加法交换律和结合律教学设计-详案

时间:2019-05-12 18:35:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《加法交换律和结合律教学设计-详案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《加法交换律和结合律教学设计-详案》。

第一篇:加法交换律和结合律教学设计-详案

《加法交换律》教学设计

教学内容:人教版数学四年级上册 教学目标:

1、知识与技能

引导学生在经历探索加法交换律,理解并掌握加法交换律。

2、数学思考

在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

3、解决问题

通过观察、分析、操作、交流等数学活动探索加法交换律,初步感受加法交换律的应用-——验算,初步感知使用加法交换律能够简便运算。

4、情感态度

引导学生在学习过程中,感受到数的运算与日常生活的密切联系。获得探究的乐趣和成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

教学重点:引导学生在经历探索加法交换律,理解并掌握加法交换律。教学难点:用符号抽象的表示加法交换律 教学准备:课件 教学流程:

一、创设情境,提出问题。

1、课前谈话。

师:我们来玩一个文字游戏好吗?老师说一个词,你们把它倒过来说一遍,比如,我说“喜欢”你们就说“欢喜”,会说吗?好,现在开始:“雪白”“吃好”

2、提出问题。

谈话:再过一两周,我们学校就要举行一年一度的校运会了,最近,同学们锻炼的热情可高了,我们一起去体育活动场看看吧!

二、探究规律,形成方法。

1、探究加法交换律,形成方法

例题1:李叔叔今天上午骑了40千米,下午骑了56千米。李叔叔今天一共骑了多少千米?教师:这个问题该怎样解决呢?如何列算式。

40+56=96(千米)

或56+40=96(千米)

观察,这两道算式有什么联系?也就是说这两道算式的得数是相同的,它们之间是相等的。那么这两个式子我们可以用什么符号连接起来?

(结果相同,所以可以写成40+56=56+40)

你还能举出这样的例子吗?(学生举例):你为什么能写得这么快这么多?在写的过程中你发现了什么规律?

如:37+45=45+37

88+32=32+88

53+29=29+53…………

(3)观察每组算式的结果,你发现了什么?(结果都相同)用自己的话说一说。

学生发言,交流并归纳板书:两个加数相加,交换两个加数的位置,和不变。也就是加法的交换律。

(4)如果用符号来表示,该怎样写呢?

甲数+乙数=乙数+甲数

☆ +△=△+☆

a+b=b+a 师:刚才大家想出的等式都很好,不仅能把我们发现的规律表示出来,而且比语言叙述更简洁。其实这个规律,是加法的一个很重要的运算律。(板书:运算律)能给它取个名字吗?——加法交换律。

在数学上,我们通常用字母a和b来表示两个加数,这就是我们今天认识的第一个定律:两个数相加,交换加数的位置,和不变,这就是加法交换律。(5)联系旧知,简单应用。

师:这个规律其实是我们的老朋友了,你们记得以前在什么地方见过它吗? 小练习:下面请同学们用竖式计算并验算一道算式 186+375= 老师想请一个同学上讲台来演算一遍。

提问:刚才验算时,应用到了什么规律?

师:对了,在加法竖式验算时,我们常常交换两个加数的位置来进行验算,利用的是什么呢?其实就是运用了加法交换律。(6)学法指导,促进迁移。

刚才我们是怎样研究加法交换律的呢?下面我们就用这种研究方法来研究加法中另一个重要规律。

2、探索加法结合律。(1)发现问题。

师:刚才有同学提出一个问题,例题2。

出示主题图,通过看图你找到了哪些有用的信息?

李叔叔第一天行了88千米,第二天行了104千米,第三天行了96千米,这三天李叔叔一共行了多少千米?

学生独立思考,列出算式:88+104+96

=192+96

=288(千米)

或88+(104+96)

=88+200

=288(千米)

答:李叔叔三天一共行了288千米。

比较这两题的结果怎么样啊?(相同)师:仔细观察,比较这两个算式,你发现了什么?什么变了?什么没变?

生:三个加数完全相同,加数的位置没有变化,只是运算顺序发生改变了。

因此可以写成:(88+104)+96=88+(104+96)

用自己的话说说,三个数相加,可以先把前两个数先加,再加上后一个数,也可以先把后两个数先加,再加上前一个数,和不变。这就是加法的结合律。(6)谁还能举出这样的例子来。

学生举例:(69+172)+28=69+(172+28)

155+(145+207)=(155+145)+207……………

加法结合律又该怎样用字母表示呢?

(a+b)+c=a+(b+c)

师:这个规律就是我们今天要认识的另一个运算律——加法结合律。(板书:加法结合律)

三、巩固内化,拓展应用。

1、完成P58页“想想做做”第1题。

2、下面的式子各应用了什么规律? 96+35=35+ 96

(45+36)+64=45+(36 + 64)560+(140+70)=(560 + 140)+70(75+48)+25=(75+25)+28

3、你能在括号里填上合适的数吗?

95+35=35+()

205+38=()+205

(45+36)+64=45+(+)

360+(40+170)=(360 +)+()

四、全课总结,评价反思。

今天这节课我们学习了什么知识?你是怎样获得这些知识的?那么,课前同学们提出的剩下的这几个问题,你能解决吗?(第3、5两个问题用减法解答)那么在减法中,有没有这样的规律呢?课后大家可以继续研究。

第二篇:加法交换律和结合律教学设计 详案

《加法交换律和加法结合律》教学设计

教学内容:苏教版小学数学四年级上册P56-58页。教学目标:

1、让学生在经历探索加法交换律和结合律的过程中,理解并掌握加法交换律和结合律,初步感受到应用加法交换律和结合律可以使一些计算简便,发展应用意识。

2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

3、让学生在学习过程中,感受到数的运算与日常生活的密切联系。获得探究的乐趣和成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

教学重点:经历运算律的探索过程,发现规律,概括规律 教学准备:学生活动场景图 教学流程:

一、创设情境,提出问题。

1、课前谈话。

师:我们来玩一个语言游戏好吗?老师说一个词,你们把它倒过来说一遍,比如,我说“喜欢”你们就说“欢喜”,会说吗?好,现在开始:“你们”(生:们你)啊?什么意思?想“蒙”老师呀?那可不行。开个玩笑,不过学习可千万不能蒙人,对吧?好,接着来,声音响亮些!“好听”(生:听好);“好说”(生:说好);“好学”(生:学好)。

师:好!这可都是你们自己说的哦!“听好!说好!学好!”老师希望大家在这节课的学习中都能做到这三点。

2、提出问题。

谈话:再过一两周,我们学校就要举行一年一度的校运会了,最近,同学们锻炼的热情可高了,我们一起去体育活动场看看吧!体育活动场上有28个男生在跳绳,17个女生在跳绳,23个女生在踢毽子。

提问:根据老师给你们的这些信息,你能提出什么数学问题呢?

估计学生提出的问题可能有以下几种,师根据学生的回答板书:(1)跳绳的有多少人?(2)女生有多少人?(3)跳绳的比踢毽子的多几人?(4)参加活动的一共有多少人?

(5)跳绳的男生比跳绳的女生多多少人? „„

师:同学们提出了这么多的问题,今天这节课我们就重点来解决“跳绳的有多少人?”“女生有多少人?”和“参加活动的一共有多少人?”这三个问题。

二、探究规律,形成方法。

1、探究加法交换律,形成方法。(1)引导观察,发现问题。

提问:谁能解决“跳绳的有多少人?”这个问题?怎样列式计算? 生1:28+17=45(人)

师:还有不同的列式吗?

生2:17+28=45(人)

师:对了,这两道算式都可以算出跳绳的人数一共是45人。也就是说这两道算式的得数是相同的,它们之间是相等的。那么这两个式子我们可以用什么符号连接起来? 生:等号

师:回答得非常正确,它们之间可以用等号连接起来。刚才有同学提出“女生有多少人”的问题?我们该怎么解决呢? 生1:17+23=40(人)

生2:23+17=40(人)

师:对了,这两个式子都可以算出女生一共有40人,这两道算式的得数也是相同,我们也可以用“=”把这两个式子连接起来。

师:通过刚才同学们的积极思考计算,我们算出了:跳绳的一共有多少人和女生一共有多少人?用了这两个算式(17+28=28+17,17+23=23+17)分别来表达,算式的结果也是相等的。

师:仔细观察比较这两组算式,你发现了什么?什么变了,什么没变? 生:两个加数的位置变换了,和不变。

师:大家同意他的说法吗?都同意,对了,两个加数的位置变换了,但结果不变。(2)枚举归纳,积累感知。

师:是不是其他的式子也有这样的规律?像这样的式子你还可以举一些例子吗?可以,那现在请你写出几个这样的式子,同桌相互验证一下吧。

2(3)合作交流,概括规律。

师:好了,有哪位同学愿意跟大家分享一下你列出的式子呢? 生:52+28=28+52 师:你是怎样验证的?

师:哦!你先列出一个式子算出得数,然后把两个加数的位置交换了,再列一个式子,再计算出得数,结果发现两个式子的得数是一样的。因此,你用等号把这两个式子连接起来。大家同意他的做法吗?都同意,同学们都做得不错。老师还有一个问题想问大家。

提问:像具有这样特征的式子你还能写几个呢?好,现在拿出你们的练习本,给你们30秒钟,看谁写得多!

师:好了,时间到。刚才老师下去看了看,发现有些同学写得很快,一下子就列出了很多个式子,老师想请一个写得比较多的同学来谈谈:你为什么能写得这么快这么多?在写的过程中你发现了什么规律? 生:两个数相加,交换加数的位置,和不变。

师:大家同意他的说法吗?都同意,嗯,对了,在这里我们发现任意两个数相加,交换加数的位置,它们的和不变。(4)个性创造,构建模型。

问:像具有这样特征的式子我们能写得完吗? 生:写不完。

师:写不完那怎么办呢?能不能想个办法把这些式子全表示出来?请同学们独立思考,然后把你的想法在小组内交流一下。师:哪个小组想说说你们的想法?好请你们组。组1:你们组用▲和■代表两个加数,▲+■ =■ + ▲

组2:你们组用文字来表示,也就是甲数+ 乙数=乙数+甲数

组3: 第三组用的是字母a和b表示两个加数,表示的式子为a+b=b+a 师:刚才大家想出的等式都很好,不仅能把我们发现的规律表示出来,而且比语言叙述更简洁。其实这个规律,是加法的一个很重要的运算律。(板书:运算律)能给它取个名字吗?——加法交换律。

在数学上,我们通常用字母a和b来表示两个加数,这里的a可以代表17,b可以代表28,还可以代表很多很多的数,那么,加法交换律可以表示为: 3 a+b=b+a。这就是我们今天认识的第一个定律:两个数相加,交换加数的位置,和不变,这就是加法交换律。(5)联系旧知,简单应用。

师:这个规律其实是我们的老朋友了,你们记得以前在什么地方见过它吗? 小练习:下面请同学们用竖式计算并验算一道算式 186+375= 老师想请一个同学上讲台来演算一遍。

提问:刚才验算时,应用到了什么规律?

师:对了,在加法竖式验算时,我们常常交换两个加数的位置来进行验算,利用的是什么呢?其实就是运用了加法交换律。(6)学法指导,促进迁移。

刚才我们是怎样研究加法交换律的呢?(板书:发现问题→举例验证→语言概括→字母表示。)下面我们就用这种研究方法来研究加法中另一个重要规律。

2、学法迁移,探索加法结合律。(1)发现问题。

师:刚才有同学提出一个问题,参加活动的一共有多少人?怎样解决这个问题?

学生列式,教师指名回答后板书:(28+17)+23

28+(17+23)

第一个同学先算出跳绳的有多少人,再加上踢毽子的人数。

第二个同学先求出女生一共有多少人,再和男生人数相加,得到活动的总人数。请同学们猜一猜:这两个式子相等吗?怎样证明?(2)解决问题

生:相等,分别算出这两个式子的得数,发现结果是一样的!

师:对,这两道算式的结果是一样的,都能算出参加活动的人数一共是68人。同样的,我们也可以用等号把这两道算式连接起来。

师:仔细观察,比较这两个算式,你发现了什么?什么变了?什么没变? 生:三个加数完全相同,加数的位置没有变化,只是运算顺序发生改变了。师:像这样的式子得到的结果就一定是一样的吗?我们先来看下面两组算式,算一算能否在○里填上“=”,想一想这两组算式是否也有这样的特点呢?(45+25)+13 ○ 45+(25+13)(36+18)+22 ○ 36+(18+22)

师:我们一起来看这两道式子,第一道题,三个加数是一样的,左边的式子是前两个加数相加再加上第三个加上,右边的式子是后两个加数相加再加上第一个加数,你们口算一下。左边45+25=70,再加上13=83,右边25+13=38,再加上45=83。两道算式完全相等。下一道题,对,也是完全相等的。

再联系刚才咱们认识的式子,也是相等的,具有这样规律的式子你还能列出多少条式子呢?那可太多了,那你能用什么简单的方式把具有这样规律的式子表达出来呢?

(3)师引导小结:加法结合律用字母表示就是“(a+b)+c= a+(b+c).师:有同学想到,用简洁的字母来表示,用abc分别来表示3个加数,第一个式子是(a+b)+c,第二个式子是a+(b+c),它们的和不变。

师:大家说同意她的做法吗?都同意,对了,三个数相加,可以先把前两个数相加,再与第三个数相加;也可以先把后两个数相加,再与第一个数相加,它们的和不变。

师:这个规律就是我们今天要认识的另一个运算律——加法结合律。(板书:加法结合律)

三、巩固内化,拓展应用。

1、完成P58页“想想做做”第1题。

2、下面的式子各应用了什么规律? 96+35=35+ 96

(45+36)+64=45+(36 + 64)560+(140+70)=(560 + 140)+70(75+48)+25=(75+25)+28

3、你能在括号里填上合适的数吗?

95+35=35+()

205+38=()+205

(45+36)+64=45+(+)

360+(40+170)=(360 +)+()

四、全课总结,评价反思。

今天这节课我们学习了什么知识?你是怎样获得这些知识的?那么,课前同学们提出的剩下的这几个问题,你能解决吗?(第3、5两个问题用减法解答)那么在减法中,有没有这样的规律呢?课后大家可以继续研究。

第三篇:加法交换律和结合律教学设计 详案重点

《加法交换律和加法结合律》教学设计

教学内容:苏教版小学数学四年级上册P56-58页。教学目标:

1、让学生在经历探索加法交换律和结合律的过程中,理解并掌握加法交换律和结合律,初步感受到应用加法交换律和结合律可以使一些计算简便,发展应用意识。

2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

3、让学生在学习过程中,感受到数的运算与日常生活的密切联系。获得探究的乐趣和成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

教学重点:经历运算律的探索过程,发现规律,概括规律 教学准备:学生活动场景图 教学流程:

一、创设情境,提出问题。

1、课前谈话。

师:我们来玩一个语言游戏好吗?老师说一个词,你们把它倒过来说一遍,比如,我说“喜欢”你们就说“欢喜”,会说吗?好,现在开始:“你们”(生:们你)啊?什么意思?想“蒙”老师呀?那可不行。开个玩笑,不过学习可千万不能蒙人,对吧?好,接着来,声音响亮些!“好听”(生:听好);“好说”(生:说好);“好学”(生:学好)。

师:好!这可都是你们自己说的哦!“听好!说好!学好!”老师希望大家在这节课的学习中都能做到这三点。

2、提出问题。

谈话:再过一两周,我们学校就要举行一年一度的校运会了,最近,同学们锻炼的热情可高了,我们一起去体育活动场看看吧!体育活动场上有28个男生在跳绳,17个女生在跳绳,23个女生在踢毽子。

提问:根据老师给你们的这些信息,你能提出什么数学问题呢? 估计学生提出的问题可能有以下几种,师根据学生的回答板书:(1)跳绳的有多少人?(2)女生有多少人?

(3)跳绳的比踢毽子的多几人?

(4)参加活动的一共有多少人?

(5)跳绳的男生比跳绳的女生多多少人? „„

师:同学们提出了这么多的问题,今天这节课我们就重点来解决“跳绳的有多少人?”“女生有多少人?”和“参加活动的一共有多少人?”这三个问题。

二、探究规律,形成方法。

1、探究加法交换律,形成方法。(1)引导观察,发现问题。

提问:谁能解决“跳绳的有多少人?”这个问题?怎样列式计算? 生1:28+17=45(人)师:还有不同的列式吗? 生2:17+28=45(人)

师:对了,这两道算式都可以算出跳绳的人数一共是45人。也就是说这两道算式的得数是相同的,它们之间是相等的。那么这两个式子我们可以用什么符号连接起来? 生:等号

师:回答得非常正确,它们之间可以用等号连接起来。刚才有同学提出“女生有多少人”的问题?我们该怎么解决呢?

生1:17+23=40(人)生2:23+17=40(人)

师:对了,这两个式子都可以算出女生一共有40人,这两道算式的得数也是相同,我们也可以用“=”把这两个式子连接起来。

师:通过刚才同学们的积极思考计算,我们算出了:跳绳的一共有多少人和女生一共有多少人?用了这两个算式(17+28=28+17,17+23=23+17)分别来表达,算式的结果也是相等的。

师:仔细观察比较这两组算式,你发现了什么?什么变了,什么没变? 生:两个加数的位置变换了,和不变。

师:大家同意他的说法吗?都同意,对了,两个加数的位置变换了,但结果不变。

(2)枚举归纳,积累感知。

师:是不是其他的式子也有这样的规律?像这样的式子你还可以举一些例子吗?可以,那现在请你写出几个这样的式子,同桌相互验证一下吧。(3)合作交流,概括规律。

师:好了,有哪位同学愿意跟大家分享一下你列出的式子呢? 生:52+28=28+52 师:你是怎样验证的?

师:哦!你先列出一个式子算出得数,然后把两个加数的位置交换了,再列一个式子,再计算出得数,结果发现两个式子的得数是一样的。因此,你用等号把这

两个式子连接起来。大家同意他的做法吗?都同意,同学们都做得不错。老师还有一个问题想问大家。

提问:像具有这样特征的式子你还能写几个呢?好,现在拿出你们的练习本,给你们30秒钟,看谁写得多!

师:好了,时间到。刚才老师下去看了看,发现有些同学写得很快,一下子就列出了很多个式子,老师想请一个写得比较多的同学来谈谈:你为什么能写得这么快这么多?在写的过程中你发现了什么规律? 生:两个数相加,交换加数的位置,和不变。

师:大家同意他的说法吗?都同意,嗯,对了,在这里我们发现任意两个数相加,交换加数的位置,它们的和不变。

(4)个性创造,构建模型。

问:像具有这样特征的式子我们能写得完吗? 生:写不完。

师:写不完那怎么办呢?能不能想个办法把这些式子全表示出来?请同学们独立思考,然后把你的想法在小组内交流一下。师:哪个小组想说说你们的想法?好请你们组。组1:你们组用▲和■代表两个加数,▲+■ =■ + ▲

组2:你们组用文字来表示,也就是甲数+ 乙数=乙数+甲数

组3: 第三组用的是字母a和b表示两个加数,表示的式子为a+b=b+a 师:刚才大家想出的等式都很好,不仅能把我们发现的规律表示出来,而且比语言叙述更简洁。其实这个规律,是加法的一个很重要的运算律。(板书:运算律)能给它取个名字吗?——加法交换律。

在数学上,我们通常用字母a和b来表示两个加数,这里的a可以代表17,b可以代表28,还可以代表很多很多的数,那么,加法交换律可以表示为: 3 a+b=b+a。这就是我们今天认识的第一个定律:两个数相加,交换加数的位置,和不变,这就是加法交换律。(5)联系旧知,简单应用。

师:这个规律其实是我们的老朋友了,你们记得以前在什么地方见过它吗? 小练习:下面请同学们用竖式计算并验算一道算式 186+375= 老师想请一个同学上讲台来演算一遍。

提问:刚才验算时,应用到了什么规律?

师:对了,在加法竖式验算时,我们常常交换两个加数的位置来进行验算,利用的是什么呢?其实就是运用了加法交换律。

(6)学法指导,促进迁移。

刚才我们是怎样研究加法交换律的呢?(板书:发现问题→举例验证→语言概括→字母表示。)下面我们就用这种研究方法来研究加法中另一个重要规律。

2、学法迁移,探索加法结合律。(1)发现问题。

师:刚才有同学提出一个问题,参加活动的一共有多少人?怎样解决这个问题? 学生列式,教师指名回答后板书:(28+17)+23 28+(17+23)

第一个同学先算出跳绳的有多少人,再加上踢毽子的人数。

第二个同学先求出女生一共有多少人,再和男生人数相加,得到活动的总人数。请同学们猜一猜:这两个式子相等吗?怎样证明?(2)解决问题

生:相等,分别算出这两个式子的得数,发现结果是一样的!

师:对,这两道算式的结果是一样的,都能算出参加活动的人数一共是68人。同样的,我们也可以用等号把这两道算式连接起来。

师:仔细观察,比较这两个算式,你发现了什么?什么变了?什么没变? 生:三个加数完全相同,加数的位置没有变化,只是运算顺序发生改变了。师:像这样的式子得到的结果就一定是一样的吗?我们先来看下面两组算式,算一算能否在○里填上“=”,想一想这两组算式是否也有这样的特点呢?(45+25)+13 ○ 45+(25+13)

(36+18)+22 ○ 36+(18+22)

师:我们一起来看这两道式子,第一道题,三个加数是一样的,左边的式子是前两个加数相加再加上第三个加上,右边的式子是后两个加数相加再加上第一个加数,你们口算一下。左边45+25=70,再加上13=83,右边25+13=38,再加上45=83。两道算式完全相等。下一道题,对,也是完全相等的。

再联系刚才咱们认识的式子,也是相等的,具有这样规律的式子你还能列出多少条式子呢?那可太多了,那你能用什么简单的方式把具有这样规律的式子表达出来呢?

(3)师引导小结:加法结合律用字母表示就是“(a+b)+c= a+(b+c).师:有同学想到,用简洁的字母来表示,用abc分别来表示3个加数,第一个式子是(a+b)+c,第二个式子是a+(b+c),它们的和不变。

师:大家说同意她的做法吗?都同意,对了,三个数相加,可以先把前两个数相加,再与第三个数相加;也可以先把后两个数相加,再与第一个数相加,它们的和不变。

师:这个规律就是我们今天要认识的另一个运算律——加法结合律。(板书:加法结合律)

三、巩固内化,拓展应用。

1、完成P58页“想想做做”第1题。

2、下面的式子各应用了什么规律? 96+35=35+ 96(45+36)+64=45+(36 + 64)

560+(140+70)=(560 + 140)+70(75+48)+25=(75+25)+28

3、你能在括号里填上合适的数吗? 95+35=35+()205+38=()+205(45+36)+64=45+(+)

360+(40+170)=(360 +)+()

四、全课总结,评价反思。

今天这节课我们学习了什么知识?你是怎样获得这些知识的?那么,课前同学们提出的剩下的这几个问题,你能解决吗?(第3、5两个问题用减法解答)那么在减法中,有没有这样的规律呢?课后大家可以继续研究。

第四篇:加法交换律和结合律教学设计

教学目标:

1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决进行比较和分析,发现并概括出运算律。

3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:

使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:

使学生经历探索加法交换律和结合律的过程,发现并概括出运算规律。

一、复习导入。

1.填一填。

25×8 = 8×13×20×5 = 13×(×)

a×b =×(a×b)×c = a×(×)

我们是依据和来完成上面的填空的。这样的规律在加法中有没有呢?我们一起来研究吧。

二、出示学习目标

1.理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2.在理解加法交换律和结合律的基础上,会运用这些定律对一些算式进行简便计算。

3.锻炼自己的思维能力和归纳分析能力。

三、合作探究,验证猜想。

观察下面每组的两个算式,它们有什么样的关系?

18+17○17+18

124+235○235+124

上面的每组算式有什么共同点?

从上面的算式,可以发现什么规律?让学生举例

这就是我们今天所学的第一个运算律——加法交换律(板书:加法交换律)。你能用a,b, ,表示加法交换律吗?

板书:a+b =b+a

跟老师一起读一遍。

2.口算并观察:

3.(3 + 2)+ 5 =+(2 + 5)=

这两个算式的结果怎样?

所以这两个算式的关系可以写成:(3 + 2)+ 5 =

我们再举一些这样的例子吧。

(+)+=+(+)

(+)+=+(+)

像这几组算式中存在的规律和乘法中的律是非常相似的。观察等式,你能发现等号两边的算式什么没变?什么变了吗?(小组讨论)

(要点:三个加数没变,加数的位置没变,运算顺序变了,结果没变)

提问:你们发现了什么规律?谁来总结一下这个规律。这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。你能用a,b,c,表示加法结合律吗?

板书:(a+b)+c=a+(b+c)

跟老师一起读一遍。

四、展示交流,总结规律。

数学真的很有趣,加法中也真的存在律和律。我们来描述一下吧:两个数相加,它们的和不变,这就是加法交换律;三个数相加,先把相加,再和相加,或者先把相加,再和-相加,它们的不变,这就是加法结合律。如果用a、b、c表示三个数,我们能把加法交换律和结合律写为:

加法交换律:

加法结合律:

五、检测

应用规律可以使运算变得更加简便呦!

1.思考:怎样计算35 + 78 + 65 会更加简便呢?试一试吧。

2.根据加法交换律在下面的()里填上适当的数。

56+44=()+()a+()= b+()

35+()=75+()36+()=64+()

f +()=89+()丙数+()=丁数 +()

3.利用发现的规律解决问题。

+ 375158 + 395 + 105

357 + 288 + 143129 + 235 + 171 + 16

54.用简便方法计算下面各题。

495 + 213 + 5 + 68715 + 17 + 45 + 6367 +(33+89)

5、插入“朝三暮四”的故事,来听个“朝三暮四”的成语故事。

战国时代,宋国有一个养猴子的老人,他在家中的院子里养了许多猴子。日子一久,这个老人和猴子竟然能沟通讲话了。这个老人每天早晚都分别给每只猴子四只桃子。几年后,老人的经济越来越不充裕了,而猴子的数目却越来越多,于是他就和猴子们商量说:“从今天开始,我每天早上给你们三只桃子,晚上还是照常给你们四只桃子,不知道你们同意不同意?”猴子们听了,都认为早上怎么少了一个?于是一个个就开始吱吱大叫,而且还到处跳来跳去,好象非常不愿意似的。

老人一看到这情形,连忙改口说:“那么我早上给你们四只,晚上再给你们三只,这样该可以了吧?”猴子们听了,以为早上桃子已经由三个变成四个,跟以前一样,就高兴的在地上翻滚起来。听了这个故事,你们有哪些想法?

让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老人采用了加法交换律。

五、课堂总结。

通过本节课的学习,你有什么新的收获?

第五篇:《加法交换律和结合律》教学设计

《加法交换律和结合律》的教学设计(新授课)

【教学内容】义务教育课程标准实验教科书(北师大版)四年级上册第三单元P47 【教材分析】

本课是北师大版数学实验教材四年级上册的一个教学内容,它是在学习了三位数乘两位数乘法和了解乘法交换律和结合律的知识基础上进一步拓展。这样安排不仅是让学生能发现加法运算定律,懂得运用运算定律使计算变得更简便;更主要的是让学生经历探索过程,通过对加法交换律和结合律步骤的体验为学生今后的数学探索活动打下基础。【学情分析】

“加法交换律和结合律”是在学生了解乘法交换律和结合律的知识基础上进行教学的,使学生进一步知道加法也有交换律和结合律,体会加法运算定律。【教学目标】

知识与技能:通过观察、比较、分析、综合、概括,使学生推导出加法交换律和结合律,会用字母表示。

过程与方法:使学生经历探索的过程,会对一些算式进行简便计算,体会探索的方法。情感、态度与价值观:使学生在活动中获得成功的体验,培养学生的思维能力和科学的学习方法。

【教学重、难点】

教学重点:引导学生探索概括出加法交换律和结合律,并初步理解运用、进行简便计算。教学难点:加法交换律和结合律的探索推导过程与运用。【教学方法】

在对教材和学生进行充分分析后,根据教材和学生的特点,我采用了自主探索学习法、谈话法教学方法。

新课程要求学生的学习方式多样,本节课主要的学习方式有:自主探索、操作练习。在例子中发现规律,并通过自主验证,来总结规律是本节课的特点,所以自主探索成了学生最为重要的学习方式;在探索过程中学生与学生间、老师与学生间的交流讨论是学习效果的重要保证;在概括规律建立模型后,学生通过一系列的操作练习,让所学得到巩固加深。

【教、学具准备】 教具:多媒体课件。学具:练习本。

【教学流程】

一、复习旧知,引人新知(预设3-5分钟)1.上节课我们学习了《乘法结合律和交换律》,谁能用字母分别表示一下? 预设:a×b=b×a,(a×b)×c=a×(b×c)[评价]看来同学们已经记住了乘法结合律和交换律,希望你们也能运用自如。板书: 交换律 结合律

乘法 a×b=b×a(a×b)×c=a×(b×c)2.那么加法中是否也有同样的规律呢? 预设:有。

揭示课题:今天我们就一起来研究加法交换律和结合律。板书课题:加法交换律和结合律

[设计意图]从学生已知乘法结合律和交换律的知识出发,复习旧知导入新课,既唤起学生对已学知识的记忆,由此迁移类推到加法结合律的学习中,可容易想到加法也满足交换律和结合律,又使学生感受数学知识彼此间的联系。

二、合作学习,探索新知(预计20-25分钟)

(一)推导出加法交换律和结合律

1.现在请同学们拿出本子,举2个例子说明运用了加法交换律。预设:3+2=2+3,5+8=8+5。„„

[提出质疑]像这样的例子我们举得完吗? 预设:举不完。

[追问]我们可以用什么来表示呢?怎么表示? 预设:用字母表示,a+b=b+a 板书:加法 a+b=b+a [设计意图] 让学生通过举例,发现加法交换律的例子是举不完的,使他们认识到用字母表示的必要性与方便性。使学生体会到符号的简洁性,从而发展了学生的符号感。

2.这里的字母a、b表示什么? 预设:字母表示任意的数。

3.请仔细观察这些等式,等号两边有什么相同之处?有什么不同?

预设:等号两边数字都一样,两边的和一样。不同的是数字的位置交换了。

[小结] 是的,同学们都找出了等号两边的共同点与不同点,像这样两数相加,只交换加数的位置,它们的和不变,这就是加法交换律。

[设计意图]由于“运算律”属于理性的总结和概括,比较抽象,学生并不容易理解和掌握,因此多引导学生独立观察、分析、比较,有利于学生概括出相应的运算律。

4.请同学们拿出本子,举2个例子说明运用了加法结合律。再想想可以用字母怎么表示?

预设1:(1+2)+4=1+(2+4),(5+6)+8=5+(6+8)。„„

预设2:(a+b)+c=a+(b+c)。板书:(a+b)+c=a+(b+c)5.请仔细观察这些等式,等号两边有什么相同之处?有什么不同?

预设:等号两边数字都一样且位置相同,两边的和也一样。不同的是运算顺序不同。[小结]同学们观察都很仔细。像这样三个数相加,先把前两个数相加,或先把后两个数相加,和不变,这就是加法结合律。

[设计意图]在探索完加法交换律后,让学生举例、推导、验证出加法结合律。这种简约的设计主要是基于在加法交换律的理解基础上进行教学的。

6.考考你们,仔细观察这个等式(a+c)+b=a+(c+b),还满足加法结合律吗?为什么? 预设:满足,因为等号两边字母都一样且字母的位置不变,和也一样,只是运算顺序改变了。

[评价]回答得真棒!看来你已经理解加法结合律了。[设计意图] 在发现学习了加法结合律后,安排了一个及时巩固的环节,主要是通过这样的环节,让所学的规律得到进一步的检验和巩固。

(二)进一步理解加法交换律和结合律

1.仔细观察这道等式(a+b)+c=b+(a+c),它运用了哪些运算定律?

预设:先运用了加法交换律得到a+b+c=b+a+c;再运用了加法结合律得到(a+b)+c=b+(a+c)。

[评价]掌声送给他。

2.看看哪些同学能学以致用,说一说这道题(8+37)+92=37+(8+92)运用了哪些运算定律?

预设:先运用了加法交换律得到8+37+92=37+8+92;再运用了加法结合律得到(8+37)+92=37+(8+92)。

[设计意图]通过这两个例子加深巩固加法交换律和结合律的理解与应用,知道在做题

时加法交换律和结合律可以一起应用,做题时应懂得变通,合理运用加法运算定律。

3.我们可以怎么计算“57+49”这题? 预设1:列竖式计算。预设2:57+49 =50+7+40+9 =50+40+7+9 „„„„加法交换律 =(50+40)+(7+9)„„„„加法结合律 =90+16 =106 [提出质疑]你为什么这么计算?

预设:我运用了加法交换律和结合律,50+40=90,90是一个整十数,这样计算方便。[追问]哪几步运用了运算定律?在式子中指出来。

[设计意图]通过这题再次让学生明白加法交换律和结合律,也是让学生明白竖式计算时的算理为个位上的数字与个位上的数字相加,十位上的数字与十位上的数字相加。在计算过程中运用加法交换律和结合律凑整计算更方便。同时也为后面学习乘法分配率埋下伏笔。

(三)运用加法交换律和结合律的益处

同学们,接下来我们来一场比赛,看看谁做得又快又对。课件呈现活动要求:

①以一大组为单位进行比赛;

②等会课件呈现4道计算题,每组成员做对应题号的题目,并按运算顺序计算; ③完成后请举手,看哪组做得又快又对。课件呈现题目:

①38+76+24 ②38+(76+24)③(88+45)+12 ④45+(88+12)1.完成后请举手示意老师,分别答案是多少? 预设:138,138,145,145。

[评价]从刚刚比赛中老师发现第二、四大组总体要快一点,第一、三大组还有很多同学用竖式计算。

[提出质疑]这样的比赛你们觉得公平吗?为什么?

预设:不公平。因为第②、④题都运用运算定律可以先凑整数,方便计算。

[评价]没错,这样的比赛不公平。看来我们运用运算定律计算,可以使计算更简便。2.什么情况下可以简便计算?

预设:数字间有特征能凑整时,运用运算定律简便计算。

[小结]在计算前,我们先观察一下式子能否凑整,再运用运算定律计算,这样不但可以提高做题效率,而且可以提高正确率,真是一举两得。

[设计意图]通过游戏引导学生,可以充分调动学生的积极性。从活动中,学生可以亲身感受到游戏的不公平性,学生会更积极去找出问题,并解决问题。这样学生全身心投入,对知识的认知也强烈些。

三、学以致用,深化新知(预计6-8分钟)

请打开书本P47页,独立完成第(3)题,并说一说运用了哪些运算定律? 展示学生作业1:

① 357+288+143 ② 129+235+171+165 ③ 158+395+105

=357+143+288 =129+171+235+165 =158+(395+105)=500+288 =(129+171)+(235+165)=158+500 =788 =300+400 =658 加法交换律 =700 加法结合律

加法交换律和结合律 展示学生作业2:

① 357+288+143 ② 129+235+171+165 ③ 158+395+105 =288 + 357+ 143 =129+171+235+165 =(395+105)+158 =288+(357+ 143)=(129+171)+(235+165)=158+500 = 500+288 =300+400 =658 = 788 =700 加法交换律和结合律

加法交换律和结合律 加法交换律和结合律

[评价]你们可以用不同的简便方法,只要你根据自己的方法写出对应所运用到的运算定律就是正确的。

[设计意图]通过书本上的3道习题巩固学生这节课所学的新知,同时也检验学生对本堂课所学知识是否真得理解与掌握。

四、总结评价,提升认识。(预计1-2分钟)今天我们学习了什么?你有何收获?

[设计意图]让学生再次巩固本堂课所学习的知识!【板书设计】

加法交换律和结合律

交换律 结合律

乘法 a×b=b×a(a×b)×c=a×(b×c)

举例

加法 1+2=2+1(1+2)+3=1+(2+3)

5+3=3+5(2+6)+8=2+(6+8)„„ „„

a+b=b+a(a+b)+c=a+(b+c)

下载加法交换律和结合律教学设计-详案word格式文档
下载加法交换律和结合律教学设计-详案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    加法交换律和结合律》教学设计

    《加法交换律和结合律》 教学内容:人教版实验教材四年级(下)P27-29页内容设计思路: 本节课我创造性的利用教材,创设学生体育活动的情景,从学生熟悉和贴近学生生活入手,通过具体情......

    加法交换律和结合律教学设计

    《加法交换律和结合律》教学设计 赣榆县塔山镇中心小学王龙绪 教学内容:苏教版国标本四年级(上)教材P56-58页内容 设计思路: 本节课我创造性的利用教材,创设学生体育活动的情景,从......

    《加法交换律和结合律》教学设计

    《加法交换律和结合律》教学设计 教学内容:苏教版国标本四年级(下)教材P55-56页内容 学习目标: 1、理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交 换律和结合律。......

    加法交换律和结合律教学设计(范文模版)

    《加法交换律和结合律》教学设计李秋霞教学内容: P28/例1(加法交换律) P29/例2(加法结合律) 教学目标: 1.引导学生探究和理解加法交换律、结合律。 2.培养学生根据具体情况,选择算......

    加法交换律和结合律.

    加法交换律和加法结合律 一、说教材 各位老师大家好,我今天说的内容是九年义务教学六年制小学数学苏教版第8册第六单元的内容运算律中的《加法交换律和加法结合律》。加法交......

    加法的交换律和结合律教学设计

    “加法的交换律和结合律”教学设计 教学内容: 国标本苏教版四年级上册P56-57例题,完成P58的“想想做做”。 教学目标: 1、使学生经历探索加法交换律和结合律的过程,理解并掌握加......

    “加法的交换律和结合律”教学设计

    “加法的交换律和结合律”教学设计 一、情境引入: 同学们,咱们班有几位男生?几位女生?一共多少人?怎么算? 二、探索加法交换律: 1、(1)怎样列式计算? 指名回答,教师板书:28+17=45(人) (2)还......

    《加法交换律和结合律》教学教案

    《加法交换律和结合律》教学教案民勤县南关小学王雪琴教学内容:加法交换律和结合律教学目标:1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合......