第一篇:加法的交换律和结合律
加法的交换律和结合律
可能是我个人看问题比较表面,没能体会到编书人的用意,我觉得加法的交换律中两个数字的交换没有学的必要,因为两个数字你交换来交换去,体现不了题的简便性,也完全感受不到交换的意义所在。对于三个数的结合律也一样,三个数的结合律完全可以用交换律来代替,只有四个或四个以上的数字想加减的时候,才能体现出要结合。还有在讲加法的交换律的同时觉得加上减法之间的交换也比较好,关键是告诉学生,交换的时候连同前面的符号一起交换。
第二篇:加法交换律和结合律.
加法交换律和加法结合律
一、说教材
各位老师大家好,我今天说的内容是九年义务教学六年制小学数学苏教版第8册第六单元的内容运算律中的《加法交换律和加法结合律》。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,是学生正确、合理、灵活地进行计算的基础,掌握好坏将直接影响学生今后的计算速度。因此,教学中要积极引导学生进行探讨,自觉应用。
二、说学生(学情分析)
对于四年级学生来说,运算律的概括具有一定的抽象性。在低年级的学习中,对加法运算规律已经掌握,这是学好本单元的有利条件。在此基础上,教学着重帮助学生把这些零散的感性认识上升为理性认识。
三、说教学目标
1、通过观察、比较和分析,归纳出加法交换律和结合律。
2、在学习过程中,理解并掌握加法交换律和结合律,并会进行运算。
3、培养学生分析、判断、推理能力,提高学生解决问题的能力。
四、教学重难点
教学重点:理解加法交换律、结合律,并能正确运用。
教学难点:通过观察和分析概括出加法交换律和结合律,并会用字母表示。
五、说教法与学法
主要采用引导---探究进行教学,让学生用猜想—验证进行学习。教学中,引导学生自主探究、小组合作,抓住问题,尝试解决问题,感悟知识的形成。
六、说教学过程
一、故事孕伏,导入新课,录音播放故事《朝三暮四》,让学生说说听了这个故事的想法,(引出课题)【 故事导入激发学生学习的兴趣,初步体验加法交换律,唤起求知欲,】
二、创设情境,提出问题。出示书本情境图引入,根据提供信息,提出用加法计算的问题。
预设:
1、跳绳的有多少人?
2、女生有多少人?
3、跳绳的男生和踢毽的女生一共有多少人
4、参加活动的一共有多少人?
【设计意图:创设贴近学生的生活情境,让学生自由地提问,可以培养学生的发散性思维。同时学生提出的问题,作为后继探究的学习材料,符合新课程“创造性使用教材”的理念。】
三、引导探究,建构模型。
(一)、研究加法交换律
1、解决问题,初步感知。
根据问题“参加跳绳的有多少人?”学生口头列式。引导得出:两个算式的结果相同,可以用等号连接起来。板书:28+17=17+28
2、引发猜想,举例验证
问:是不是所有的两个数相加,交换加数的位置,和都不变呢?既然是猜想就需要验证,怎样来验证?(板书:猜想 验证)
请同学们在练习纸上举例验证猜想。学生写等式。然后交流算式,初步感知规律。
小结:我们过去用交换加数的位置再算一遍的方法来验证加法,就是应用了加法交换律。
3、观察等式,发现规律。
问:观察这些等式,说说它们有什么共同特点?
4、引导学生探索加法交换律的表达方式。
①教师提出:能不能用一个等式来表示我们发现的规律?同桌讨论。汇报: 预设1:我们用数字(文字)表示 2:我们用符号表示 3:我们用字母表示
②比较表示的不同方式,提出用字母表示发现的规律比较简洁。出示板书:a+b=b+a 指出:这样的规律就是加法交换律。(板书)
【设计意图:本环节能紧密围绕并运用问题情境,师生之间积极互动,教师引导学生自己去感知规律,发现规律,并学会用字母表示。整个过程,学生在观察中感知,在模仿中理解,在探索中发现,培养了学生的抽象括能力。】
(二)研究加法结合律
1、再次出现主题图
研究:参加活动的一共有多少人?
学生列式后,板书等式:(28+17)+23=28+(17+23)
观察比较上面算式,思考:等式左右两边什么变了?什么没变?
2、丰富表象,初构规律
完成书上的两组算式,再次比较等式左右两边的“变”与“不变。问: 你发现了什么?
3、举例验证,确认规律
学生小组合作,进一步举例验证规律。
得出加法结合律,尝试用字母表示:板书(a+b)+c=a+(b+c)【设计意图:围绕“变与不变”这一关键点,通过比较每组的两个算式,初步感受规律。接着再经过学生个性化的验证及交流,从而确认加法结合律并学会用含有
字母的式子来表示。这样,既渗透了“猜想、验证、建模”的数学理性思想,又发展了学生分析、比较、归纳、概括的能力。】
(三)、巩固练习,拓展延伸。
1、完成“想想做做”第1题。重点讲第4个是交换和结合律一起使用
2、完成第2题,重点让学生说说后面两题两个数结合了有什么好处。
3、游戏:找朋友。
(1)哪两个同学手上的树叶的和是100?
(2)同桌一个同学说出一个数,另一个同学马上说出一个与它的和是整百、整千的数。
【设计意图 :几个层次的练习,为学生提供了具有价值的学习内容,开放学生的思维空间,提高思维含量,学生在观察辨析中比较,在思考对比中升华,促进学生灵活地理解和掌握知识。】
(四)、全课总结,引申知识
今天这节课我们学习了什么知识?你是怎样获得这些知识的?那么在减法、乘法、除法中,有没有这样的规律呢?课后大家可以继续研究。
【及时总结、巩固所学知识,重视学法总结。使学生在自己的整理总结中再次巩固了本节课的重难点。同时为学生以后的学习作好了铺垫】 七.说板书
良好的板书是课堂的缩影。本科的板书简洁明了,展示学生知识形成的过程,抓住教学脉络,有利于学生知识的建构。v
第三篇:加法交换律和结合律教案
加法交换律和结合律教案(开发区小学四年级上)发布 11-10-04
课题:加法交换律和结合律
教学目标:
⒈在教学中从学生熟悉的实际问题的解答引入,让学生通过观察比较和分析,找到实际问题的不同解法之间的共同特点,初步感受运算规律。
⒉使学生在合作与交流中对运算律的认识由感性逐步发展到理性、合理地建构知识。
重点难点:
让学生体验运算的揭法的过程。
课前准备:
多媒体课件、实物投影
教学过程:
一、复习
⒈口算
42+3875+613+21
⒉揭示课题
通过前面的学习,我们加法的意义有了一定的了解,今天花我们要进一步学习和掌握一些加法的规律性知识,为今后学习打好基础.二、教学新课
⒈ 教学加法交换律
(1)出示课题图。
提问:要求跳绳的人有多少人,应如何列式?
(2)请同学们比较这两道算式。
提问:要求跳绳的有多少人为什么要用加法来计算?比较这两个算式有什么是相同的?又有什么是不同的?
说明:这两个算式算出的都是跳绳的有多少人,结果相同,因此可以用等号连接。
(3)出示计算下面每组的两个算式,比较它们的结果,在圆圈里填上合适的运算符。
38+1212+38420+3030+420123+235235+123
(4)请同学们仔细观察以上几组算式.提问:你们有什么发现?能用字母或其他的一种方式表示出这一发现吗?
指出:这个规律可以用加字母或符号来表示。
(5)指出:我们学过的用交换加数的位置再加一遍的方法来验算加法,就是应用了加法交换律。⒉ 教学加法结合律:
⑴ 出示问题:“参加活动的一共有多少人?”
提问:怎样求一共有多少人?
⑵ 请同学们比较这两个算式。
说明:这两个算式求出的都是一共有多少人,结果相同,因此可以用等号连接。
比较:这两个算式求出的都是一共有多少人。结果相同,因此可以用等号连接。
比较:这两个算式有什么相同和不同?
(3)出示:计算下面每组的两个算式,比较它们的结果,填上合的符号。
(30+10)+50 30+(10+50)(27+23)+4727+(23+47)
请同学们用自己的语言说说什么是加法结合律。
三、想想做做
独立完成,教师集体评讲。
四、布置作业 板书设计:
加法交换律和结合律 练习设计:
第四篇:加法交换律和结合律教案
课题:加法运算定律
【教学内容】
P17/例1(加法交换律)P18/例2(加法结合律)【教学目标】
1、引导学生探究和理解加法交换律、结合律。
2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3、使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。【教学重点】 理解并掌握加法交换律和结合律
【教学难点】能通过观察、分析、概括出加法交换律和结合律,会用符号或字母表示叫法交换律和结合律。
【教学过程】
一、教学加法交换律
(一)故事导入,引出情境
1、故事引入(播放成语故事《朝三暮四》)
2、师:这个故事里就隐藏这一个数学奥秘,同学们想知道吗?
(二)尝试探究,发现规律
1、投影例1的情境图片
2、获得信息,提出问题
师:请仔细观察,旅行途中告诉了我们哪些信息,你能提出哪些数学问题?
3、解决问题
问:你能列式解决这个问题吗?(学生列式并口答)
根据学生的回答板书:
40+56=96(千米)56+40=96(千米)
问:这两个算式得数是否相等?都表示什么?可以用什么符号连接? 40+56=56+40
4、探索规律
问:像这样的算式你还能再举出一些吗?(汇报交流,教师板书几组等式。)
师:虽然咱们写的这些等式各不相同,但是仔细观察,他们蕴含着怎样的共同规律,你发现了吗?试着用简洁的话和你同桌互相说一说。(交流汇报)
师总结:我们通过观察算式,发现“两个加数交换位置,和不变”,这叫做加法交换律。(教师板书)
5、用自己喜欢的方式表示 谈话:刚刚我们用文字的方式表达了加法交换律,请你用自己喜欢的符号表示两个加数,试一试把它们写成一个这样的等式来表示加法交换律,好吗?
展示交流:学生上台写一写,其余学生评价提出建议。(教师对各种表示方法均给予肯定,重点引导学生分析a+b=b+a这种展示方法)
同学们真聪明,想出了这么多的表达方式,这里的a和b都表示什么数呢?用字母表达和刚才的文字表示加法交换律哪个更简单?
6、课堂活动、巩固新知
根据加法交换律对口令
二、教学加法结合律 1.获取信息
多媒体展示:李叔叔三天骑车的路程统计
问:请你仔细观察这幅图,告诉我们什么信息,需要我们解决什么问题? 2.解决问题
问:这三天李叔叔一共骑了多少千米,你能帮他列式并算一算吗? 88+104+96 88+(104+96)=192+96 =88+200 =288(千米)=288(千米)
师:观察这两种计算方法,说说你的想法?(让学生畅所欲言,探索出算法上哪个更简便,以及运算顺序不同且得出相同的结果。)
问:这两个算式可以用什么符号连接? 板书:(88+104)+96=88 +(104+96)3.探索规律
再观察下面的两组算式,○里用什么符号连接? 155+(145+207)○(155+145)+207(69+172)+28○69+(172+28)
师:观察上面的这些算式,你们发现了什么秘密?同桌之间互相说一说:什么变了,什么没变?(引导学生说出“运算顺序变了”“相加的三个数没变”“和没变”)
学生汇报交流,教师板书:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。
小结剖析:三个数相加,改变运算顺序,和不变。4.用自己喜欢的方式表达规律
师:这样的描述太长太难记,相信你从刚刚学习加法交换律中得到启发,你能试着用字母来表示你的发现吗?
学生上台展示:(a+b)+c=a+(b+c)师:同学们真了不起,用语言表达与字母表示,哪一种更一目了然?这里的a、b、c表示哪些数?
三、巩固应用,内化提高
1.填一填,并说一说你是根据什么填的 56+44=44+ ; a+204= +a;
(35+45)+ 55=35+(+); 67+(33+44)=(67+)+ ; 560+(40+c)=(560+)+。2.想一想,我们在哪里用到过加法交换律
876
+1924 验算:
2800
四、回顾整理,反思提升
通过今天这节课的学习,你有哪些收获?
我们把加法交换律和加法结合律统称为加法定律(板书课题)。师:现在你知道成语故事《朝三暮四》里的数学奥秘了吗?
五、板书设计
加法运算定律
40+56=56+40(88+104)+96=88 +(104+96)62+53=53+62 155+(145+207)=(155+145)+207 43+22=22+43(69+172)+28=69+(172+28)
加法交换律: 加法结合律:
两个加数交换位置,和不变。三个数相加,先把前两个数相加,a+b=b+a 或者先把后两个数相加,和不变,这叫做加法结合律。
(a+b)+c=a+(b+c)
第五篇:加法交换律和结合律教案
《加法交换律和结合律》教学教案
民勤县南关小学 王雪琴
教学内容:加法交换律和结合律 教学目标:
1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决进行比较和分析,发现并概括出运算律。
3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。教学重点:
使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。教学难点:
使学生经历探索加法交换律和结合律的过程,发现并概括出运算规律。课程资源的开发与利用:多媒体课件 教学过程:
一、创设情境,初步感知
1、课前谈话(讲“朝三暮四”的故事)
听了这个故事,你想说些什么呢?(交换、不变)
2、情境引入
(1)谈话:同学们喜欢体育活动吗?谁来说说你最喜欢哪些体育活动?(自由说)
(2)媒体出示情境图,从图中你知道了哪些数学信息?(生自由说)(3)师:你能提出用加法计算的问题吗? ①参加跳绳的一共有多少人?
②参加活动的女生一共有多少人?
③跳绳的男生和踢毽子的女生一共有多少人
④参加活动的一共有多少人?
(2)我们先来解决第一个问题:参加跳绳的一共有多少人? 你们能马上口头列式并口算出结果吗?
指名回答,教师板书:28+17=45(人),追问:还有不同的算式吗?在学生回答后,教师完成板书:17+28 =45(人)观察比较这两个不同算式的计算结果。提问:你们发现了什么? 引导学生说出:28+17和17+28的结果都是45。教师接着指出:这两道算式的得数相同,我们可以把这两道算式写成这样的等式。(板书:28+17=17+28)
(如果有学生说出这是加法交换律,就问你能说说什么是加法交换律吗?如果有学生说出:交换加数的位置和不变,就及时指出,我们不能根据一个例子就做出一般的结论,应该多举几个 例子,多观察几组不同数目的算式,才能从中发现规律。)请学生根据这个等式完成第二个问题。下面请同学们汇报前置性作业第二题。
2、在列举中验证规律 象这样的等式你会写吗?试试看,越多越好。开始:汇报前置性作业第三题。谁愿意来交流。
提问:你写了几个?说说看。
根据学生回答,教师相机板书算式,有没有比她多的。
提问:指着板书,你们写的时候有没有什么规律? 学生能说到加数不变,交换位置,结果是一样的就行。按照这样的规律,如果老师给你时间你还能写吗?
能写几个?无数个,写不完,用省略号表示(板书„„)
3、在反思中概括规律
有这样规律的算式很多,写不完,谁能用一句话概括出这个规律。(四人一组讨论,然后交流。)用课件出示加法交换律的文字表术法。用语言表示加法交换律很长,又比较难记。你能用自己喜欢的方法把这个规律简明的表示出来吗? 需要合作的同学,可以四人小组合作。教师巡视搜集信息。估计情况:
甲数+乙数=乙数+甲数,„„ 请同学起来交流:
如果没说到:假如我们用a来表示第一个加数,用b来表示第二个加数,那怎样表示这个规律呢?板书:a+b=b+a。
小结:用图形,用字母,用文字来表示这类等式都起着相同的作用,简单明了的表示出这类等式的规律:(用手势比划)“交换两个加数的位置,和不变”。这一运算规律,我们称为“加法交换律”。习惯上,我们用小写字母表示加法交换律a+b=b+a。指出:我们过去学过用交换加数的位置再加一遍的方法来验算加法,就是用了加法交换律。
5.看第二个问题,谁能马上列出算式,17+23,马上说出不同的算式?应用了?(加法交换律)
三、学习加法结合律。1.在情境中感受规律 刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究“参加活动的一共有多少人?”看看我们有没有新的发现?
你们会列综合算式解决这个问题吗?再自备本上做,计算出结果。
交流:估计又学生列式28+17+23=68(人),你先算的是什么?(跳绳的人数)添上小括号表示强调先算,板书:(28+17)+23(人)
有没有不同的解法?估计有学生有列式28+(17+23)追问:这样列式先算的是什么?(女生人数)
如果还出现其他算式基本上都归为两种思路,先算跳绳的人数或先算女生的人数。
观察比较这两个不同算式的计算结果,引导学生说出计算结果是一样的,这两个算式也可以写成等式。生一起说,师板书:(28+17)+23=28+(17+23)提问:它符合加法交换律吗?(不符合,加数的位置没变)
提问:加数的位置没变,那究竟加数的什么发生了变化呢?(相加的顺序不同)引导学生一起说出:左边的算式是先把前两个加数相加,再加第三个数,右边的算式是先把后两个加数相加,再同第一个数相加。但他们的结果是一样的。
2、在计算中验证规律。再来看这样两组算式:算一算,下面的Ο 里能填上等号吗?汇报前置性作业第四题。
(45+25)+13Ο45+(25+13)(36+18)+22Ο36+(18+22)如果有学生直接回答结果是一样的,教师添上= 请学生分组验算。学生回答,教师板书:(45+25)+13=45+(25+13)(36+18)+22=36+(18+22)
那现在老师来写个算式(28+46)+27=你能按照上面三个等式的规律写出等号后面的吗?
你还能写出类似的等式吗?汇报前置性作业第五题。指名几个学生回答,追问:你是怎么想的?
回答要点:先算前两个加数的和和先算后两个加数的和的结果是一样的。有这样规律的算式多吗?板书„„
3、揭示加法结合律
观察黑板上的几个等式,你能发现等号两边的算式什么没变?什么变了吗? 小组讨论:(要点:三个加数没变,加数的位置没变,运算顺序变了,结果没变)提问:你们组发现了什么规律?谁来总结一下这个规律。这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。你能用a,b,c,表示加法结合律吗?这里的a,表示?b 表示?c表示?
板书:(a+b)+c=a+(b+c)跟老师一起读一遍。
指出:我们过去学过的加法的某些口算方法就是应用了加法结合律。例如: 9+7想:
=9+(1+6)=(9+1)+6 =10+6 =16 三:巩固内化,拓展应用。
1、课件出示想想做做第1题。
师:下面的加法等式各应用了什么运算律?先说给同桌听听。
师:第一题运用了加法的交换律,第二、三题应用了加法的结合律,我们再来看最后一道等式,先运用了加法的交换律,交换加数48和25的位置,再应用了加法的结合律。所以在一道加法算式中,有时我们也可以同时应用两种运算律。
2、课件出示想想做做第2题:
师:请同学们在课本上独立完成以上填空题。再说说你是怎样想的,为什么能这么填写。
师:第三、四两道算式,我们都可以有两种填法,一种是只用加法的结合律,一种是同时使用加法的交换律和结合律。
3、课件出示想想做做第4题。
师:下面我们进行一场比赛,老师这有4道题,每组做一道,比一比,哪一组做得最快。
(1)38+76+24
(3)(88+45)+12
(2)38+(76+24)
(4)45+(88+12)
师:对于这样的比赛结果,你有什么话想说? 比较每组中的两道题有什么联系?哪道题计算更简便些?
师:通过计算,我们发现,每组两道算式中的第二道算式相对来说比较快,因为我们在计算时第一步都可以凑整,计算的结果是100。从中我们可以发现应用了加法的运算律可以使计算简便。
4、完成想想做做第5题
师:哪两片树叶上的和是100?连一连。想一想,怎样的两个数相加和是100。师:我们在找的时候,是先看个位上的数是几,然后再看哪一个数的个位上的数和它可以凑十, 因为凑十是凑整的基础。例如75的个位上是5和25的个位上5可以凑十,然后再看两个数的十位上的数相加是否得九。7+2得9,再加上个位进上来的1,两个数相加的和就是100。在今后的计算中,同学们要做个有心人,在计算之前先观察一下,看看能否运用我们所学过的运算律,把能凑成整
十、整百或整千的数先计算,这样可以使计算变得简便,有助于提高计算的速度和正确率。)
5、游戏:谈话:我们班有60位学生,那么老师就是班级中61号,老师想和班级中的9、19、29、39、49、59号交朋友。猜一猜老师为什么要和他们交朋友?(凑整,简便)
6、你想和班级中哪几号同学交朋友?
四、课堂总结 师:今天这节课,通过同学们的共同努力,我们一起认识了加法交换律和结合律,那么减法、乘法、除法有没有运算定律呢?今后我们再研究。不管学习什么内容,只要我们每一位同学都要相信自己能行,只要自己努力去学,就一定会学有所成。板书设计:
加法的运算定律
加法交换律
加法结合律
28+17=45(人)17+28=45(人)
(28+17)+23
28+(17+23)28+17=17+28
=45+23
=28+40 17+23=23+17
=68(人)
=68(人)学生汇报的算式
(28+17)+23=28+(17+23(45+25)+13=45+(25+13)(36+18)+22=36+(18+22)
a+b=b+a
(a+b)+c=a+(b+c)