第一篇:《解一元一次不等式(二)》教学设计
《解一元一次不等式(二)》教学设计
素质教学目标
1.让学生自主探索一元一次不等式在实际问题中的应用。
2.使学生进一步探索和研究实际问题中的数量关系,感受数学建模思想,体会不等式和方程同样是刻画现实世界数量关系的重要模型。
重点、难点、关键,1.重点:一元一次不等式在实际问题中的应用。
2.难点,在实际问题中建立一元一次不等式的数量关系。’
3.关键:突出建模思想,刻画数量关系,从实际中抽象出数量关 系。从列代数式到不等式。转化为纯数学问题求解。注意“不少于”、“至少”等语句所隐含的不等量关系。教具准备
实物投影或幻灯机、直尺、圆规。教学过程全解
一、回顾
1.一元一次不等式的概念。2.一元一次不等式的解法。
二、观察探讨,研究新知
x43x1例4当x取何值时,代数式的值比的值大17?
23教师活动:提出问题、引导、启发。学生活动:观察与回答。教学方法:互动交流。
思路点拨:分析题目的条件和结论,该题实际上是求x取什么值时不等式x43x11成立,为此就要求出这个不等式的解集。
32三、随堂练习,巩固新知
补充练习:x取什么值时,代数式3x/2—8的值:
1.大于7一x,2.小于7一x,3.不大于7一x,4.不小于7一x 教师活动:巡视、指导、关注中等、中下程度学生。学生活动:合作学习、上台板演。教学方法:讨论、交流。
四、创设情境,指导示范 1.“在科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛,育才中学25名学生通过了预选赛,他们分别可能答对了多少道题? 教师活动:操作投影仪、提出问题。学生活动:小组学习、回答。教学方法和媒体:投影显示问题情境,讨论交流。
2.问题1:对于上述问题,请你想一想,你是用什么方法?有没有其他方法? 问题2:如果你是利用不等式的知识解决这个问题的,在得到不等式的解集以后,如何给出原问题的答案?应该如何表述? 思路点拨:对于课本提出的问题情境,如果列不等式求解,那么可以参照列方程的基本思想,进一步学会分析以解决实际问题。解决这一问题有多种方法:
(1)可以设通过预赛的学生可能答对了x道题,则得到10x分,而答错或没有答的题有(20一x)道,应扣分为5(20一x)分,那么总分为10x一5(20一x)根据题意,可得不等式10x一5(20一x)≥80解得x≥12。
(2)如果全对可得满分200分,那么答错或不答一道应扣除10+5=15(分)。若设至多答错或不答x道题,可得15x≤200—80,解得x≤80,即至少答对12道题。
(3)可以按全错得一100分考虑问题,每答对一题可加上15分,则15x≥180。(4)引导学生应用估算:假设答对了10道题,那么得分为10X10—5X10=50,不足80分,再进行调整。
五、随堂练习,巩固新知
1.课本练习3。2.课本P63练习1、2。
教师活动:巡视、引导、关注、发现学生中不同的做法,加以推广。学生活动:组学习、个别学习,教学方法;讨论、交流,互动合作。
六、全课小结,提高认识
1.对一元一次不等式应用问题如何通过探索,寻找实际问题中的数量关系? 2.如何用代数式表示相关的量? 3.不等式与方程在刻画现实世界的数量关系时,在建模方面有何联系和区别?
七、作业布置 课本习题7.24、6、7。解答题
1.当X为何值时,代数式3x一2(x+1)的值为正数。
2.当X为何值时,代数式6(x一1)一3(x一2)的值为非负数。3.求不等式3(x+1)>5x一9的正整数解。4,求不等式3(X+1)≤4x+7的负整数解。5.求不等式10(m+4)+m<84的非负整数解。
6.三个连续奇数的和小于15,求出一个符合条件的奇数组。
列不等式解下列应用题
1.小明的表弟在上午8时20分步行出发去春游,10时20分,小明在同一地骑自行车出发,已知小明的表弟每小时走4千米,小明要在11点前追上他的表弟,问小明的速度应至少是多少? 2.一本科技书有300页,小华计划10天内读完,前5天因各种原因只读100页,问从第六天起,每天小华至少要读多少页? 3.在语文知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错一题扣5分,不答题不扣分也不得分,总得分不少于80者通过预选赛,华兴中学25名学生通过了预选赛,他们分别可能答对
了多少道题?
4.某厂原定计划年产某种机器1000台,现在改进了技术,准备力争提前超额完成,但开始的三个月内,由于工人不熟悉新技术,只生产出100台机器,问以后每月至少要生产多少台? 5.某工厂的某一个车间,原计划30天生产165个产品,前8天共生产出44个产品,后来计划提前5天超额完成任务,问从第9天起,每天至少要生产多少个产品? 6.某数的3倍与某数相反数的50%的和不大于某数的10%,求某数的范围。7.某数的1/3与4的差不小于某数与7的和,求某数的范围。
8、一次野营活动,小明把自己带来的若干个苹果分给班上的若干个同学,如果每人分4个苹果,那么还剩下20个苹果,如果每人分8个苹果,那么最后有一个同学分到不足8个苹果,求苹果的个数。
9、求a的取值范围,使得关于a的方程3x+2a一1=0的解是非负数。
第二篇:《解一元一次不等式》教学反思
《解一元一次不等式》教学反思
海南华侨中学初中数学组王应寿
1、在学习本节时,要与一元一次方程结合起来,用比较、类比的方法去学习,弄清其区别与联系。
2、为加深对不等式解集的理解,应将不等式的解集在数轴上直观地表示出来,它可以形象认识不等式解集的几何意义和它的无限性。在数轴上表示不等式的解集是数形结合的具体体现。
3、熟练掌握不等式的基本性质,特别是性质3.不等式的性质是正确解不等式的基础
本节课较好的方面:
1、本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;
2、课程内容前后呼应,前面练习能够为后面的例题作准备
3、能安排有小测等对学生学习的知识进行检查;
不足方面:
1、引入部分练习所用时间太长,讲评一元一次不等式的概念太细致,导致了后段时间紧,部分内容不能完成2、课容量少,害怕学生听不懂、学不会,所以上课时喜欢给学生反复讲,结果课堂上大部分时间由我占据,而留给学生自己独立思考,讨论的时间较少。我深感,只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。这说明,一种新的教学理念要真正成为师生的教育行为,还有很长的路要走。我将和我的学生在这一探索过程中不断努力前行,总之,我们在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须多做一些事,例如精心设计适合学生的教学环节,多思考一些学生所想的,真正做好学生前进道路上的领路人。
第三篇:《解一元一次不等式》教学反思
《9.2.1一元一次不等式》教学反思
大竹园中学数学组方礼花
1、在学习本节时,要与一元一次方程结合起来,用比较、类比的方法去学习,弄清其区别与联系。
2、为加深对不等式解集的理解,应将不等式的解集在数轴上直观地表示出来,它可以形象认识不等式解集的几何意义和它的无限性。在数轴上表示不等式的解集是数形结合的具体体现。
3、熟练掌握不等式的基本性质,特别是性质3.不等式的性质是正确解不等式的基础。
本节课较好的方面:
1、本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;
2、课程内容前后呼应,前面练习能够为后面的例题作准备。
3、能安排有当堂训练等对学生学习的知识进行检查;
不足方面:
1、引入部分练习所用时间太长,讲评一元一次不等式的概念太细致,导致了后段时间紧,部分内容不能完成。
2、课容量少,害怕学生听不懂、学不会,所以上课时喜欢给学生反复讲,结果课堂上大部分时间由我占据,而留给学生自己独立思考,讨论的时间较少。
3、对于后进生,课堂上由于时间的关系,很少关注。
4、学生在合作探究环节,缺乏适当的引导,导致许多学生不会解,但是也不知道怎么办。
我深感,只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。这说明,一种新的教学理念要真正成为师生的教育行为,还有很长的路要走。我将和我的学生在这一探索过程中不断努力前行,总之,我们在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须多做一些事,例如精心设计适合学生的教学环节,多思考一些学生所想的,真正做好学生前进道路上的领路人。
第四篇:解一元一次不等式练习题
1、判断下列式子是否一元一次不等式:(是的打√,否的打╳)
(1)7>4(2)3x ≥ 2x+1(3)20(4)x+y>1(5)x2+3>2xx1、解下列的一元一次不等式(并在数轴上表示出来,自己画数轴)
(1)x-5<0(2)x+3 ≥ 4(3)3x > 2x+1(4)-2x+3 >-3x+1
(1)2x > 1(2)–2x ≤ 1(3)2x >-1(4)22x2(5)x2(6)x2 33
(1)2(x+3)<7(2)3x-2(x+1)>0
(3)3x-2(x-1)>0(4)-(x-1)>04、下列的一元一次不等式(1)xx1xx2x1x2xx1(3)1(4)1 (2)323223231、解下列不等式
12(1)x(2)(x1)2(3)x2+x23
2x1x21(4)(x1)2(5)323
-2x1x32(7)-3(6)23
> 2已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围
第五篇:一元一次不等式教学设计
一元一次不等式导学提纲
主备课人:辛高鹏 审核:初二数学组 时间:2011.4 教学目标: 掌握一元一次不等式的解法,能熟练的解一元一次不等式 教学重点:是掌握解一元一次不等式的步骤.
教学难点:是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.教学过程:
一、问题导入,提出目标
1导入:请同学们思考两个问题:一是不等式的基本性质有哪些?二是什么是一元一次方程?并举出两个例子。解一元一次方程:1-2x =x + 3,2、学习目标
(1)能说出一元一次不等式的定义。
(2)会解答一元一次不等式,并能把解集在数轴上表示出来。
二、指导自学,小组合作
请同学们根据导学提纲进行自学,先个人思考,后小组合作学习。(导学提纲内容如下)
1、观察下列不等式,说一说这些不等式有哪些共同特点?
(1)3x-2.5≥12(2)x≤6.75(3)x<4(4)5-3x>14
什么叫做一元一次不等式?
2、自己举出2或3个一元一次不等式的例子,小组交流。
3、通过自学例1:
解一元一次不等式,并将解集在数轴上表示出来:3-x < 2x + 6
4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?
5、解下列不等式,并把它们的解集在数轴上表示出来。
例2:4(x-1)+2> 3(x+2)-x
例3:(x-2)/ 2≥(7-x)/ 3
6、总结:解一元一次不等式的步骤。
三、互动交流,教师点拨
1、交流导学提纲中的1—6题。
学生易出错的问题和注意的事项:
(1)确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。
(2)对于例1,让学生说明不等式3-x < 2x + 6的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。
(3)不等式两边同时除以(-3)时,不等号的方向改变。
2、重点点拨例2和例3,学生到黑板上板演。
(1)例2易出错的地方是:去括号时漏乘,移动的项没有变号。
(2)例3易出错的地方是:去分母时漏乘无分母(或分母为1)的项。
3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1。
四、当堂训练,达标检测
1、判断下列不等式是不是一元一次不等式。
(1)1/x+3<5x–1(2)5x+3<0(3)3x+2>x–1(4)x(x–1)<2x
2、解下列不等式,并把它们的解集在数轴上表示出来
(1)3x+8<7x–12
(2)2(x+2)≥x–4
(3)x/5≥3+(x–3)/ 2
五、作业
解下列不等式,并把它们的解集在数轴上表示出来
(1)2(1+3x)>20–3x(2)(x–3)/7≥x–6
[思考]x取何值时,代数式(x+4)/3的值比(3x –1)/2的值大?