易有关。金属越存,发生动态再结晶的能力越强。当溶质原子固溶于金属基体中时,会严重阻碍晶界的迁移、从而减慢动态再结晶的德速率。弥散的第二相粒子能阻碍晶界的移动,所以会遏制动态再结晶的进行。
9.钢锭经过热加工变形后其组织和性能发生了什么变化?(参见 P27-31)①改善晶粒组织②锻合内部缺陷③破碎并改善碳化物和非金属夹杂物在钢中的分布④形成纤维组织⑤改善偏析 10.冷变形金属和热变形金属的纤维组织有何不同? 冷变形中的纤维组织:轧制变形时,原来等轴的晶粒沿延伸方向伸长。若变形程度很大,则晶粒呈现为一片纤维状的条纹,称为纤维组织。当金属中有夹杂或第二相是,则它们会沿变形方向拉成细带状(对塑性杂质而言)或粉碎成链状(对脆性杂质而言),这时在光学显微镜下会很难分辨出晶粒和杂质。在热塑性变形过程中,随着变形程度的增大,钢锭内部粗大的树枝状晶逐渐沿主变形方向伸长,与此同时,晶间富集的杂质和非金属夹杂物的走向也逐渐与主变形方向一致,其中脆性夹杂物(如氧化物,氮化物和部分硅酸盐等)被破碎呈链状分布;
而苏醒夹杂物(如硫化物和多数硅酸盐等)则被拉长呈条状、线状或薄片状。于是在磨面腐蚀的试样上便可以看到顺主变形方向上一条条断断续续的细线,称为“流线 ”,具有流线的组织就称为“纤维组织”。在热塑性加工中,由于再结晶的结果,被拉长的晶粒变成细小的等轴晶,而纤维组织却被很稳定的保留下来直至室温。所以与冷变形时由于晶粒被拉长而形成的纤维组织是不同的。
12.什么是细晶超塑性?什么是相变超塑性? ①细晶超塑性它是在一定的恒温下,在应变速率和晶粒度都满足要求的条件下所呈现的超塑性。具体地说,材料的晶粒必须超细化和等轴化,并在在成形期间保持稳定。
②相变超塑性要求具有相变或同素异构转变。在一定的外力作用下,使金属或合金在相变温度附近反复加热和冷却,经过一定的循环次数后,就可以获得很大的伸长率。相变超塑性的主要控制因素是温度幅度和温度循环率。
15.什么是塑性?什么是塑性指标?为什么说塑性指标只具有相对意义? 塑性是指金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力,它是金属的一种重要的加工性能。
塑性指标,是为了衡量金属材料塑性的好坏而采用的某些试验测得的数量上的指标。
常用的试验方法有拉伸试验、压缩试验和扭转试验。
由于各种试验方法都是相对于其特定的受力状态和变形条件的,由此所测定的塑性指标(或成形性能指标),仅具有相对的和比较的意义。它们说明,在某种受力状况和变形条件下,哪种金属的塑性高,哪种金属的塑性低;
或者对于同一种金属,在那种变形条件下塑性高,而在哪种变形条件下塑性低。
16.举例说明杂质元素和合金元素对钢的塑性的影响。(P41-44)①碳:固溶于铁时形成铁素体和奥氏体,具有良好的塑性。多余的碳与铁形成渗碳体(Fe 3C),大大降低塑性;
②磷:一般来说,磷是钢中的有害杂质,它在铁中有相当大的溶解度,使钢的强度、硬度提高,而塑性、韧性降低,在冷变形时影响更为严重,此称为冷脆性。
③硫:形成共晶体时熔点降得很低(例如 FeS的熔点为 1190℃,而 Fe-FeS的熔点为 985℃)。这些硫化物和共晶体,通常分布在晶界上,会引起热脆性。
④氮:当其质量分数较小(0.002%~0.015%)时,对钢的塑性无明显的影响;
但随着氮化物的质量分数的增加,钢的塑性降降低,导致钢变脆。如氮在α铁中的溶解度在高温和低温时相 差很大,当含氮量较高的钢从高温快速冷却到低温时,α铁被过饱和,随后在室温或稍高温度下,氮逐渐以 Fe 4N形式析出,使钢的塑性、韧性大为降低,这种现象称为时效脆性。
若在 300℃左右加工时,则会出现所谓“兰脆”现象。
⑤氢:氢脆和白点。
⑥氧:形成氧化物,还会和其他夹杂物(如 FeS)易熔共晶体(FeS-FeO,熔点为910℃)分布于晶界处,造成钢的热脆性。
合金元素的影响:①形成固溶体;
②形成硬而脆的碳化物;
…… 17.试分析单相与多相组织、细晶与粗晶组织、锻造组织与铸造组织对金属塑性的影响。
①相组成的影响:单相组织(纯金属或固溶体)比多相组织塑性好。多相组织由于各相性能不同,变形难易程度不同,导致变形和内应力的不均匀分布,因而塑性降低。如碳钢在高温时为奥氏体单相组织,故塑性好,而在 800℃左右时,转变为奥氏体和铁素体两相组织,塑性就明显下降。另外多相组织中的脆性相也会使其塑性大为降低。
②晶粒度的影响:晶粒越细小,金属的塑性也越好。因为在一定的体积内,细晶粒金属的晶粒数目比粗晶粒金属的多,因而塑性变形时位向有利的晶粒也较多,变形能较均匀地分散到各个晶粒上;
又从每个晶粒的应力分布来看,细晶粒时晶界的影响局域相对加大,使得晶粒心部的应变与晶界处的应变差异减小。由于细晶粒金属的变形不均匀性较小,由此引起的应力集中必然也较小,内应力分布较均匀,因而金属在断裂前可承受的塑性变形量就越大。
③锻造组织要比铸造组织的塑性好。铸造组织由于具有粗大的柱状晶和偏析、夹杂、气泡、疏松等缺陷,故使金属塑性降低。而通过适当的锻造后,会打碎粗大的柱状晶粒获得细晶组织,使得金属的塑性提高。
18.变形温度对金属塑性的影响的基本规律是什么? 就大多数金属而言,其总体趋势是:随着温度的升高,塑性增加,但是这种增加并不是简单的线性上升;
在加热过程中的某些温度区间,往往由于相态或晶粒边界状态的变化而出现脆性区,使金属的塑性降低。在一般情况下,温度由绝对零度上升到熔点时,可能出现几个脆性区,包括低温的、中温的和高温的脆性区。下图是以碳钢为例:区域Ⅰ,塑性极低—可能是由与原子热振动能力极低所致,也可能与晶界组成物脆化有关;
区域Ⅱ,称为蓝脆区(断口呈蓝色),一般认为是氮化物、氧化物以沉淀形式在晶界、滑移面上析出 所致,类似于时效硬化。区域Ⅲ,这和珠光体转变为奥氏体,形成铁素体和奥氏体两相共存有关,也可能还与晶界上出现FeS-FeO低熔共晶有关,为热脆区。
19.什么是温度效应?冷变形和热变形时变形速度对塑性的影响有何不同? 温度效应:由于塑性变形过程中产生的热量使变形体温度升高的现象。(热效应:塑性变形时金属所吸收的能量,绝大部分都转化成热能的现象)一般来说,冷变形时,随着应变速率的增加,开始时塑性略有下降,以后由于温度效应的增强,塑性会有较大的回升;
而热变形时,随着应变速率的增加,开始时塑性通常会有较显著的降低,以后由于温度效应的增强,而使塑性有所回升,但若此时温度效应过大,已知实际变形温度有塑性区进入高温脆区,则金属的塑性又急速下降。
2.叙述下列术语的定义或含义:
①张量:由若干个当坐标系改变时满足转换关系的分量所组成的集合称为张量;
②应力张量:表示点应力状态的九个分量构成一个二阶张量,称为应力张量;
.ζη η.x xy xz ③应力张量不变量:已知一点的应力状态 ④主应力:在某一斜微分面上的全应力S和正应力ζ重合,而切应力η=0,这种切应力为 零的微分面称为主平面,主平面上的正应力叫做主应力;
⑤主切应力:切应力达到极值的平面称为主切应力平面,其面上作用的切应力称为主切应力 ⑥最大切应力:三个主切应力中绝对值最大的一个,也就是一点所有方位切面上切应力最大的,叫做最大切应力ηmax ⑦主应力简图:只用主应力的个数及符号来描述一点应力状态的简图称为主应力图:
⑧八面体应力:在主轴坐标系空间八个象限中的等倾微分面构成一个正八面体,正八面体的每个平面称为八面体平面,八面体平面上的应力称为八面体应力;
⑨等效应力:取八面体切应力绝对值的3倍所得之参量称为等效应力 ⑩平面应力状态:变形体内与某方向垂直的平面上无应力存在,并所有应力分量与该方向轴无关,则这种应力状态即为平面应力状。实例:薄壁扭转、薄壁容器承受内压、板料成型的一些工序等,由于厚度方向应力相对很小而可以忽略,一般作平面应力状态来处理 11)平面应变状态:如果物体内所有质点在同一坐标平面内发生变形,而在该平面的法线方向没有变形,这种变形称为平面变形,对应的应力状态为平面应变状态。实例:轧制板、带材,平面变形挤压和拉拔等。
12)轴对称应力状态:当旋转体承受的外力为对称于旋转轴的分布力而且没有轴向力时,则物体内的质点就处于轴对称应力状态。实例:圆柱体平砧均匀镦粗、锥孔模均匀挤压和拉拔(有径向正应力等于周向正应力)。
3.张量有哪些基本性质? ①存在张量不变量②张量可以叠加和分解③张量可分对称张量和非对称张量④二阶对称张量存在三个主轴和三个主值 4.试说明应力偏张量和应力球张量的物理意义。
应力偏张量只能产生形状变化,而不能使物体产生体积变化,材料的塑性变形是由应力偏张量引起的;
应力球张量不能使物体产生形状变化(塑性变形),而只能使物体产生体积变化。
12.叙述下列术语的定义或含义 1)位移:变形体内任一点变形前后的直线距离称为位移;
2)位移分量:位移是一个矢量,在坐标系中,一点的位移矢量在三个坐标轴上的投影称为改点的位移分量,一般用 u、v、w或角标符号ui 来表示;
3)相对线应变:单位长度上的线变形,只考虑最终变形;
4)工程切应变:将单位长度上的偏移量或两棱边所夹直角的变化量称为相对切应变,也称工程切应变,即δrt = tanθxy =θxy =αyx +αxy(直角∠CPA减小时,θxy取正号,增大时取负号);
5)切应变:定义γ yx =γ xy= 1θyx 为切应变;
6)对数应变:塑性变形过程中,在应变主轴方向保持不变的情况下应变增量的总和,记为它反映了物体变形的实际情况,故称为自然应变或对数应变;
7)主应变:过变形体内一点存在有三个相互垂直的应变方向(称为应变主轴),该方向上线元没有切应变,只有线应变,称为主应变,用ε1、ε2、ε3 表示。对于各向同性材料,可以认 为小应变主方向与应力方向重合;
8)主切应变:在与应变主方向成± 45°角的方向上存在三对各自相互垂直的线元,它们的切 应变有极值,称为主切应变;
9)最大切应变:三对主切应变中,绝对值最大的成为最大切应变;
10)应变张量不变量:
11)主应变简图:用主应变的个数和符号来表示应变状态的简图;
12)八面体应变:如以三个应变主轴为坐标系的主应变空间中,同样可作出正八面体,八面体平面的法线方向线元的应变称为八面体应变 13)应变增量:产生位移增量后,变形体内质点就有相应无限小的应变增量,用dεij 来表示;
14)应变速率:单位时间内的应变称为应变速率,俗称变形速度,用ε& 表示,其单位为 s-1;
15)位移速度:
14.试说明应变偏张量和应变球张量的物理意义。应变偏张量εij /----表示变形单元体形状的变化;
应变球张量δijεm----表示变单元体体积的变化;
塑性变形时,根据体积不变假设,即εm = 0,故此时应变偏张量即为应变张量 15.塑性变形时应变张量和应变偏张量有何关系?其原因何在?塑性变形时应变偏张量就是应变张量,这是根据体积不变假设得到的,即εm = 0,应变球张量不存在了。
16.用主应变简图表示塑性变形的类型有哪些? 三个主应变中绝对值最大的主应变,反映了该工序变形的特征,称为特征应变。如用主应变简图来表示应变状态,根据体积不变条件和特征应变,则塑性变形只能有三种变形类型 ①压缩类变形,特征应变为负应变(即ε1<0)另两个应变为正应变,ε2 +ε3 =.ε1 ;
②剪切类变形(平面变形),一个应变为零,其他两个应变大小相等,方向相反,ε2 =0,ε1 =.ε3 ;
③伸长类变形,特征应变为正应变,另两个应变为负应变,ε1 =.ε2.ε3。
17.对数应变有何特点?它与相对线应变有何关系? 对数应变能真实地反映变形的积累过程,所以也称真实应变,简称真应变。它具有如下 特点:
①对数应变有可加性,而相对应变为不可加应变;
②对数应变为可比应变,相对应变为不可比应变;
③相对应变不能表示变形的实际情况,而且变形程度愈大,误差也愈大。
对数应变可以看做是由相对线应变取对数得到的。
21.叙述下列术语的定义或含义:
Ⅰ屈服准则:在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件,它是描述受力物体中不同应力状态下的质点进入塑性状态并使塑性变形继续进行所必须遵守的力学条件;
Ⅱ屈服表面:屈服准则的数学表达式在主应力空间中的几何图形是一个封闭的空间曲面称为屈服表面。假如描述应力状态的点在屈表面上,此点开始屈服。对各向同性的理想塑性材料,则屈服表面是连续的,屈服表面不随塑性流动而变化。
Ⅲ屈服轨迹:两向应力状态下屈服准则的表达式在主应力坐标平面上的集合图形是封闭的曲线,称为屈服轨迹,也即屈服表面与主应力坐标平面的交线。
22.常用的屈服准则有哪两个?如何表述?分别写出其数学表达式。
常用的两个屈服准则是 Tresca屈服准则和 Mises屈服准则,数学表达式分别为max min Tresca屈服准则:ηmax =ζ.ζ = C2 式中,ζmax、ζ min----带数值最大、最小的主应力;
C----与变形条件下的材料性质有关而与应力状态无关的常数,它可通过单向均匀拉伸试验求的。
Tresca屈服准则可以表述为:在一定的变形条件下,当受力体内的一点的最大切应力ηmax 达到某一值时,该点就进入塑性状体。
Mises屈服准则:ζ= 1(ζ1.ζ 2)2 +(ζ 2.ζ3)2 +(ζ3.ζ1)2 =ζs2 = 1 ζ)()()()2(s2zx2yz2xy2xz2zy2yx6ζηηηζζζζζ=+++.+.+.所以 Mises屈服准则可以表述为:在一定的变形条件下,当受力体内一点的等效应力 ζ达到某一定值时,该点就进入塑性状态。
23.两个屈服准则有何差别?在什么状态下两个屈服准则相同?什么状态下差别最大? Ⅰ共同点:
①屈服准则的表达式都和坐标的选择无关,等式左边都是不变量的函数;
②三个主应力可以任意置换而不影响屈服,同时,认为拉应力和压应力的作用是一样的;
③各表达式都和应力球张量无关。
不同点:①Tresca屈服准则没有考虑中间应力的影响,三个主应力的大小顺序不知道时,使用不方便;
而 Mises屈服准则则考虑了中间应力的影响,使用方便。
Ⅱ两个屈服准则相同的情况在屈服轨迹上两个屈服准则相交的点表示此时两个屈服准则相同,有六个点,四个单向应力状态,两个轴对称应力状态。
Ⅲ两个屈服准则差别最大的情况:在屈服轨迹上连个屈服准则对应距离最远的点所对应的情况,此时二者相差最大,也是六个点,四个平面应力状态(也可是平面应变状态),两个纯切应力状态,相差为 15.5%。
28.叙述下列术语的定义或含义:
1)增量理论:又称流动理论,是描述材料处于塑性状态时,应力与应变增量或应变速率之间关系的理论,它是针对加载过程中的每一瞬间的应力状态所确定的该瞬间的应变增量,这样就撇开了加载历史的影响;
2)全量理论:在一定条件下直接确定全量应变的理论,也叫形变理论,它是要建立塑性变形全量应变和应力之间的关系。
3)比例加载:外载荷的各分量按比例增加,即单调递增,中途不卸载的加载方式,满足Ti =CT i 0 ;
4)标称应力:也称名义应力或条件应力,是在拉伸机上拉伸力与原始横断面积的比值;
5)真实应力:也就是瞬时的流动应力,用单向均匀拉伸(或压缩)是各加载瞬间的载荷 P与该瞬间试样的横截面积A之比来表示;
6)拉伸塑性失稳:拉伸过程中发生缩颈的现象 7)硬化材料:考虑在塑性变形过程中因形状变化而会发生加工硬化的材料;
8)理想弹塑性材料:在塑性变形时,需考虑塑性变形之前的弹性变形,而不考虑硬化的材料,也即材料进入塑性状态后,应力不在增加可连续产生塑性变形;
9)理性刚塑性材料:在研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料;
10)弹塑性硬化材料:在塑性变形时,既需要考虑塑性变形前的弹性变形,又要考虑加工硬化的材料;
11)刚塑性硬化材料:在研究塑性变形时,不考虑塑性变形前的弹性变形,但需要考虑变形过程中的加工硬化的材料。
29.塑性变形时应力应变关系有何特点?为什么说塑性变形时应力和应变之间的关系与加载历史有关? 在塑性变形时,应力应变之间的关系有如下特点:
①应力与应变之间的关系时非线性的,因此,全量应变主轴与应力主轴不一定重合;
②塑性变形时可以认为体积不变,即应变球张量为零,泊松比 υ=0.5;
③对于应变硬化材料,卸载后在重新加载时的屈服应力就是卸载时的屈服应力,比初始屈服应力要高;
④塑性变形时不可逆的,与应变历史有关,即应力-应变关系不在保持单值关系。塑性变形应力和应变之间的关系与加载历史有关,可以通过单向拉伸时的应力应变曲线和不同加载路线的盈利与应变图来说明 P120 30.全量理论使用在什么场合?为什么? 全量理论适用在简单加载的条件下,因为在简单加载下才有应力主轴的方向固定不变,也就是应变增量的主轴是和应力主轴是重合的,这种条件下对劳斯方程积分得到全量应变和应力之间的关系,就是全量理论。
31.在一般情况下对应变增量积分是否等于全量应变?为什么?在什么情况下这种积分才能成立? 一般情况下是对应变增量积分是不等于全量应变的,因为一般情况下塑性变形时全量应变主轴与与应力主轴不一定重合。在满足简单加载的的条件下,这种积分才成立。一般情况下很难做到比例加载,但满足几个条件可实现比例加载。可参看第三章第五节中全量理论的部分内容。
1.对塑性成形件进行质量分析有何重要意义? 对塑性成形件进行质量分析,是检验成形件的质量的一种手段,能够对成形件作出较为全面的评估,指明成形件能否使用和在使用过程中应该注意的问题,可有效防止不必要的安全事故和经济损失。
2.试述对塑性成形件进行质量分析的一般过程即分析方法。
一般过程:调查原始情况→弄清质量问题→试验研究分析→提出解决措施;
分析方法:低倍组织试验、金相试验及金属变形金属变形流动分析试验。
3.试分别从力学和组织方面分析塑性成形件中产生裂纹的原因。
①力学分析:能否产生裂纹,与应力状态、应变积累、应变速率及温度等很多因素有关。其中应力状态主要反映力学的条件。
物体在外力的作用下,其内部各点处于一定的应力状态,在不同的方位将作用有不同的正应力及切应力。材料断裂(产生裂纹)形式一般有两种:一是切断,断裂面是平行于最大切应力或最大切应变方向;
另一种是正断,断裂面垂直于最大正应力或正应变方向。塑性成形过程中,材料内部的应力除了由外力引起外,还有由于变形不均匀而引起的附加应力。由于温度不均而引起的温度应力和因组织转变不同时进行而产生的组织应力。这些应力超过极限值时都会使材料发生破坏(产生裂纹)。
1)由外力直接引起的裂纹;
2)由附加应力及残余应力引起的裂纹;
3)由温度应力(热应力)及组织应力引起的裂纹。
②组织分析:塑性成形中的裂纹一般发生在组织不均匀或带有某些缺陷的材料中,同时,金属的晶界往往是缺陷比较集中的地方,因此,塑性成形件中的裂纹一般产生于晶界或相界处。
1)材料中由冶金和组织缺陷处应力集中而产生裂纹;
2)第二相及夹杂物本身的强度低和塑性低而产生裂纹:a晶界为低熔点物质;
b晶界存在脆性的第二相或非金属夹杂物;
c第二相为强度低于基体的韧性相;
3)第二相及非金属夹杂与基体之间的力学性能和理化性能上有差异而产生裂纹。
4.防止产生裂纹的原则措施是什么? 1)增加静水压力;
2)选择和控制合适的变形温度和变形速度;
3)采用中间退火,以便消除变形过程中产生的硬化、变形不均匀、残余应力等;
4)提高原材料的质量。
5.什么是钢的奥氏体本质晶粒度和钢的奥氏体实际晶粒度? 钢的奥氏体本质晶粒度是将钢加热到 930℃,保温一段时间(一般 3—8h),冷却后在室温下放大 100倍观察到的晶粒大小。钢的本事晶粒度一般反映钢的冶金质量,它表征钢的工艺特性;
钢的奥氏体实际晶粒度是指钢加热到某一温度下获得奥氏体晶粒大小。奥氏体实际晶粒度则影响零件的使用性能。
6.晶粒大小对材料的力学性能有何影响? 一般情况下,晶粒细化可以提高金属材料的屈服强度、疲劳强度、塑性和冲击韧度,降低钢的脆性转变温度。
7.影响晶粒大小的主要因素有哪些?这些因素是如何影响晶粒大小的? 对于热加工过程来说,变形温度、变形程度和机械阻碍物是影响形核速度和长大速度的三个基本参数。下面讨论这三个基本参数对晶粒大小的影响。
1)加热温度(包括塑性变形前的加热温度和固溶处理时的加热温度)温度对原子的扩散能力有重要影响。随着温度的升高,原子(特别是晶界原子)的移动、扩散能力不断增强,晶粒之间并吞速度加剧,晶粒的这种长大可以在很短的时间内完成。所以晶粒随温度升高而长大是一种必然现象。
2)变形程度:热变形的晶粒大小与变形程度之间的关系和 5-17相似。
第一个大晶粒区,叫临界变形区。临界变形区是属于一种小变形量范围。因为其变形量小,金属内部只是局部地区受到变形。在再结晶时,这些受到变形的局部地区会产生再结晶核心,由于产生的核心数目不多,这些为数不多的核心将不断长大直到它们互相接触,结果获得了粗大晶粒。当变形量大于临界变形程度时,金属内部均产生了较大的塑性变形,由于具有了较高的畸变能,因而再结晶能同时形成较多的再结晶核心,这些核心稍微长大就相互解除了,所以再结晶后获得了细晶粒。当变形量足够大时,出现了第二个大晶粒区。该区的粗大晶粒与临界变形时所产生的大晶粒不同。一般认为,该区是在变形时先形成变形织构,经再结晶后形成了织构大晶粒所致。可能的原因还可能是:
①由于变形程度大(90%以上),内部产生很大的热效应,引起锻件实际变形温度大幅度升高;
②由于变形程度大,使那些沿晶界分布的杂质破碎并分散,造成变形的晶粒与晶粒之间局部地区直接接触(与织构的区别在于这时相互接触的晶粒位向差可以是比较大的),从而促使形成大晶粒。
3)机械阻碍物:机械阻碍物的存在形式分两类:一类是钢在冶炼凝固时从液相直接析出的,颗粒比较大,成偏析或统计分布;
另一类是钢凝固后,在继续冷却过程中从奥氏体晶粒内析出的,颗粒十分细小,分布在晶界上。后一类比前一类的阻碍作用大得多。机械阻碍物的作用主要表现在对晶界的钉扎作用上。一旦机械阻碍物溶入晶内时,晶界上就不存在机械阻碍作用了,晶粒便可立即长大到与所处温度对应的晶粒大小。对晶粒的影响,除以上三个基本因素外,还有变形速度、原始晶粒度和化学成分等。
8.细化晶粒的主要途径有哪些? ①在原材料冶炼时加入一些合金元素(如钽、铌、锆、钼、钨、钒、钛等)及最终采用铝、钛等作脱氧剂。它们的细化作用主要在于:当液态金属凝固时,那些高熔点化合物起弥散的结晶核心作用,从而保证获得极细晶粒。此外这些化合物同时又都起到机械阻碍的作用,是已形成的细晶粒不易长大。
②采用适当的变形程度和变形温度。塑性变形时应恰当控制最高变形温度(既要考虑加热温度,也要考虑到热效应引起的升温),以免发生聚集再结晶。如果变形量较小时,应适当降低变形温度。
③采用锻后正火(或退火)等相变重结晶的方法。必要时利用奥氏体再结晶规律进行高温正火来细化晶粒。
11.什么是塑性失稳?拉伸失稳与压缩失稳有什么本质区别? 塑性失稳:在塑性加工中,当材料所受载荷达到某一临界值后,即使载荷下降,塑性变形还会继续,这种现象称为塑性失稳。压缩失稳的主要影响因素是刚度参数,它在塑性成形中主要表现为坯料的弯曲和起皱,在弹性和塑性变形范围内都可能产生;
拉伸失稳的主要影响因素是强度参数,它主要表现为明显的非均匀伸长变形,在坯料上产生局部变薄或变细的现象,其进一步发展是坯料的拉断和破裂,它只产生于塑性变形范围内。
13.杆件的塑性压缩失稳与板料的塑性压缩失稳其表现形式有何不同? 杆件的压缩失稳表现为弯曲;
板料的压缩失稳表现为起皱 14.塑性压缩失稳的临界压应力与那些因素有关?(P180-184)15.在板料拉深中,引起法兰变形区起皱的原因是什么?在生产实践中,如何防止法兰变形区的起皱? 原因:压缩力引起的失稳起皱。成形过程中变形区坯料的径向拉应力ζ1和切向压应力ζ3 的平面应力状态下变形,当切向压应力ζ3 达到失稳临界值时,坯料将产生失稳起皱。
防止方法:加设压边圈 一、填空题 1.衡量金属或合金的塑性变形能力的数量指标有 伸长率 和 断面收缩率。
2.所谓金属的再结晶是指 冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织 的过程。
3.金属热塑性变形机理主要有:
晶内滑移、晶内孪生、晶界滑移 和 扩散蠕变 等。
4.请将以下应力张量分解为应力球张量和应力偏张量 = + 5.对应变张量,请写出其八面体线变 与八面体切应变 的表达式。
= ;
=。
6.1864 年法国工程师屈雷斯加(H.Tresca)根据库伦在土力学中研究成果,并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果采用数学的方式,屈雷斯加屈服条件可表述为。
7.金属塑性成形过程中影响摩擦系数的因素有很多,归结起来主要有 金属的种类和化学成分、工具的表面状态、接触面上的单位压力、变形温度、变形速度 等几方面的因素。
8.变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切线方向即为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态下,塑性区内各点的应力状态不同其实质只是平均应力 不同,而各点处的 最大切应力 为材料常数。
9.在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应的速度场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场,称之为 真实 应力场和 真实 速度场,由此导出的载荷,即为 真实 载荷,它是唯一的。
10.设平面三角形单元内部任意点的位移采用如下的线性多项式来表示:
,则单元内任一点外的应变可表示为 =。
11、金属塑性成形有如下特点:
、、、。
12、按照成形的特点,一般将塑性成形分为 和 两大类,按照成形时工件的温度还可以分为、和 三类。
13、金属的超塑性分为 和 两大类。
14、晶内变形的主要方式和单晶体一样分为 和。
其中 变形是主要的,而 变形是次要的,一般仅起调节作用。
15、冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织,这个过程称为金属的。
16、常用的摩擦条件及其数学表达式。
17、研究塑性力学时,通常采用的基本假设有、、、体积力为零、初应力为零、。
19.塑性是指:
在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。
20.金属单晶体变形的两种主要方式有:
滑移 和 孪生。
21.影响金属塑性的主要因素有:
化学成分、组织、变形温度、变形速度、应力状态。
22.等效应力表达式: 。
23.一点的代数值最大的 __ 主应力 __ 的指向称为 第一主方向,由 第一主方向顺时针转 所得滑移线即为 线。
24.平面变形问题中与变形平面垂直方向的应力 σ z =。
25.塑性成形中的三种摩擦状态分别是:
干摩擦、边界摩擦、流体摩擦。
26.对数应变的特点是具有真实性、可靠性和可加。
27.就大多数金属而言,其总的趋势是,随着温度的升高,塑性 提高。
28.钢冷挤压前,需要对坯料表面进行磷化皂化 润滑处理。
29.为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫添加剂。
30.材料在一定的条件下,其拉伸变形的延伸率超过 100% 的现象叫超塑性。
31.韧性金属材料屈服时,密塞斯(Mises)准则较符合实际的。
32.硫元素的存在使得碳钢易于产生热脆。
33.塑性变形时不产生硬化的材料叫做理想塑性材料。
34.应力状态中的压 应力,能充分发挥材料的塑性。
35.平面应变时,其平均正应力sm 等于 中间主应力s2。
36.钢材中磷使钢的强度、硬度提高,塑性、韧性 降低。
37.材料经过连续两次拉伸变形,第一次的真实应变为e1=0.1,第二次的真实应变为e2=0.25,则总的真实应变e=0.35。
38.塑性指标的常用测量方法 拉伸试验法与压缩试验法。
39.弹性变形机理 原子间距的变化;
塑性变形机理 位错运动为主。
二、下列各小题均有多个答案,选择最适合的一个填于横线上 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响A工件表面的粗糙度对摩擦系数的影响。
A、大于;
B、等于;
C、小于;
2.塑性变形时不产生硬化的材料叫做 A。
A、理想塑性材料;
B、理想弹性材料;
C、硬化材料;
3. 用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为 B。
A、解析法;
B、主应力法;
C、滑移线法;
4. 韧性金属材料屈服时,A准则较符合实际的。
A、密席斯;
B、屈雷斯加;
C密席斯与屈雷斯加;
5.由于屈服原则的限制,物体在塑性变形时,总是要导致最大的 A 散逸,这叫最大散逸功原理。
A、能量;
B、力;
C、应变;
6. 硫元素的存在使得碳钢易于产生 A。
A、热脆性;
B、冷脆性;
C、兰脆性;
7. 应力状态中的B 应力,能充分发挥材料的塑性。
A、拉应力;
B、压应力;
C、拉应力与压应力;
8.平面应变时,其平均正应力smB中间主应力s2。
A、大于;
B、等于;
C、小于;
9. 钢材中磷使钢的强度、硬度提高,塑性、韧性 B。
A、提高;
B、降低;
C、没有变化;
10.多晶体经过塑性变形后各晶粒沿变形方向显著伸长的现象称为 A。
A、纤维组织;
B、变形织构;
C、流线;
三、判断题 1.按密塞斯屈服准则所得到的最大摩擦系数μ=0.5。
(×)2.塑性变形时,工具表面的粗糙度对摩擦系数的影响小于工件表面的粗糙度对摩擦系数的影响。
(×)3.静水压力的增加,对提高材料的塑性没有影响。(×)4.在塑料变形时要产生硬化的材料叫理想刚塑性材料。
(×)5.塑性变形体内各点的最大剪应力的轨迹线叫滑移线。(√)6.塑性是材料所具有的一种本质属性。
(√)7.塑性就是柔软性。
(×)8.合金元素使钢的塑性增加,变形拉力下降。
(×)9.合金钢中的白点现象是由于夹杂引起的。
(×)10.结构超塑性的力学特性为,对于超塑性金属m =0.02-0.2。
(×)11.影响超塑性的主要因素是变形速度、变形温度和组织结构。
(√)12.屈雷斯加准则与密席斯准则在平面应变上,两个准则是一致的。
(×)13.变形速度对摩擦系数没有影响。
(×)14.静水压力的增加,有助于提高材料的塑性。(√)15.碳钢中冷脆性的产生主要是由于硫元素的存在所致。(×)16.如果已知位移分量,则按几何方程求得的应变分量自然满足协调方程;
若是按其它方法求得的应变分量,也自然满足协调方程,则不必校验其是否满足连续性条件。
(×)17.在塑料变形时金属材料塑性好,变形抗力就低,例如:不锈钢(×)四、简答题 1.纯剪切应力状态有何特点? 答:纯剪切应力状态下物体只发生形状变化而不发生体积变化。
纯剪应力状态下单元体应力偏量的主方向与单元体应力张量的主方向一致,平均应力。
其第一应力不变量也为零。
3.塑性变形时应力应变关系的特点? 答:在塑性变形时,应力与应变之间的关系有如下特点:
(1)应力与应变之间的关系是非线性的,因此,全量应变主轴与应力主轴不一定重合。
(2)塑性变形时,可以认为体积不变,即应变球张量为零,泊松比。
(3)对于应变硬化材料,卸载后再重新加载时的屈服应力就是报载时的屈服应力,比初始屈服应力要高。
(4)塑性变形是不可逆的,与应变历史有关,即应力-应变关系不再保持单值关系。
1.试简述提高金属塑性的主要途径。
答:可通过以下几个途径来提高金属塑性:
(1)提高材料的成分和组织的均匀性;
(2)合理选择变形温度和变形速度;
(3)选择三向受压较强的变形方式;
(4)减少变形的不均匀性。
2.请简述应变速率对金属塑性的影响机理。
答:应变速度通过以下几种方式对塑性发生影响:
(1)增加应变速率会使金属的真实应力升高,这是由于塑性变形的过程比较复杂,需要有一定的时间来进行。
(2)增加应变速率,由于没有足够的时间进行回复或再结晶,因而软化过程不充分而使金属的塑性降低。
(3)增加应变速率,会使温度效应增大和金属的温度升高,这有利于金属塑性的提高。
综上所述,应变速率的增加,既有使金属塑性降低的一面,又有使金属塑性增加的一面,这两方面因素综合作用的结果,最终决定了金属塑性的变化。
3.请简述弹性变形时应力-应变关系的特点。
答:弹性变形时应力-应变关系有如下特点:
(1)应力与应变完全成线性关系,即应力主轴与全量应变主轴重合。
(2)弹性变形是可逆的,与应变历史(加载过程)无关,即某瞬时的物体形状、尺寸只与该瞬时的外载有关,而与瞬时之前各瞬间的载荷情况无关。
(3)弹性变形时,应力球张量使物体产生体积的变化,泊松比。
三、计算题 1.对于直角坐标系 Oxyz 内,已知受力物体内一点的应力张量为,应力单位为 Mpa,(1)画出该点的应力单元体;
(2)求出该点的应力张量不变量、主应力及主方向、最大切应力、八面体应力、应力偏张量及应力球张量。
解:
(1)该点的应力单元体如下图所示(2)应力张量不变量如下 故得应力状态方程为 解之得该应力状态的三个主应力为(Mpa)设主方向为,则主应力与主方向满足如下方程 即,解之则得,解之则得,解之则得 最大剪应力为:
八面体正应力为:
Mpa 八面体切应力为:
应力偏张量为:,应力球张量为:
2.已知金属变形体内一点的应力张量为 Mpa,求:
(1)计算方向余弦为 l=1/2,m=1/2,n= 的斜截面上的正应力大小。
(2)应力偏张量和应力球张量;
(3)主应力和最大剪应力;
解:
(1)可首先求出方向余弦为(l,m,n)的斜截面上的应力()进一步可求得斜截面上的正应力 :
(2)该应力张量的静水应力 为 其应力偏张量 应力球张量(3)在主应力面上可达到如下应力平衡 其中 欲使上述方程有解,则 即 解之则得应力张量的三个主应力:
对应地,可得最大剪应力。
3.若变形体屈服时的应力状态为:-30 0 0 15 0 23 ´ ÷ ÷ ÷ ø ö ç ç ç è æ × × × = ij s MPa 试分别按Mises和Tresca塑性条件计算该材料的屈服应力及值,并分析差异大小。
解:,Tresca准则:
MPa 而==1 Mises准则:
MPa 而==1.07 或者:,4.某理想塑性材料,其屈服应力为100(单位:10MPa),某点的应力状态为:
MPa 将其各应力分量画在如图所示的应力单元图中,并判断该点处于什么状态(弹性/塑性)? 答:=-300MPa =230MPa =150MPa =-30 MPa ====0 根据应力张量第一、第二、第三不变量公式:
=++-=++ = 将、、、、、、、、代入上式得:
=8,=804,=-10080(单位:10MPa)将、、代入--б-=0,令>>解得:
=24 =14 =-30(单位:10MPa)根据Mises屈服准则:
等效应力 = =49.76(单位:10MPa)(单位:10MPa)因此,该点处于弹性状态。
一、填空题 1.设平面三角形单元内部任意点的位移采用如下的线性多项式来表示:
,则单元内任一点外的应变可表示为 =。
2.塑性是指:
在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。
3.金属单晶体变形的两种主要方式有:
滑移 和 孪生。
4.等效应力表达式:。
5.一点的代数值最大的 __ 主应力 __ 的指向称为 第一主方向,由 第一主方向顺时针转 所得滑移线即为 线。
6.平面变形问题中与变形平面垂直方向的应力 σ z =。
7.塑性成形中的三种摩擦状态分别是:
干摩擦、边界摩擦、流体摩擦。
8.对数应变的特点是具有真实性、可靠性和可加性。
9.就大多数金属而言,其总的趋势是,随着温度的升高,塑性 提高。
10.钢冷挤压前,需要对坯料表面进行磷化皂化 润滑处理。
11.为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫添加剂。
12.材料在一定的条件下,其拉伸变形的延伸率超过 100% 的现象叫超塑性。
13.韧性金属材料屈服时,密席斯(Mises)准则较符合实际的。
14.硫元素的存在使得碳钢易于产生热脆。
15.塑性变形时不产生硬化的材料叫做理想塑性材料。
16.应力状态中的压 应力,能充分发挥材料的塑性。
17.平面应变时,其平均正应力sm 等于 中间主应力s2。
18.钢材中磷使钢的强度、硬度提高,塑性、韧性 降低。
19.材料经过连续两次拉伸变形,第一次的真实应变为e1=0.1,第二次的真实应变为e2=0.25,则总的真实应变e=0.35。
20.塑性指标的常用测量方法 拉伸试验法与压缩试验法。
21.弹性变形机理 原子间距的变化;
塑性变形机理 位错运动为主。
二、下列各小题均有多个答案,选择最适合的一个填于横线上 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响A工件表面的粗糙度对摩擦系数的影响。
A、大于;
B、等于;
C、小于;
2.塑性变形时不产生硬化的材料叫做 A。
A、理想塑性材料;
B、理想弹性材料;
C、硬化材料;
3. 用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为 B。
A、解析法;
B、主应力法;
C、滑移线法;
4. 韧性金属材料屈服时,A准则较符合实际的。
A、密席斯;
B、屈雷斯加;
C密席斯与屈雷斯加;
5.由于屈服原则的限制,物体在塑性变形时,总是要导致最大的 A 散逸,这叫最大散逸功原理。
A、能量;
B、力;
C、应变;
6. 硫元素的存在使得碳钢易于产生 A。
A、热脆性;
B、冷脆性;
C、兰脆性;
7. 应力状态中的B 应力,能充分发挥材料的塑性。
A、拉应力;
B、压应力;
C、拉应力与压应力;
8.平面应变时,其平均正应力smB中间主应力s2。
A、大于;
B、等于;
C、小于;
9. 钢材中磷使钢的强度、硬度提高,塑性、韧性 B。
A、提高;
B、降低;
C、没有变化;
10.多晶体经过塑性变形后各晶粒沿变形方向显著伸长的现象称为 A。
A、纤维组织;
B、变形织构;
C、流线;
三、判断题 1.按密席斯屈服准则所得到的最大摩擦系数μ=0.5。
(×)2.塑性变形时,工具表面的粗糙度对摩擦系数的影响小于工件表面的粗糙度对摩擦系数的影响。
(×)3.静水压力的增加,对提高材料的塑性没有影响。(×)4.在塑料变形时要产生硬化的材料叫理想刚塑性材料。
(×)5.塑性变形体内各点的最大剪应力的轨迹线叫滑移线。(√)6.塑性是材料所具有的一种本质属性。
(√)7.塑性就是柔软性。
(×)8.合金元素使钢的塑性增加,变形拉力下降。
(×)9.合金钢中的白点现象是由于夹杂引起的。
(×)10.结构超塑性的力学特性为,对于超塑性金属m =0.02-0.2。
(×)11.影响超塑性的主要因素是变形速度、变形温度和组织结构。
(√)12.屈雷斯加准则与密席斯准则在平面应变上,两个准则是一致的。
(×)13.变形速度对摩擦系数没有影响。
(×)14.静水压力的增加,有助于提高材料的塑性。(√)15.碳钢中冷脆性的产生主要是由于硫元素的存在所致。(×)16.如果已知位移分量,则按几何方程求得的应变分量自然满足协调方程;
若是按其它方法求得的应变分量,也自然满足协调方程,则不必校验其是否满足连续性条件。
(×)17.在塑料变形时金属材料塑性好,变形抗力就低,例如:不锈钢(×)四、名词解释 1.上限法的基本原理是什么? 答:按运动学许可速度场来确定变形载荷的近似解,这一变形载荷它总是大于真实载荷,即高估的近似值,故称上限解。
2.在结构超塑性的力学特性中,m值的物理意义是什么? 答:为应变速率敏感性系数,是表示超塑性特征的一个极重要的指标,当m值越大,塑性越好。
3.何谓冷变形、热变形和温变形? 答:冷变形:在再结晶温度以下(通常是指室温)的变形。
热变形:在再结晶温度以上的变形。
温变形:在再结晶温度以下,高于室温的变形。
4.何谓最小阻力定律? 答:变形过程中,物体质点将向着阻力最小的方向移动,即做最少的功,走最短的路。
5.何谓超塑性? 答:延伸率超过100%的现象叫做超塑性。
五、简答题 1.请简述有限元法的思想。
答:有限元法的基本思想是:
(1)把变形体看成是有限数目单元体的集合,单元之间只在指定节点处铰接,再无任何关连,通过这些节点传递单元之间的相互作用。如此离散的变形体,即为实际变形体的计算模型;
(2)分片近似,即对每一个单元选择一个由相关节点量确定的函数来近似描述其场变量(如速度或位移)并依据一定的原理建立各物理量之间的关系式;
(3)将各个单元所建立的关系式加以集成,得到一个与有限个节点相关的总体方程。
解此总体方程,即可求得有限个节点的未知量(一般为速度或位移),进而求 得整个问题的近似解,如应力应变、应变速率等。
所以有限元法的实质,就是将具有无限个自由度的连续体,简化成只有有限个自由度的单元集合体,并用一个较简单问题的解去逼近复杂问题的解。
2.Levy-Mises 理论的基本假设是什么? 答:
Levy-Mises 理论是建立在以下四个假设基础上的:
(1)材料是刚塑性材料,即弹性应变增量为零,塑性应变增量就是总的应变增量;
(2)材料符合 Mises 屈服准则,即 ;
(3)每一加载瞬时,应力主轴与应变增量主轴重合;
(4)塑性变形时体积不变,即,所以应变增量张量就是应变增量偏张量,即 3.在塑性加工中润滑的目的是什么?影响摩擦系数的主要因素有哪些? 答:(1)润滑的目的是:减少工模具磨损;
延长工具使用寿命;
提高制品质量;
降低金属变形时的能耗。
(2)影响摩擦系数的主要因素:
答:1)金属种类和化学成分;
2)工具材料及其表面状态;
3)接触面上的单位压力;
4)变形温度;
5)变形速度;
6)润滑剂 4.简述在塑性加工中影响金属材料变形抗力的主要因素有哪些? 答:(1)材料(化学成分、组织结构);
(2)变形程度;
(3)变形温度;
(4)变形速度;
(5)应力状态;
(6)接触界面(接触摩擦)5.为什么说在速度间断面上只有切向速度间断,而法向速度必须连续? 答:现设变形体被速度间断面SD分成①和②两个区域;
在微段dSD上的速度间断情况如下图所示。
根据塑性变形体积不变条件,以及变形体在变形时保持连续形,不发生重叠和开裂可知,垂直于dSD上的速度分量必须相等,即,而切向速度分量可以不等,造成①、②区的相对滑动。其速度间断值为 6.何谓屈服准则?常用屈服准则有哪两种?试比较它们的同异点? 答:(1)屈服准则:只有当各应力分量之间符合一定的关系时,质点才进入塑性状态,这种关系就叫屈服准则。
(2)常用屈服准则:密席斯屈服准则与屈雷斯加屈服准则。
(3)同异点:在有两个主应力相等的应力状态下,两者是一致的。对于塑性金属材料,密席斯准则更接近于实验数据。在平面应变状态时,两个准则的差别最大为15.5% 7.简述塑性成形中对润滑剂的要求。
答:(1)润滑剂应有良好的耐压性能,在高压作用下,润滑膜仍能吸附在接触表面上,保持良好的润滑状态;
(2)润滑剂应有良好耐高温性能,在热加工时,润滑剂应不分解,不变质;
(3)润滑剂有冷却模具的作用;
(4)润滑剂不应对金属和模具有腐蚀作用;
(5)润滑剂应对人体无毒,不污染环境;
(6)润滑剂要求使用、清理方便、来源丰富、价格便宜等。
8.简述金属塑性加工的主要优点? 答:(1)结构致密,组织改善,性能提高。
(2)材料利用率高,流线分布合理。
(3)精度高,可以实现少无切削的要求。
(4)生产效率高。
六、计算题 1.圆板坯拉深为圆筒件如图1所示。
假设板厚为t , 圆板坯为理想刚塑性材料,材料的真实应力为S,不计接触面上的摩擦 ,且忽略凹模口处的弯曲效应 , 试用主应力法证明图示瞬间的拉深力为:
(a)拉深示意图(b)单元体 图1 板料的拉深 答:在工件的凸缘部分取一扇形基元体,如图所示。沿负的径向的静力平衡方程为:
展开并略去高阶微量,可得:
由于是拉应力,是压应力,故,得近似塑性条件为:
联解得:
式中的 2.如图2所示,设有一半无限体,侧面作用有均布压应力,试用主应力法求单位流动压力p。
图2 解:
取半无限体的半剖面,对图中基元板块(设其长为 l)列平衡方程:
(1)其中,设,为摩擦因子,为材料屈服时的最大切应力值,、均取绝对值。
由(1)式得:
(2)采用绝对值表达的简化屈服方程如下:
(3)从而(4)将(2)(3)(4)式联立求解,得:
(5)在边界上,由(3)式,知,代入(5)式得:
最后得:
(6)从而,单位流动压力:
(7)3.图3所示的圆柱体镦粗,其半径为re,高度为h,圆柱体受轴向压应力sZ,而镦粗变形接触表面上的摩擦力t=0.2S(S为流动应力),sze为锻件外端(r=re)处的垂直应力。
(1)证明接触表面上的正应力为:
(2)并画出接触表面上的正应力分布;
(3)求接触表面上的单位流动压力p,(4)假如re=100MM,H=150MM,S=500MPa,求开始变形时的总变形抗力P为多少吨? 解:
(1)证明 该问题为平行砧板间的轴对称镦粗。设对基元板块列平衡方程得:
因为,并略去二次无穷小项,则上式化简成:
假定为均匀镦粗变形,故:
图3 最后得:
该式与精确平衡方程经简化后所得的近似平衡方程完全相同。
按密席斯屈服准则所写的近似塑性条件为:
联解后得:
当时,最后得:
(3)接触表面上的单位流动压力为:
=544MP(4)总变形抗力: =1708T 4.图4所示的一平冲头在外力作用下压入两边为斜面的刚塑性体中,接触表面上的摩擦力忽略不计,其接触面上的单位压力为q,自由表面AH、BE与X轴的夹角为,求:
(1)证明接触面上的单位应力q=K(2++2);
(2)假定冲头的宽度为2b,求单位厚度的变形抗力P;
图4 解:
(1)证明 1)在AH边界上有:
故,屈服准则:
得:
2)在AO边界上:
根据变形情况:
按屈服准则:
沿族的一条滑移(OA1A2A3A4)为常数(2)单位厚度的变形抗力:
5.图5所示的一尖角为2j的冲头在外力作用下插入具有相同角度的缺口的刚塑性体中,接触表面上的摩擦力忽略不计,其接触面上的单位压力为p,自由表面ABC与X轴的夹角为d,求:
(1)证明接触面上的单位应力p=2K(1+j+d);
(2)假定冲头的宽度为2b,求变形抗力P。
图5 答:
(1)证明 1)在AC边界上:
2)在AO边界上:
3)根据变形情况:
4)按屈服准则:
5)沿族的一条滑移(OFEB)为常数(2)设AO的长度为L,则变形抗力为:
6.模壁光滑平面正挤压的刚性块变形模型如图6所示,试计算其单位挤压力的上限解 P,设材料的最大切应力为常数K。
图6 解:首先,可根据动可容条件建立变形区的速端图,如图7所示:
图7 设冲头的下移速度为。由图7可求得各速度间断值如下:
;;由于冲头表面及模壁表面光滑,故变形体的上限功率仅为各速度间隔面上消耗的剪切功率,如下式所示:
又冲头的功率可表示为:
故得:
7.一理想刚塑性体在平砧头间镦粗到某一瞬间,条料的截面尺寸为 2a × 2a,长度为 L,较 2a 足够大,可以认为是平面变形。变形区由 A、B、C、D 四个刚性小块组成(如图8所示),此瞬间平砧头速度为 ú i =1(下砧板认为静止不动)。试画出速端图并用上限法求此条料的单位变形力 p。
图8 解:根据滑移线理论,可认为变形区由对角线分成的四个刚性三角形组成。刚性块 B、D 为死区,随压头以速度 u 相向运动;
刚性块 A、C 相对于 B、D有相对运动(速度间断),其数值、方向可由速端图(如图9所示)完全确定。
图9 u * oA = u * oB = u * oC = u * oD =u/sin θ = 根据能量守恒:
2P · 1 = K(u * oA + u * oB + u * oC + u * oD)又 = = = = a 所以单位流动压力:P = = 2K