第一篇:五年级《解简易方程》教学设计
五年级《解简易方程》教学设计
五年级《解简易方程》教学设计
解简易方程
教学内容:人教版五年级上册第68页
教学目标:
1、进一步掌握等式的性质,会运用数量关系式或等式的基本性质对解方程的过程进行语言表述;
2、会对具体的方程的解法提出自己解答的方案并能与同学交流;
3、能够验算方程的解的正确性。
教学重点:多种方法解方程。
教学难点:利用等式各部分之间的关系来解方程。
一、复习导入
1、判断以下式子哪些是等式,哪些是方程?并说明理由。
①4+6=10, ②4+8x=40, ③16—7x, ④x÷5=8,⑤9.2+3x=4.8, ⑥x-17<34, ⑦0.5x=1, ⑧ 8㎡,⑨6a=30, ⑩a+b+c=17
2、解方程,并检验。复习用等式的性质解方程的方法。
①x+10=15 ②x﹣63=36 ③20+x=75
指名板演,交流方法,检验解是否正确。总结解方程应注意的事项。
设计参观周三下午的社团活动的大情境,贯穿新授,练习,拓展环节。
一、新授
1、课件图片展示:三年级有12个班,每班x人参加“好吃俱乐部”社团,该社团共48人。
请用方程表示数量关系: 12x=48
2、课件图片展示:12个小组成员品尝美食,已经有x个小组尝过了,还剩9个小组在等待。
请用方程表示数量关系: 12﹣x=9
3、尝试用多种方法解以上两个方程,女生完成第一道,男生完成第二道,各自独立完成。
4、教师巡视,选取不同方法的解方程方式,要求学生板演。
5、汇报交流,总结,解方程的两种方法:
① 可以利用等式的性质来解;
② 可以利用等式各部分之间的关系来解。
二、纠错
1、“我爱数学”社团的孩子正在进行一场解方程比赛,老师收到了几份这样的答卷,请你做小老师,给每道题一个合适的评价。
2、课件出示三到五份相同手写答卷,有一份全对,其他每份都有不同的错误,请学生判断,评价。
3、总结,解方程时应注意的事项:
①书写格式:写“解”,等号要对齐;
②正确处理未知数与等式各部分之间的联系;
③检验,以保证方程的解的准确无误。
四、拓展练习。
1、“手工制作”社团的三个小组本周共同完成了60个作品,已知三个小组各自完成的作品数分别为三个连续的自然数,这三个数分别是多少?
2、“数一数二”数学社团在进行趣味测量:一段木头,不知道它的长度,拿一根绳子量木头的长,把绳子拉直,绳子多4.5米;如果将绳子对折过来量,绳子又短1米,问:这段木头有多长?
第二篇:五年级数学解简易方程教学设计
“解简易方程”教学设计
大佟庄满族小学
杨娅琴
教学内容:义务教育课程程标准实验教科书数学(人教版)小学数学第9册57—58页的内容。
教学目标:
1、根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。
2、培养学生的分析能力应用所学知识解决实际问题的能力。
3、帮助学生养成自觉检验的良好习惯。重点、难点:理解并掌握解方程的方法。教具准备:多媒体课件 教学过程:
一、复习铺垫
1、方程的意义
师:同学们我们前一段时间学了方程的意义,你还记得什么叫方程吗? 生:含有未知数的等式叫方程。
2、判断下面哪些是方程
师:你能判断下面哪些是方程吗?
(1)a+24=73
(2)4x<36+17(3)234÷a>12(4)72=x+16
(5)x+85
(6)25÷y=0.6 生:(1)(4)(6)是方程。师:你为什么说这三个是方程呢? 生:因为它含有未知数,而且是等式。
二、探究新知
(一)理解方程的解和解方程
1、看图写方程
师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(出示57页天平图)从图中你知道了什么?
生:我知道杯子重100克,水重X克,合起来是250克。
师:你能根据这幅图列出方程吗? 生:100+X=250.2、求方程中的未知数
师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)
生1:根据加减法之间的关系250-100=150,所以X=150.生2:根据数的组成100+150=250,所以X=150.生3:100+X=250=100+150,所以X=150.生4:假如在方程左右两边同时减去100,那么也可得出X=150.3、验证方程中的未知数,引出方程的解和解方程两个概念。
师:同学们都很聪明用不同的方法算出X=150,研究对不对呢? 生:对,因为X=150时方程左边和右边相等。
师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们自学课本57页找出什么叫方程的解?什么叫解方程?
学生自学后汇报。(板书)齐读两个概念。
4、辨析方程的解和解方程两个概念
师:方程的解是未知数的值它是一个数,怎样判断一个数是不是方程的解呢?
生:要看这个数能不能使方程左右两边相等。
师:而解方程是求未知数的过程,是一个计算过程它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。
5、巩固练习,加深理解。
师:完成做一做:X=3是方程5X=15的解吗?X=2呢?(完成后汇报)生:X=3是方程5X=15的解,因为X=3时方程左右两边相等。生:X=2不是方程5X=15的解,因为X=2时左边5×2=10,右边是15,左边和右边不相等,所以X=2不是方程5X=15的解。
(二)解简易方程
1、复习等式的性质
师:前两天我们学会了等式的性质,请根据等式的性质完成填空吗?
1头猪=()只羊 1把蕉=()个苹果
(1)如果5+3=8,那么5+3-3=8()
(2)如果50-13=37,那么50-13+13=50()(3)如果a - 7=8,那么a - 7 + 7=8()(4)如果X+9=45,那么X+ 9-9=45()师:你是根据什么填空的? 生:等式的性质。
师:等式有什么性质呢?我们齐来说一遍。
2、理解方程与等式的联系,引出课题。
师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。(板书课题:解简易方程)
3、出示例1图,列出方程。
师:图上画的是什么?你能列出方程吗? 生:X+3=9 师:这个方程用天平怎么表示呢?
生:天平左边放X个和3个球,右边放9个球。(电脑显示)
4、引导学生思考怎样解方程。
师:我们解方程的目的是求X,怎样使天平一边只剩x呢? 生:天平两边同时减去3个球。(电脑显示)师:天平两边还平衡吗?怎样反映在方程上呢? 生:方程两边同时减3。(结合学生回答板书)师:为什么同时减3而不是其它数呢?
生:方程两边同时减3就可以使方程一边只剩X。
5、检验方程的解。
师:X=6是不是方程的解呢?
生:是,因为X=6是方程左边是6+3=9,右边是9,左右两边相等,所以X=6是方程X+3=9的解。
6、强调解方程的格式步骤
电脑显示: 解方程要注意:
(1)先写“解”,等号要对齐。(2)做完后要注意检验。
7、学生练习
师:你会学老师这样解方程吗?请同学们解方程X+3.2=4.6,x+19=30。
8、学生板书练习集体订正
师:你是怎样解这个方程的,为什么方程两边要同时减19.生:使方程一边只剩X。
师:在这个过程中哪些是解方程,哪些是方程的解。生:我们计算的过程是解方程,而x=11是方程的解。
9、小组讨论怎样解方程X-2=15,X-1.8=4 师:请同学们小组讨论怎样解方程X-2=15,X-1.8=4说出你这样做的根据
生:我根据方程两边同时加上一个数,方程两过仍然相等来解这两个方程的。
三、实践应用,加深理解
1、下面的方程你打算怎样算。①X+0.3=1.8 ② X-1.5=4 ③X-6=7.6 ④X+5=32
2、我会填。
(1)含有()的()叫方程。(2)使方程左右两边相等的()叫方程的解。(3)求()叫做解方程。
(4)x-15=20 这个方程的解是()
3、我会选
(1)χ+32=76的解是()
A、χ=42
B、χ=144
C、χ=44(2)χ-12=4的解是()
A、χ=8
B、χ=16
C、χ=23(3)χ+8=60的解是()
A、χ=480
B、χ=52
C、χ=7.5(4)χ -3.5 =1.5的解是()A、χ=5
B、χ=20
C、χ=2
4、看图列方程并解答
5、解决问题
学生练习
四、全课小结,课外延伸
师:这节课你有什么收获?
师:请同学们认真观察图,你能根据题意列出方程并解方程吗?
师:请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。
五、布置作业
1、完成课本63页练习十一第5题第1、2横行。
第三篇:解简易方程教学设计
解简易方程教学设计
一.教学目标:
(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。
(2)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
二.教学重点及难点:理解方程的意义,掌握方程与等式之间的关系。
三.教具:天平一只,算式卡片若干张,粉笔盒一只。
四.教学过程设计
(一)游戏导入,揭示课题
1、师生共同做个游戏:用手指指尖顶住直尺,使直尺能保持平衡,感知平衡。
说说生活中,你还见过哪些平衡现象?
2、勤劳聪明的人类根据平衡原理制成了天平,今天我们要借助天平来学习新的知识《解简易方程》。(板书课题)看了课题,同学们想知道些什么?
二)教学新课
1、方程的意义
(1)认识天平:简单介绍天平的结构和使用方法。(2)操作天平:
a、一边放两个50克的砝码,另一边放100克的砝码,天平平衡。请学生用一个式子来表示这种关系。(板书:50+50=100 50×2=100)b、一边放一个20克的砝码和一个粉笔盒,另一边放100克砝码,天平平衡。粉笔盒的重量不知道,可以怎么表示?你也能用一个式子来表示这种关系吗?(板书:x+20=100)
c、让学生操作天平,出现不平衡现象,也用式子表示。(20+x>50等)(3)出示小黑板
30+20=50 2x+50>100 80<2x
3x=180 100+20<100+50 100+2x=50×3 x-18=24 60÷20=3 x÷11=5(4)组织学生观察以上式子。
请同学们观察以上式子,想想能不能将这些式子分分类,并说出你分类的标准。(小组讨论,写下来)
按符号的不同分成两大类:(生说师在小黑板作记号)80<2x 2x+50>100 100+20<100+50
指出:这些用大于、小于号连成的式子左右两边不相等,就叫做不等式。
谁再来说几个等式?同桌互相说几个等式。
30+20=50 3x=180 100+2x=50×3 x-18=24 60÷20=3
指出:这些用等号连接成的表示两边相等的式子都叫等式。(板书:等式)(5)观察以上等式,你能不能再分分类,也说一说你分类的标准?(同桌讨论)
30+20=50 60÷20=3
3x=180 100+2x=50×3 x-18=24 x÷11=5
揭示:含有未知数的等式叫做方程(板书:方程)
①说一说什么叫方程?必须具备哪几个条件?
②再举几个例子,写下来同桌交换检查。
游戏练习:下面式子哪些是方程,哪些不是方程?
(卡片出示)是用“√”手势表示,不是用“×”手势表示。
6+x=14 3+x 50÷2=2
56+x>23 51÷a=17 x+y=18(6)方程和等式的关系
刚才我们是从等式中找出方程的。这说明方程和等式有很密切的关系,你能画图来表示他们之间的关系吗?(小组合作,讨论完成)(学生画,请他们黑板展示并同时说说方程与等式之间的关系)
教师可以将书上的图与学生的图做对比,指出:有时可以借助简单明了的图来帮助理解深奥的知识,这也是一种很重要性的学习方法。
2、教学方程的解、解方程的概念 出示x+20=100,看了这个方程,你还知道些什么?
指出x=80,求x=80的过程在方程这部分知识中都有特定的名称,请同学们带着问题自学课本。
出示思考题:①什么叫方程的解?举例说明。
②什么叫解方程?举例说明。(三)巩固学习
我发现
1)等式都是方程。()2)方程都是等式。()
3)x=3是方程18+x=15的解。()4)3x=0也是方程。()
5)含有未知数的式子叫方程。()6)方程是等式,所以等式也叫方程。7)36是方程x÷3=12的解。(四)全课小结,评价深化
1、通过今天的学习,同学们有哪些收获?
2、同学们是怎么学到这些知识?
3、以小组为单位自评或互评课堂表现,发扬优点、改正缺点。
教后反思
“问题是数学的心脏”,问题意识是一种探索意识,是创造的起点。学生有了问题,才会思考和探索;有探索才会有创新,才会有发展。教师要把自己置身于学生的位置,处处以学生的眼光看待“已知”的教学内容,设身处地地设计问题,引发学生的思考。
在503班上时,我通过天平的演示让学生得出两种等式:一是不含未知数的等式,二是含有未知数的等式。让学生比较得出方程的概念,然后通过练习判断哪些是方程?哪些不是方程。接着让学生自学得出什么是方程的解和解方程的概念,最后出示例1让学生观察比较解方程与求未知数X的解题过程有什么异同?让学生了解解方程的步骤。本节课从课堂效果上来看,不错,因为这个班是我带上来的,课堂习惯比较好,学生的思维清晰,会说。
而在502班上时,我考虑这堂课的概念多,“含有未知数的等式,叫做方程”“使等式左右两边相等的未知数的值,叫做方程的解”“求未知数的值的过程,叫做解方程”,而且学生容易混淆。在教学设计时,我把“方程的意义”作为教学的重点,而对“方程的解和解方程”概念的教学想通过学生的自学和新旧知识(求未知数x)的联系,让学生自己去理解。所以在设计教学方案时,重点考虑的是方程意义的教学。方程意义的教学目标定位是,不仅仅是让学生了解方程的概念,能指出哪些是方程;更多思考的是学生对方程后继的学习和发展,注重知识的渗透,如:近期的“用字母表示数”“用方程解应用题”、远期的解较复杂方程或方程组时用到的“等式的性质”以及“不等式”“集合”知识等。
这次,我在处理教材时,删繁就简,让学生做“分类游戏”:
① 按自己的标准把下列各式分类: 8+9 20+5=25 17-11=6 6+3<11
学生在分类中感知“等式”的意义。
② 进一步分类探讨:
6÷3=2 4×5=20 5>4 x+4=9
激疑“x+4=9” 归于哪类?能说明理由吗?那么, 2a=18;x=2呢?让学生在分类探索中理解“含有未知数的等式叫方程”。
在“分类”活动中,学生根据自已的理解进行分类,在学生“不同标准”的分类中,分析感知“方程的意义”,同时,分类思想也渗透于教学中。因为我觉得新课程改革下的课堂,已不再由教师指令性语言来主宰,把选择分类的权利留给学生,无疑是关注学生个性的表现。可课堂效果却不是很好,学生课堂的习惯很不好,不敢说,或者是不知如何表述,或者是表述的不准确,课堂比较安静,课后我不断的反思:两个班的教法一个是比较传统的,而另一个是在新课改的指导下,根据新课标来设计的,为什么反而前者的效果好些呢?我想问题的关键是学生的课堂思维过程的训练有待加强,数学课堂也应该重视学生
“说”的训练,在说的过程中激活学生的思维,让学生在新课改的指引下学会自主探索,学得主动,学得投入。
这堂课上完,还有一个体会就是教学时间不够,知识巩固的时间太少。有一位听课的教师帮我看了表,方程意义的教学的练习足足用了35分钟。“方程的解和解方程”的教学因为练习时间不足,而不到位。课后我一直想 “这35分钟花得是否值得?怎样处理知识目标和发展目标的关系?”。还有方程意义教学时天平的演示,一直是我在演示,学生在看,学生的自主性不够,这是我教学设计时就有的困惑,但如果让分小组学生自己操作,教学时间会更加不够。该怎样解决这个矛盾?
第四篇:解简易方程教学设计
解简易方程教学设计
教学目标
1.使学生初步学会 这一类简易方程的解法. 2.知道计算这类方程的道理. 教学重点
掌握解 这一类方程的解法. 教学难点
理解这一类方程的算理. 教学过程
一、复习引入
(一)解下列方程
(二)乘法分配律的意义是什么?用字母怎样表示?
二、教学新授
(一)教学例5 例5.一个工地用汽车运土,每辆车运 吨,一天上午运了4车,下午运了3车.这一天共运土多少吨? 1.读题,理解题意. 2.出示图片:示意图
3.教师提问:通过观察这幅图,你都知道了什么? 教师板书: 上午 下午 一天
4.教师说明:这个式子中含有两个未知数,这就是今天要学习的解简易方程. 板书课题:解简易方程. 5.学生分组讨论计算方法.(1)表示4个,表示3个,一共是(4+3)个,也就是 .(2)可以根据乘法分配律把4和3相加,就是(4+3)个,. 6.教师说明:两种思考方法既有联系又有区别,最后的结果都是正确的. 教师板书: =(4+3)=
答:这一天共运土 吨.
7.思考:上午比下午多运的吨数是多少?怎样列式? 教师提示:1个,可以写成 .“1”可以省略不写. 8.教师小结
一个式子中如果含有两个 的加减法,可以根据乘法分配律和式子所表示的意义,将 前面的因数相加或相减,再乘,计算出结果. 9.练习
(二)教学例6 例6.解方程 1.教师提问
(1)这个方程有什么特点?(2)应该怎样解答? 2.学生独立解答. 教师板书: 解:
检验:把 代入原方程.
左边=7×5+9×5=80,右边=80,左边=右边 所以 是原方的解. 3.练习
解方程 3.6 -0.9 =5.4(要写出检验过程)
三、课堂小结
今天这节课你学到了哪些知识?解这类方程时要注意什么?
四、巩固练习
五、布置作业
(一)解方程.(第一行两小题要写出检验过程)
六、板书设计
解简易方程
反思:
该教学设计在安排上注意由具体到抽象,通过图片使学生理解算理,再通过文字题,直接算出结果。在思维过程上,有展开,有压缩,使学生在理解的基础上,达到熟练掌握的目的。
第五篇:解简易方程教学设计(范文模版)
《解简易方程》教学设计
教学内容:
沙云小学 李秀元
义务教育课程程标准实验教科书数学(人教版)小学数学第9册57—58页的内容。教学目标:
1、通过学习,使学生知道解方程的方法有两种,并掌握这两种方法。
2、使学生初步掌握解方程,并理解解方程及方程的解的概念。
3、培养学生的分析能力应用所学知识解决实际问题的能力。重点、难点:
1、理解并掌握解方程的方法。
2、理解解方程及方程的解的概念。
教具准备:
多媒体课件 教学过程:
一、复习导入
1、复习一:辨一辨,下面式子哪些是方程?为什么? 60+23>70
8+X
6+X=14
36-7=29 50÷2=25
X+4<14
y-28=35
5y=40(引导得出:判断方程的条件
1、是等式。
2、含有未知数。)
2、复习2: 在圈里填上合适的运算符号,在方框里填上合适的数。
X+4=48
x+4 ○ □ =48 + 12 X-4=48
x-4 - 12 =48 ○ □
(引导得出等式的基本性质1:等式的两边同时加上或减去相等的数,等式不变。)
x × 4=48
x × 4 × 10 =48 ○ □ x÷4=48
x÷4 ○ □ =48 ÷ 6(引导得出等式的基本性质2:等式的两边同时乘或除以相等的数(0除外),等式不变。)
二、探索新知
1、出示课本主题图(课件)(1)根据图画列方程(2)反馈:a、X+3=9
b、9-X=3
C、9-3=X(强调:列方程时X不单独出现在等号的一边,因为这样这个方程没有意义。)
(3)以X+3=9为例教学解方程
师提问:X=? 生:X=6 师追问:你是怎么得到的? 生:9-3=6 师追问:为什么用9-3?
从而引导得出:在X+3=9中X是加数,加数=和-另一个加数。这是用数量关系解方程。
师:(课件出示图作引导)如果在天平左右两边同时去掉3,会怎么样?
生:天平依然平衡(等式的基本性质)师板书:
X+3=9
解: X+3-3=9-3
X=6 师:这是用等式的基本性质解方程。
我们最后得到的X=6叫做方程的解(使方程左右两边相等的未知数的值——方程的解)。
求方程的解的过程——解方程。
2、思考、讨论:
方程的解和解方程有什么区别? 方程的解:指一个具体的数值。解方程:是求方程的解的过程。
三、课堂练习:
1、完成做一做第一题。(任选自己喜欢的方法解决)
2、解下列方程。(用两种方法解决)X+3.2=4.6
X-1.8=4
四、课堂小结
这节课你有什么收获,跟你的同桌交流一下。