《解一元一次不等式(二)》教学设计(精选5篇)

时间:2019-05-12 18:17:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《解一元一次不等式(二)》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《解一元一次不等式(二)》教学设计》。

第一篇:《解一元一次不等式(二)》教学设计

《解一元一次不等式(二)》教学设计

素质教学目标

1.让学生自主探索一元一次不等式在实际问题中的应用。

2.使学生进一步探索和研究实际问题中的数量关系,感受数学建模思想,体会不等式和方程同样是刻画现实世界数量关系的重要模型。

重点、难点、关键,1.重点:一元一次不等式在实际问题中的应用。

2.难点,在实际问题中建立一元一次不等式的数量关系。’

3.关键:突出建模思想,刻画数量关系,从实际中抽象出数量关 系。从列代数式到不等式。转化为纯数学问题求解。注意“不少于”、“至少”等语句所隐含的不等量关系。教具准备

实物投影或幻灯机、直尺、圆规。教学过程全解

一、回顾

1.一元一次不等式的概念。2.一元一次不等式的解法。

二、观察探讨,研究新知

x43x1例4当x取何值时,代数式的值比的值大17?

23教师活动:提出问题、引导、启发。学生活动:观察与回答。教学方法:互动交流。

思路点拨:分析题目的条件和结论,该题实际上是求x取什么值时不等式x43x11成立,为此就要求出这个不等式的解集。

32三、随堂练习,巩固新知

补充练习:x取什么值时,代数式3x/2—8的值:

1.大于7一x,2.小于7一x,3.不大于7一x,4.不小于7一x 教师活动:巡视、指导、关注中等、中下程度学生。学生活动:合作学习、上台板演。教学方法:讨论、交流。

四、创设情境,指导示范 1.“在科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛,育才中学25名学生通过了预选赛,他们分别可能答对了多少道题? 教师活动:操作投影仪、提出问题。学生活动:小组学习、回答。教学方法和媒体:投影显示问题情境,讨论交流。

2.问题1:对于上述问题,请你想一想,你是用什么方法?有没有其他方法? 问题2:如果你是利用不等式的知识解决这个问题的,在得到不等式的解集以后,如何给出原问题的答案?应该如何表述? 思路点拨:对于课本提出的问题情境,如果列不等式求解,那么可以参照列方程的基本思想,进一步学会分析以解决实际问题。解决这一问题有多种方法:

(1)可以设通过预赛的学生可能答对了x道题,则得到10x分,而答错或没有答的题有(20一x)道,应扣分为5(20一x)分,那么总分为10x一5(20一x)根据题意,可得不等式10x一5(20一x)≥80解得x≥12。

(2)如果全对可得满分200分,那么答错或不答一道应扣除10+5=15(分)。若设至多答错或不答x道题,可得15x≤200—80,解得x≤80,即至少答对12道题。

(3)可以按全错得一100分考虑问题,每答对一题可加上15分,则15x≥180。(4)引导学生应用估算:假设答对了10道题,那么得分为10X10—5X10=50,不足80分,再进行调整。

五、随堂练习,巩固新知

1.课本练习3。2.课本P63练习1、2。

教师活动:巡视、引导、关注、发现学生中不同的做法,加以推广。学生活动:组学习、个别学习,教学方法;讨论、交流,互动合作。

六、全课小结,提高认识

1.对一元一次不等式应用问题如何通过探索,寻找实际问题中的数量关系? 2.如何用代数式表示相关的量? 3.不等式与方程在刻画现实世界的数量关系时,在建模方面有何联系和区别?

七、作业布置 课本习题7.24、6、7。解答题

1.当X为何值时,代数式3x一2(x+1)的值为正数。

2.当X为何值时,代数式6(x一1)一3(x一2)的值为非负数。3.求不等式3(x+1)>5x一9的正整数解。4,求不等式3(X+1)≤4x+7的负整数解。5.求不等式10(m+4)+m<84的非负整数解。

6.三个连续奇数的和小于15,求出一个符合条件的奇数组。

列不等式解下列应用题

1.小明的表弟在上午8时20分步行出发去春游,10时20分,小明在同一地骑自行车出发,已知小明的表弟每小时走4千米,小明要在11点前追上他的表弟,问小明的速度应至少是多少? 2.一本科技书有300页,小华计划10天内读完,前5天因各种原因只读100页,问从第六天起,每天小华至少要读多少页? 3.在语文知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错一题扣5分,不答题不扣分也不得分,总得分不少于80者通过预选赛,华兴中学25名学生通过了预选赛,他们分别可能答对

了多少道题?

4.某厂原定计划年产某种机器1000台,现在改进了技术,准备力争提前超额完成,但开始的三个月内,由于工人不熟悉新技术,只生产出100台机器,问以后每月至少要生产多少台? 5.某工厂的某一个车间,原计划30天生产165个产品,前8天共生产出44个产品,后来计划提前5天超额完成任务,问从第9天起,每天至少要生产多少个产品? 6.某数的3倍与某数相反数的50%的和不大于某数的10%,求某数的范围。7.某数的1/3与4的差不小于某数与7的和,求某数的范围。

8、一次野营活动,小明把自己带来的若干个苹果分给班上的若干个同学,如果每人分4个苹果,那么还剩下20个苹果,如果每人分8个苹果,那么最后有一个同学分到不足8个苹果,求苹果的个数。

9、求a的取值范围,使得关于a的方程3x+2a一1=0的解是非负数。

第二篇:《解一元一次不等式》教学反思

《解一元一次不等式》教学反思

海南华侨中学初中数学组王应寿

1、在学习本节时,要与一元一次方程结合起来,用比较、类比的方法去学习,弄清其区别与联系。

2、为加深对不等式解集的理解,应将不等式的解集在数轴上直观地表示出来,它可以形象认识不等式解集的几何意义和它的无限性。在数轴上表示不等式的解集是数形结合的具体体现。

3、熟练掌握不等式的基本性质,特别是性质3.不等式的性质是正确解不等式的基础

本节课较好的方面:

1、本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;

2、课程内容前后呼应,前面练习能够为后面的例题作准备

3、能安排有小测等对学生学习的知识进行检查;

不足方面:

1、引入部分练习所用时间太长,讲评一元一次不等式的概念太细致,导致了后段时间紧,部分内容不能完成2、课容量少,害怕学生听不懂、学不会,所以上课时喜欢给学生反复讲,结果课堂上大部分时间由我占据,而留给学生自己独立思考,讨论的时间较少。我深感,只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。这说明,一种新的教学理念要真正成为师生的教育行为,还有很长的路要走。我将和我的学生在这一探索过程中不断努力前行,总之,我们在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须多做一些事,例如精心设计适合学生的教学环节,多思考一些学生所想的,真正做好学生前进道路上的领路人。

第三篇:《解一元一次不等式》教学反思

《9.2.1一元一次不等式》教学反思

大竹园中学数学组方礼花

1、在学习本节时,要与一元一次方程结合起来,用比较、类比的方法去学习,弄清其区别与联系。

2、为加深对不等式解集的理解,应将不等式的解集在数轴上直观地表示出来,它可以形象认识不等式解集的几何意义和它的无限性。在数轴上表示不等式的解集是数形结合的具体体现。

3、熟练掌握不等式的基本性质,特别是性质3.不等式的性质是正确解不等式的基础。

本节课较好的方面:

1、本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;

2、课程内容前后呼应,前面练习能够为后面的例题作准备。

3、能安排有当堂训练等对学生学习的知识进行检查;

不足方面:

1、引入部分练习所用时间太长,讲评一元一次不等式的概念太细致,导致了后段时间紧,部分内容不能完成。

2、课容量少,害怕学生听不懂、学不会,所以上课时喜欢给学生反复讲,结果课堂上大部分时间由我占据,而留给学生自己独立思考,讨论的时间较少。

3、对于后进生,课堂上由于时间的关系,很少关注。

4、学生在合作探究环节,缺乏适当的引导,导致许多学生不会解,但是也不知道怎么办。

我深感,只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。这说明,一种新的教学理念要真正成为师生的教育行为,还有很长的路要走。我将和我的学生在这一探索过程中不断努力前行,总之,我们在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须多做一些事,例如精心设计适合学生的教学环节,多思考一些学生所想的,真正做好学生前进道路上的领路人。

第四篇:解一元一次不等式练习题

1、判断下列式子是否一元一次不等式:(是的打√,否的打╳)

(1)7>4(2)3x ≥ 2x+1(3)20(4)x+y>1(5)x2+3>2xx1、解下列的一元一次不等式(并在数轴上表示出来,自己画数轴)

(1)x-5<0(2)x+3 ≥ 4(3)3x > 2x+1(4)-2x+3 >-3x+1

(1)2x > 1(2)–2x ≤ 1(3)2x >-1(4)22x2(5)x2(6)x2 33

(1)2(x+3)<7(2)3x-2(x+1)>0

(3)3x-2(x-1)>0(4)-(x-1)>04、下列的一元一次不等式(1)xx1xx2x1x2xx1(3)1(4)1 (2)323223231、解下列不等式

12(1)x(2)(x1)2(3)x2+x23

2x1x21(4)(x1)2(5)323

-2x1x32(7)-3(6)23

> 2已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围

第五篇:一元一次不等式教学设计

一元一次不等式导学提纲

主备课人:辛高鹏 审核:初二数学组 时间:2011.4 教学目标: 掌握一元一次不等式的解法,能熟练的解一元一次不等式 教学重点:是掌握解一元一次不等式的步骤.

教学难点:是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.教学过程:

一、问题导入,提出目标

1导入:请同学们思考两个问题:一是不等式的基本性质有哪些?二是什么是一元一次方程?并举出两个例子。解一元一次方程:1-2x =x + 3,2、学习目标

(1)能说出一元一次不等式的定义。

(2)会解答一元一次不等式,并能把解集在数轴上表示出来。

二、指导自学,小组合作

请同学们根据导学提纲进行自学,先个人思考,后小组合作学习。(导学提纲内容如下)

1、观察下列不等式,说一说这些不等式有哪些共同特点?

(1)3x-2.5≥12(2)x≤6.75(3)x<4(4)5-3x>14

什么叫做一元一次不等式?

2、自己举出2或3个一元一次不等式的例子,小组交流。

3、通过自学例1:

解一元一次不等式,并将解集在数轴上表示出来:3-x < 2x + 6

4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?

5、解下列不等式,并把它们的解集在数轴上表示出来。

例2:4(x-1)+2> 3(x+2)-x

例3:(x-2)/ 2≥(7-x)/ 3

6、总结:解一元一次不等式的步骤。

三、互动交流,教师点拨

1、交流导学提纲中的1—6题。

学生易出错的问题和注意的事项:

(1)确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。

(2)对于例1,让学生说明不等式3-x < 2x + 6的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。

(3)不等式两边同时除以(-3)时,不等号的方向改变。

2、重点点拨例2和例3,学生到黑板上板演。

(1)例2易出错的地方是:去括号时漏乘,移动的项没有变号。

(2)例3易出错的地方是:去分母时漏乘无分母(或分母为1)的项。

3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1。

四、当堂训练,达标检测

1、判断下列不等式是不是一元一次不等式。

(1)1/x+3<5x–1(2)5x+3<0(3)3x+2>x–1(4)x(x–1)<2x

2、解下列不等式,并把它们的解集在数轴上表示出来

(1)3x+8<7x–12

(2)2(x+2)≥x–4

(3)x/5≥3+(x–3)/ 2

五、作业

解下列不等式,并把它们的解集在数轴上表示出来

(1)2(1+3x)>20–3x(2)(x–3)/7≥x–6

[思考]x取何值时,代数式(x+4)/3的值比(3x –1)/2的值大?

下载《解一元一次不等式(二)》教学设计(精选5篇)word格式文档
下载《解一元一次不等式(二)》教学设计(精选5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一元一次不等式教学设计

    一元一次不等式教学设计 李寨中学 樊利军 一、学习目标 1.了解一元一次不等式的定义。 2.掌握一元一次不等式的解法。 3.培训学生运用类比方法处理相关内容的能力。 二、能力......

    一元一次不等式教学设计

    一元一次不等式教学设计 歇马镇中心学校 吴秀珍 教学目标:掌握一元一次不等式的解法,能熟练的解一元一次不等。 教学重点:掌握解一元一次不等式的步骤。 教学难点:必须切实......

    《一元一次不等式》教学设计

    《一元一次不等式1》教学设计 课标要求: 能解数字系数的一元一次不等式,并能在数轴上表示出解集,能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。 内容分析:......

    一元一次不等式与一次函数(二)教学设计(范文模版)

    第一章一元一次不等式和一元一次不等式组 5.一元一次不等式与一次函数(二) 贵州省清镇市第三中学唐礼猛 一、学生知识状况分析 学生的知识技能基础:学生在前面已经学习过一次函......

    一元一次不等式解法教学设计

    一元一次不等式及解法教学设计 教学目标 1.知识与技能:掌握一元一次不等式的相关概念及其解法,能熟练的解一元一次不等式。 2.过程与方法:学生亲身经历探究一元一次不等式及其......

    一元一次不等式组教学设计

    一元一次不等式组教学设计 海阳市小纪一中 辛高鹏 教学目标 (一)知识与能力 1.通过对不等式的复习和具体实例总结一元一次不等式组以及一元一次不等式组的解集的概念。 2.通过例......

    一元一次不等式组教学设计

    《一元一次不等式组》教学设计 湖北省咸宁市咸安区实验中学 章福枝 一、内容与内容解析 (一)内容 一元一次不等式组的概念及解法 (二)内容解析 上节课学习了一元一次不等式,知......

    一元一次不等式组教学设计

    初 中 数 学 §9.3 一元一次不等式组 教学设计 一、 教材分析: 本节课主要学习一元一次不等式组及其解法,这是学好利用一元一次不等式组解决实际问题的关键,教材通过一个实例入......