第一篇:五年级数学下册 公因数、最大公因数1教案 青岛版
公因数、最大公因数
教学内容:
《义务教育课程标准实验教科书·数学》(青岛版)五年级下册第29页。教材简析:
《公因数、最大公因数》一课是在学生已经学过因数、倍数,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则计算的基础。教学目标:
1.知识与技能:结合解决实际问题,理解公因数和最大公因数的意义,学会求两个数的最大公因数的方法。
2.过程与方法:在探索公因数和最大公因数意义的过程中,经历观察、猜测、归纳等数学活动,进一步发展初步的推理能力。在解决问题的过程中,能进行有条理、有根据地进行思考。
3.情感、态度与价值观:在学生探索新知的过程中,体验学习和探索的乐趣,培养学生学好数学的信心以及小组成员之间互相合作的精神。教学重点:理解公因数、最大公因数的意义; 教学难点:选用恰当的方法求两个数的最大公因数。
第一课时
教学过程:
一、情境引入,提出问题
1.出示几幅剪纸图片,引起学生的兴趣。
谈话:剪纸是我国的一种民间艺术,剪纸具有装饰性,它可以美化环境,陶冶情操。我们班的二课活动就要学习剪纸,同学们有兴趣吗?
2.出示情境图,剪纸的第一步要先裁纸,观察信息窗你了解到哪些信息?同学们在裁纸时遇到了什么问题?
生:这张纸长24厘米,宽18厘米;要想剪成边长是整厘米的正方形并且剪完后没用剩余,正方形的边长可以是几呢?
二、动手操作,合作探究
(一)动手操作,初步感知
1.师:整厘米是指多少厘米?你怎样理解没有剩余?
2.提出要求:利用我们手中的学具,一起来摆一摆,用边长多少厘米的正方形纸片可以将长24厘米,宽18厘米的长方形纸片正好铺满?
小组合作进行,可以将拼摆的结果纪录下来。学生有的在摆,有的可能在想象。教师巡视指导
3.全班交流:生1:我用边长1厘米的正方形沿着长摆了24个,可以摆18行,这样正好铺满,1 没有剩余。(课件演示)
生2:我用边长2厘米的正方形沿着长摆了12个,可以摆9行,也正好摆满,没有剩余。(课件演示)
生3:我用边长4厘米的正方形沿着长摆了6个正方形,摆了4行,还有剩余。(课件演示)生4:„„
师将可以摆满和不能摆满的数据分类进行板书
(二)分析概括,提升数学问题
1.讨论:正方形的边长可以是几厘米?最长是几厘米?
生:正方形的边长可以是1厘米、2厘米、3厘米、6厘米,最长是6厘米。2.师:正方形的边长为什么不能是4厘米、5厘米、7厘米„„? 3.师:想一想,正方形的边长与长方形的长和宽有什么关系?
可见只有用边长是1厘米、2厘米、3厘米、6厘米的正方形才能将长方形摆满。4.师:那么1、2、3、6与24和18有什么关系? 引导学生说:1、2、3、6既是24的因数,又是18的因数 5.师:24的因数有哪些?18的因数呢? 学生口答,教师板书
24的因数 18的因数 1,2,3,6,9,18
1,2,3,4,6,8,12,24
引导学生填写下图并重点思考:两个集合相交的部分填哪些因数? 24的因数 18的因数 1,2,3,6 2 9,18
4,8,12,24 24和18共有的因数
(三)总结概括
1.引导学生通过观察发现:1,2,3,6是24和18共有的因数,6是公有因数中最大的一个。2.师总结:1,2,3,6既是24的因数,又是18的因数,它们是24和18的公有的因数,也叫公因数;其中6是最大的,是24和18的最大公因数。(板书课题)
3.巩固练习:书31页自主练习1
三、运用知识,解决问题
1.师:我们已经找到了24和18的公因数和最大公因数,现在我们可以试着用你喜欢的方法找一找12和18的公因数和最大公因数。
学生根据所学的方法,可以用集合图的形式也可以用列举的方法 2.全班进行交流展示
列举法1:12的因数:1、2、3、4、6、12; 18的因数:1、2、3、6、9、18 12和18的公因数有:1、2、3、6;最大公因数是6 列举法2:先找12的因数,再从12的因数中找出18的因数
12的因数:1、2、3、4、6、12;其中1、2、3、6也是18的因数 12和18的公因数有:1、2、3、6;最大公因数是6 3.师介绍:除了以上的方法还可以用短除法求12和18的最大公因数。12 18 2 用公因数2去除 3 9 用公因数3去除 2 3 除到公因数只有1为止
12和18的最大公因数是:2×3=6 师一边讲解,一边演示:先用12和18的公有的因数2去除,除得的商如果还有公因数就要继续除,注意每次除时都要用两个数的公有的因数去除,再用公因数3去除,一直除到公因数只有1为止。最后写结论时要把所有的公因数(除数)连乘起来,就可以得到这两个数的最大公因数。我们通常运用短除法求两个数的最大公因数。
4.师:同学们学会了用列举法和短除法求两个数的最大公因数,比较一下它们各自有什么优势?
学生讨论得出:列举法适合数比较小的题目,如果数比较大用短除法好。5.巩固练习:
(1)自主练习2 学生独立完成,集体订正,对出现的错误着重讲解。(2)自主练习3 使学生明确用这两种花搭配成同样的花束(正好用完,没有剩余)也就是求72和48的最大公因数。
独立完成,集体交流。3.看书质疑。
学生阅读29—31页,解答学生困惑、疑难问题
第二课时
教学过程:
一、回顾旧知,引入新课。
1.课件出示:找出10和4的公因数和最大公因数 学生独立解答,集体订正
结合此题,教师提出问题:你用什么方法求这两个数的最大公因数?什么是公因数、最大公因数?
2.课件出示:用短除法求出27和18的最大公因数
学生独立解答,指名板演,并说一说解答的过程,二、研究具有特殊关系数的最大公因数。
1.课件出示p32自主练习4 找出每组数的最大公因数6和12 18和54 24和72(1)师:用你喜欢的方法找到每组数的最大公因数 学生独立解答,指名板演,教师巡视,全班进行交流
(2)师:仔细观察,每组数的最大公因数与这组数有什么关系?你发现了什么? 生1:我发现每组数中的小数就是这两个数的最大公因数。
生2:我发现一个数是另一个数的倍数,那它们的最大公因数是那个小数。(3)师:可以再举例验证一下吗?
(4)师生共同总结:如果一个数是另一个数的倍数,它们的最大公因数是那个小数。2.课件出示第二组数:8和9、17和28、15和32(1)找出每组数的最大公因数
学生独立解答,发现这些数的公因数只有1,那么它们的最大公因数就是1。
(2)师:像上面这组数,它们只有公因数1,我们可以说公因数只有1的两个数也叫做互质数。8和9是互质数,17和28是互质数。还能举出几组互质数吗?
4(3)共同总结:如果两个数是互质数,那么它们的最大公因数就是1。
三、拓展练习。
1.p32自主练习7 学生独立思考并解答
“可以选择边长是多少分米的正方形地板砖”使学生明确,要求的地板砖的边长必须是微机室长和宽的公因数,也就是找90和60的公因数。
2.p32自主练习8 学生审题,明确:把3种彩条截成同样长的小段且没有剩余,每段彩条最长几厘米?就是求16、32、56的最大公因数。
学生可以根据已有的知识经验,用列表法也可以用短除法。
指名学生板演,试用短除法求三个数的最大公因数
集体订正,师生共同总结方法:先用3个数公有的因数去除,一直除到三个数只有公因数1为止,再把所有的公因数连乘起来。
四、课后作业。
p32自主练习5、6。
第二篇:五年级下册数学公因数和最大公因数
五年级下册数学公因数和最大公因数
公因数和最大公因数
教学目标:
1、结合解决实际问题,理解公因数和最大公因数的意义,学会求两个数的最大公因数的方法。
2、在探索公因数和最大公因数意义的过程中,经历观察、猜测、归纳等数学活动,进一步发展初步的推理能力。
3、经历观察、操作和交流等学习活动,体验学习数学的乐趣。
教学重点:
理解公因数、最大公因数的意义。
教学难点:
理解并掌握求两个数最大公因数的方法。
教法:
引导观察、抽象概括。
学法:
合作讨论,理解运用。
教学过程:
一、创设游戏,导入新课
1、创设游戏——因数找家
同学们,前面我们已经学习过了因数的概念。今天这节
课,老师先请两名同学带着大家一起来玩一个热身游戏——请找出8或12的因数。
刚才的游戏过程中,同学们有什么发现吗?
你们的观察力非常强!好的,那让请同学们继续送这些
数字宝宝回家吧!
1要送回到哪里去呢?为什么?怎么办呢?
板书:
8的因数
12的因数
精彩备课:五年级下册数学公因数和最大公因数
请继续把数字2,4,6,12送回家吧!
2、导入新课。
小结:1,2,4是8和12公有的因数,叫做它们的公因
数。其中,4是最大的公因数,叫做它们的最大公因数。(板书)
这节课我们就一起来学习公因数和最大公因数。(板书:公因数和最大公因数)
二、自主探究,合作交流
1、自主探究找最大公因数的方法。
那如何快速准确地找出两个数的公因数和最大公因数
呢?例如:怎样求出12和18的最大公因数?
请同学们先阅读小组活动要求,然后小组合作完成此项任务哦!
学生自主探究、合作交流、汇报。(拍照上传)
刚刚同学介绍了求最大公因数的主要方法。
依次是列举法、筛选法、短除法。(课件演示:重点讲解短除法)
三、应用新知,巩固深化
前面的课堂同学们都表现地积极踊跃,下面请同学们带
了我们学习的新知识一起完成下面的闯关游戏吧!
第一关:把15和40的因数,公因数分别填在相应的位置,在圈出它们的最大公因数。
15的因数
40的因数
精彩备课:五年级下册数学公因数和最大公因数
第二关:小组游戏:一起来找最大公因数.游戏结束后,观察游戏卡,你发现了什么?
当两个数成倍数关系时,它们的最大公因数是较小的那个数;当两个数只有公因数1时,它们的最大公因数就是1.第三关:竞争游戏。
判断:(1)6和8的最大公因数是2.(2)1和9的最大公因数是1.(3)7和35的最大公因数是35.(4)10和15的最大公因数是10.(5)42和6的最大公因数是6.(6)13和14的最大公因数是1.(7)11和5没有公因数。
(8)两个数的公因数的个数是有限的。
第四关:剪纸是我国的一项传统民间艺术,剪纸具有装饰性,它可以美化环境、陶冶情操。出示情境图,剪纸的第一步需要裁纸,观察信息窗,你了解到了哪些信息?
同桌交流:整厘米是指多少厘米?怎样理解剪完后没有剩余?正方形的边长要满足什么要求?(课件演示)
学生列式计算(拍照上传)
第五关:有3根彩带分别长12厘米、15厘米、24厘米,要把它们剪成同样长的彩带,不许剩余,每根彩带最长是几厘米?(拍照上传)
三、回顾反思,课堂小结
恭喜同学们闯关成功!请给自己一次热烈的掌声吧!
通过这节课的学习,请同学们谈谈自己的收获。
教师小结:今天我们认识了公因数和最大公因数,还在解决问题的过程中体会到,怎样找两个数的最大公因数。希望同学们能把所学的知识运用到生活中去,品味知识给我们带来的快乐!
第三篇:小学数学青岛版五年级下册最大公因数
公因数和最大公因数
(一)班级姓名
一、填一填:
1、6的因数有();12的因数有();
一、填一填:
公因数和最大公因数
(二)班级姓名1、16的因数有()6和12的公因数有()。
2、18=182()=3(),18的因数有(3、9和4的公因数有(),最大公因数是()。
4、一个非零自然数的最小因数是(),最大因数是(5、12的因数28的因数
最大公因数是()
二、在括号里写出下面每组数的最大公因数。
4和7()9和3()
8和6()72和18()
45和35()17和51()
三、用短除法求每组数的最大公因数
30和2419和3877和9
1)。24的因数有()18的因数有()16、24和18的公因数有()
2、5和15的最大公因数是(),12和24的最大公因数是(4和7的最大公因数是(),17和13的最大公因数是(二、用短除法求每组数的最大公因数 22和3336和5424、18和3010和3
5三、选一选1、12和18的最大公因数是()
A、2B、3C、6 2、13和65的最大公因数是()A、1B、13C、5
3、ab
3(a、b是非零的自然数)。a和b的最大公因数是()A aBbC3D1)))
第四篇:五年级数学下册最大公因数说课稿
最大公因数说课稿
一、教材分析
本节课是在学生已经理解和掌握因数的含义以及其特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则计算的基础。对于学生的后续学习和发展,具有举足轻重的作用。
根据《新课标》“以人为本”教育教学理念、教材编排特点及学生的实际情况,力求达到以下三维目标:
1.知识与技能:使学生理解和掌握公因数和最大公因数的概念。2.过程与方法:能了解求两个数的公因数和最大公因数的方法,并能用自己喜欢的方法,找出两个数的最大公因数。
3.情感态度与价值观:通过数学活动过程,训练学生思维有序性和条理性。
教学重点:理解公因数与最大公因数的概念。
教学难点:理解并掌握求两个数最大公因数的方法。
二、教法设想
基于以上对教材认识和高年级学生思维活跃、求知欲强、善于表达的特点,我设计把“启发诱导”、“情景教学”、“愉快教学”等多种教学方法融会贯通。力求让学生在和谐愉快的氛围中主动探索新知,意在把抽象概念教学变得具体化、形象化、生动化。同时,也让孩子们享受到成功的喜悦。
三、学法指导
《新课标》指出:有效的教学活动不能单纯地依靠模仿和记忆,自主探究与合作交流是学习数学的重要方式。为了让学生经历概念的形成过程,探索找最大公因数的方法。我设计了让学生在半独立状态下进行自主探究、合作交流。这种学法的指导意在体现学生的主体地位和教师主导作用。
四、教学程序
依据教材特点、小学生认知规律和发展水平,我设计了以下四个教学环节:
(一)第一个环节是“复习旧知、引入新课”。
在这一环节中,首先通过复习因数的概念、因数的特点以及找一个因数的方法唤起学生对旧知的回忆,从而引出本节课探索有关因数的问题,为新知的学习奠定认知基础。
(二)第二个环节是“探索新知”。
公因数和最大公因数的意义是本节课的重点。首先,让学生分别找出8和12的因数。其次,找出8和12 公有的因数。最后,让学生总结出公因数、最大公因数的概念。
接下来通过完成教材61页的“做一做”
1、2题,加深学生对公因数、最大公因数找法的练习,使学生积累探索数学知识的经验,并体会成功的喜悦和发现的乐趣。
(三)第三个环节是“自主探究、突破难点”。
找两个数的最大公因数是本节课的难点。
在学生理解和掌握公因数和最大公因数意义的基础上,这部分教学我大胆放手,为学生创设大量的时间和空间,让学生们自学探究。学生可能会找出以下几种方法:一是分别找出18和27的因数,再找出它们的公因数和最大公因数;二是先找18的因数,再从中找27的因数,进而找出它们的最大公因数;三是先找27的因数,再从中找出18的因数,进而找出它们的最大公因数。
通过比较三种方法,让学生感受哪种方法比较简捷。本环节中,鼓励学生尝试多种角度思考问题,体现了解决问题策略的多样化,并在学生感悟、理解的基础上,由学生进行方法的最优化。
(四)第四个环节是“学以致用、体验成功”。
《新课程标准》要求巩固练习要体现层次性和科学性原则。我首先安排了基础练习,练习十五第1题,以帮助学生进一步理解、掌握公因数和最大公因数的意义。
其次是发展性练习。教材第61页“做一做”第3题。让学生通过观察、讨论,发现如下规律:
(1)成倍数关系的两个数的最大公因数,就是这两个数中较小的数。(2)1和其它非0自然数的最大公因数是1。
(3)两个连续自然数(0除外)的最大公因数是1。
五、板书设计
板书设计是重要的教学辅助手段,也是课堂教学中必不可缺少的重要组成部分。我的板书简明扼要地呈现了本节课的教学内容,是学生获取知识的思路图。
最大公因数 公因数: 最大公因数:
18的因数:1、2、3、6、9、18 27的因数:1、3、9、27 18和27的最大的公因数:9。
第五篇:公因数和最大公因数教案
公因数和最大公因数
【教学目标】
1.通过解决实际问题的活动,进一步理解公因数,最大公因数和素因数的意义,掌握求两个数的公因数,最大公因数的基本方法。
2.经历对问题的分析,观察,找规律,讨论的过程,进一步加深对公因数,最大公因数和素因数意义的理解,体会选择适当方法解决问题的优化思想,锻炼分析问题和解决问题的能力。3.在积极思考、积极参与讨论的活动中,自觉改进学习,促进良好学习习惯的养成和沟通、交流能力的提高。
【教学重点与难点】理解公因数,最大公因数和素因数的意义,并会求两个数的公因数,最大公因数,知道互素和素数有什么区别.教学过程设计
一、情景引入
练习:请大家拿出练习本,分别写出 6 的因数,8 的因数 6 的因数: 1、2、3、6 8 的因数: 1、2、4、8 教师:太好了,我们已经学会找一个数的因数 那么请你们仔细看一看,学生不难答出6 和 8 的公有的因数是1和2 猜想:这样老师就可以让学生猜想几个数的公因数的定义:几个数共有的因数,叫做这几个数的公因数,其中最大的一个数叫做这几个数的最大公因数
二、学习新课
问题的提出:植树节这天,老师带领24名女生和32名男生到植物园种树,老师把这些学生分成人数相等的若干个小组,每个小组的男生人数都相等,请问,这56名同学最多分成几组? 问题的分析:
1.24和32的因数是多少? 2.24和32的公因数是多少? 3.24和32的最大公因数是多少? 问题的答案:
24的因数有:1,2,3,4,6,8,12,24 32的因数有:1,2,4,8,16,32 24和32的公因数是1,2,4,8
812412363,6,12,241,2,4,816,32
可以看出,18和30全部共有的素因数是2和3,因此2和3的乘积6就是18和30的最大公因数
求几个整数的最大公因数,只要把它们所有的素因数连乘,所得的积就是它们的最大公因数 解法3 为了简便,也可以用短除法计算
18和30的最大公因数是2×3=6 例题4 求48和60的最大公因数
解:
48和60的最大公约数是2×2×3=12[]
三、巩固练习1.口答填空:
12的因数是(); 18的因数是(); 12和18的公因数是(); 12和18的最大公因数是()2.把15和18的因数、公因数分别填在下面的圈里,再找出它们的最大公因数
请找出下面各组数的公因数:
5和7
8和9
1和12 9和15
7和9 16和20 答案:学生口答后老师在每组后面标出公因数。
5和7(1)
8和9(1)
1和12(1)9和15(1,3)
7和9(1)
16和20(1,2,4)3.快速回答:
24的因数是();