第一篇:苏教版小学四年级乘法分配律教案李萍
苏教版小学四年级:
乘法分配律(第一课时)
教学目标: 知识与技能:
让学生在探索过程中发现并理解乘法分配律,初步了解乘法分配律。会使用字母表示乘法分配律。过程与方法:
在发现规律的过程中,弄清乘法分配律的算理,学会应用乘法分配律进行正确计算,有效提高计算正确率。情感态度与价值观:
感受数学之间的内在联系,培养学生发现、探究的意识。让学生在正确计算的过程中感受成功的喜悦,增强学生的学习兴趣。重点:引导学生自主发现规律,用自己的语言同伙伴交流自己的发现。难点:学会用乘法分配律进行正确计算。
一、谈话导入:
师:同学们,我们从一年级到四年级,在数学问题上接触最多的是哪方面的题目啊?(计算)
师:那在计算中你计算错误过吗?那现在我们自己总结一下,为什么总出错呢?
学生回答:粗心、马虎„„
师:看来“粗心、马虎”都是大家共同的敌人,今天我们也要有一些计算,希望同学们和老师一起打败这伙坏蛋。
二、新课导入
(一)感知乘法分配律。
1、师:请同学们看黑板上的两张卡片。
探索卡(1)
探索卡(2)3×5+4×5(3+4)×5(11+29)×6(17+3)×24 7×9+13×9 8×25+4×25(8+4)×25 11×6+29×6 师:这些算式藏着许多的秘密,需要大家认真的去观察、去发现。现在请1、3、5、7组完成探索卡(1),2、4、6、8组完成探索卡(2)。完成后同桌合作,把两张卡放在一起,观察两张卡的算式,看看你有什么发现。
2、学生独立完成,教师巡视。
3、师:谁来说说你的发现。(学生自由发表意见)
4、引出课题:这就是我们今天研究的主题:乘法分配律。()
(二)认识乘法分配律。
师:刚才同学们发现这三算式是相等的,那现在我们一起来研究一下,相等的两个算式中你有什么发现。板书:
(3+4)×5=3×5+4×5(11+29)×6= 11×6+29×6(8+4)×25= 8×25+4×25(学生自由发言)
师:刚才在同学们探索的时候,老师也发现了一件有趣的事情。从等式的左边往右边,就好像一个数字交朋友的故事,A和B是住在一起的两兄弟,C是他们共同的朋友,A和C手拉手交朋友,(师边说边连线更形象地阐述。)B也和C手拉手的交朋友,是不是有点感觉啊。这是一个朋友的过程,反过来从右边到左边有点像回家的感觉,谁来说说这个回家的故事。(学生续编故事)。
师:通过这个故事,乘法分配律我一下子就记住了。你们呢?
同桌说一说、同老师说一说。
师:瞧!这三个都交到朋友了,这两个还孤零零的没有朋友,谁来给他们找找朋友。
师板书:(17+3)×24=17×24+3×24(7+13)×9 = 7×9+13×9 师:你真能干,同学们你们能自己仿写几个吗?(指名仿写)
三、应用乘法分配律。
师:同学们真能干,既然这样我就来当李考官要考考你们了。
1、完成教材55页想想做做第一题。在□里填上合适的数,在○里填上运算符号。(42+35)×2=42×□+35×□ 27×12+43×12=(27+□)×□ 15×26+15×14=□○(□○□)72×(30+6)=□○□○□○□ A、学生独立完成。B、指名回答,给以鼓励。
2、师:孙猴子火眼晶晶,我听李老师说你们班的眼睛比孙悟空还厉害,我不信,我要考考你们,看是不是真的想李老师说的那样。
(指导完成想想做做第二题。)
横着看,在得数相同的两个算式后面画“√”。(28+16)×7 28×7+16×7 □ 15×39+45×39(15+45)×39 □ 74×(20+1)74×20+74 □ 40 ×50+50 ×90 40 ×(50+90)□
3、将乘法分配律运用到生活中。完成想想做做第三题。
用两种不同的方法计算长方形菜地的周长,长64米,宽26米并说说他们之间的联系。A、指名读题,弄清题意。
B、学生独立完成后指名板演两种不同的方法: 生1:(64+26)×2 64×2+26×2 =90×2 =128+52 =180(米)=180(米)
引导学生发现,两道算式一样是运用了今天我们学习的乘法分配律。
4、完成想想做做第四题。算一算,比一比,每组中哪一题的计算比较简便。
(1)64×8+36×8(2)25×17+25×3(64+36)×8 25×(17+3)A、学生自由计算,提醒学生计算仔细。
B、提问:两道题之间有什么联系,应用了什么运算定律。谁比较简便。
5、完成想想做做第5题。A、让学生阅读题目。
B、学生自己完成,同坐讨论你认为那种方法更简便。
四、评价总结。
第二篇:四年级下册乘法分配律教案
四年级数学第三单元简便算法——乘法分配率教案
一、教学内容:
根据《新课程标准理念》、教学内容和学情,本节课我制定如下教学目标,使学生在解决实际问题的过程中发现并理解乘法分配律。发现比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
P36/例3(乘法分配律)
二、教学目标
1、知识与技能:经历乘法分配律的探索过程,理解和掌握乘法分配律;初步感受运用乘法分配律进行简算。
2、数学思考:通过让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透“从特殊到一般,再由一般到特殊”的认识事物的方法,提高数学的应用意识。
3、解决问题:灵活运用乘法分配律进行简便计算。
4、情感与态度:使学生欣赏到数学运算简洁美,体验“乘法分配律”的价值所在,从而提高学习数学的兴趣和学习数学的主动性。让学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和信心。
三、教学重点:充分感知并归纳乘法分配律。
四、教学难点:理解乘法分配律的意义。
五、教学关键:通过举例,比较运算的顺序和结果。
六、教法和学法
1、教学方法。在设计乘法分配律教学时,依据学生的认知发展水平和已有的知识经验。采用自主学习、当堂训练的教学模式。充分发挥学生的自主性、能动性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为积极主动的参与的学习。
2、学法指导:本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。通过学生多思、多说、多练。积极参与教学的整个过程。
七、教学过程
(一)复习引入激发兴趣
1、回顾:说说已学过的乘法交换律和结合律,用字母表示。
2、初次感知规律。
(1)出示练习。
第一组第二组
①(3 + 2)×43×4 + 2×4
② 2×(11 + 9)11×2 + 9×2
③ 20×5 + 4×5(20 + 4)×5
(2)同桌分别计算①、②题中两组算式各等于多少?
(3)比较每组两个算式的相同点和不同点:先算什么,再算什么,结果怎样?
(4)猜测③可用什么符号连接?
(5)观察、激趣、导入:第③组算式老师不用计算,就可以判定用等号连接,这是为什么呢?难道这里有什么奥秘吗?今天,我们就
一同来研究这个问题。
(二)实例感知初探规律
1、创设情境。在同学们植树的情境中我们通过解决问题,分别发现了乘法交换律、结合律,今天我们继续来解决植树中的另一个问题:一共有多少名同学参加了这次植树活动?
(1)继续出示主题图。
(2)学生读题,看图弄清题意。
(3)独立列式解答,并展示不同的方法。(板演或投影展示,最好也有错误的算式)
①(4+2)×25② 4×25+2×25
=6×25=100+50
=150(人)=150(人)
③ 25×(4+2)④ 25×4+25×2
=25×6=100+50
=150(人)=150(人)
2、畅说思路。你是怎么思考的?这些算式分别先求什么?再求什么?结果怎样?(可以自由发言,也可代表性的学生发言)
3、分类整理。如果按照算式所表示的不同意义,可以分成哪几类?
根据学生回答板书:
第一类:①和③,先算和,再算积;
第二类:②和④,先算两个乘积,再算和。
4、探索问题。两种算式,不同的意义,不同的计算顺序,但结果却都相同,这是为什么呢?它们之间又有什么关系呢?我们先找①和②这两个算式来研究研究。
(1)根据计算结果,两个算式可以用什么符号连接?
(4+2)×25=4×25+2×25
(2)用自己的语言描述相等关系。
引导表述:左边是和的积,右边是积的和,结果相等。
(三)合作交流揭示规律
1、初说规律。
(1)小组活动。用自己的话在组内交流你发现的规律。
(2)验证规律。回忆一下,我们在学习乘法交换律和结合律时是如何进行验证的,你
能运用学过的方法来验证刚才我们发现的规律吗?
①利用③ 和④ 两个算式验证规律。
②学生自己举例验证。
(3)概括你发现的规律。
(4)师生交流。你有什么发现?
2、命名定律。
(1)填写(___+___)× ___ = ____× ____+____×____。___ ×(___+___)= ____× ____+____×____。
(2)概括乘法分配律。两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
(3)用字母表示:(a+b)× c = a×c + b×c
c×(a+b)= c×a+ c×b3、比较定律。
比较乘法分配律和乘法交换律、结合律的区别(乘法分配律是乘法和加法两种运算间的一种规律;而乘法交换律和结合律只是同级运算中的一种规律)。
(四)巩固练习运用规律
1、在横线上填上适当的数。
(1)(24+8)×125=________×________+________×________
(2)25×(20—4)=25×________ — 25×________
(3)45×9+55×9=(________+________)×________
(4)8×27+73×8=8×(________+________)
2、下面各题可以用乘法分配律计算吗?为什么?把能用的写出来。
(1)(12+31)+82(2)17×17+15×16
(3)14×9+9×36(4)(24+37)×83、指导运用乘法分配律的注意点。
(1)什么时候运用乘法分配律可以使计算简便?
①(35+65)×17②25×4+25×10……
这些题都要用乘法分配律计算吗?
(2)在运用乘法分配律时,尤其是积和的形式时,要先找出加号两边相同的量。
28×19+72×8128×19+28×81比较,谁可用乘法分配律简算?
4、思考题。
(1)9×47+53×9=(2)8×(125+25+5)=
(3)(1000—3)×8=(4)125×13—125×5=
讨论:①怎样计算更快?你运用了哪个规律?
②如果是两个数相减再乘,乘法分配律还成立吗?请你
用自己的话说一说。
七、板书设计
乘法分配律
一共有多少名同学参加了这次植树活动?
(1)(4+2)×25(2)4×25+2×25=6×25=100+50=150(人)=150(人)(4+2)×25=4×25+2×25┆(学生举例)(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
两个数的和与一个数相乘,可以先把它们与这个
数分别相乘,再相加。这叫做乘法分配律。
第三篇:乘法分配律教案
乘法分配律
教学目标:1.引导学生探究和理解乘法分配律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:
乘法分配律的意义和应用。
教学难点:
乘法分配律的反应用。
一、铺垫孕埋伏
同学们,在学习新课前我们先来个比赛,请同学们准备好纸和笔,左边同学做第一题,右边同学做第二题,看看哪组先做完。
9ⅹ 37+9ⅹ369ⅹ(37+36)
做完的同学请举手,很明显右边的同学比较快,这两题有什么联系吗?他们的运算顺序不同可结果是相同。这就是我们这节课要研究的乘法分配律。(板书)
二授新
请看例题:
小组讨论,尝试用不同的方法解决。
教师引导学生用多种方法解答。
学生汇报自己的解法。引导学生说明不同算法的理由。
(1)(4+2)×25
=6×25
=150(人)
4+2是每组一共有多少人,在乘25就算出25个小组一共有多少人了。
(2)4×25+2×25
=100+50
=150(人)
4×25表示25个小组一共有多少个人负责挖坑、种树,2×25表示25个小组一共有多少人负责抬水、浇树。再把它们加起来就是一共有多少人了。
小组合作:
(1)两组算式有什么相同点?
(2)两组算式有什么不同点?
(3)有什么规律吗?
教师的汇报,灵活地进行引导,总结出要点。
你还能举出像这样的几组算式吗?
学生举例。
根据学生举例板书。
到底我们举的例子是不是符合这样的规律呢?请学生验证。
用字母表示出来吗?
同学们真棒,知道了什么是乘法分配律。那我再让同学们来个开火车的游戏。先想一想,怎样填,哪一组愿意来?
巩固练习
完成填一填
判断
同学们还记得上课时咱们的比赛吗?那组算的快?那是不是说明应用乘法分配律可以使计算简便呀。同学们来验证一下,请看这两道题。
学生汇报自己的收获。
教师引导小结,相应完善板书。
板书设计:
乘法分配律
一共有多少名同学参加了这次植树活动?
(1)(4+2)×25(2)4×25+2×25
=6×25=100+50
=150(人)=150(人)
(4+2)×25=4×25+2×25
┆(学生举例)
(a+b)×c=a×c+b×c
两个数的和与一个数相乘,可以先把它们与这个
数分别相乘,再相加。这叫做乘法分配律。
第四篇:乘法分配律教案
四年级数学公开课教案
(2010—2011学年第一学期)
课题:探索与发现(三)《乘法分配律》
教学内容:北师大版四上数学P47-50的内容。教学目标:
1、通过探索乘法分配律活动,应用乘法分配律进行简便运算。
2、使学生在探索过程中,能自主发现乘法分配律,并能用字母表示。
3、会用乘法分配律进行一些简便计算。教学重、难点:
重点:指导学生探索乘法分配律。难点:发现并归纳乘法分配律。学情分析:
学生已掌握一定探索规律的方法和思路,因此本课结合实际情景通过解决应用问题发现规律并验证最终归纳出字母表达式应该问题不大,但应用规律进行简算时困难会比较大。
学法指导:情景引入——发现规律——举例验证——归纳总结——实践运用
教具准备:挂图(课文插图)。教学过程:
一、导入谈话
师:同学们们,通过探索活动我们已经发现了一些数学规律,并应用规律如乘法结合律等解决问题。这一节课,我们再一起去探索,看看我们又会发现什么规律。
板书:探索与发现
(三)?
今天,又有什么发现呢?让我们一起走上探索之路。
(一)探索交流,发现规律。
1、出现课文插图(实物投影或挂图)师:一共贴了多少块瓷砖?你怎么算?
2、先让学生独立思考,然后在小组中交流。让每个学生都在小组中说一说是怎么想的。
3、反馈交流情况。由小组派代表汇报交流结果(有选择的板书)。生:6×9+4×9 生:(6+4)×9 = 10×9 =54+36
=90(块)
=90(块)要求学生结合插图说明算式的意义。
4、指导学生观察算式的特点。
5、举例验证。如:(40+4)×25和40×25+4×25 42×64+42×36和42×(64+36)讨论交流:
(1)交流学生的举例是否符合要求;(2)交流算式的共同特点;
(3)还有什么发现?(简便运算)
6、字母表示。
如果用a、b、c分别表示三个数,你能写出你的发现吗? 学生先独立完成,然后小组交流。最后板。(a+b)×c=a×c+b×c
7、揭示课题。
三、应用规律,解决问题 课本第48页的“试一试”。
1、(80+4)×25(1)指导观察算式特点,看是否符合要求,能否应用乘法分配律使计算简便。
(2)鼓励学生独自计算。2、34×72+34×28(1)指导观察算式特点,看是否符号要求。(2)简便计算过程,并得出结果。
四、巩固练习
完成课本第48页的“练一炼”。
(1)第1题,简单的应用乘法分配律进行计算。(2)第2题,注意指导一些算式的计算方法。99×11:可以看成(100-1)×11=1100-11 或看成99×(10+1)=990+99 38×29+38应该把算式看作:38×29+×1。
五、课堂小结
六、作业
课本第48页练一练剩余习题
刁
鹏 二0一0年十月
第五篇:《乘法分配律》教案
乘法分配律
教学目标
1.使学生理解乘法分配律的意义.
2.掌握乘法分配律的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.
教学重点
乘法分配律的意义及应用.
教学难点
乘法分配律的反应用.
教具学具准备
口算卡片、投影仪.
教学步骤
一、铺垫孕伏
1.口算.
(27+73)×8
40×9+40×1
14×(10+2)
10×6+10×4
2.用简便方法计算.(说明根据什么简算的)25×63×4
3.师生比赛,看谁算得又对又快.
20×5+5×80
(1250+125)×8
让学生说明是怎样算的?
二、探究新知
1.导入
:
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容.(板书课题:乘法分配律).
2.教学例6:
(1)出示例6:演示课件“乘法分配律”出示例6 下载
(2)引导学生观察每组的两个算式.
(3)教师提问:从上面的例子你发现了什么规律?
(4)学生明确:每组中的两个算式都可以用等号连接.
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的意义.
(6)反馈练习:按题要求,请你说出一个等式.(投影出示)
(__+__)×__=__+__×
教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘.
其次是等号右边两个加数分别同一个数相乘再把两个积相加.
最后是等号左右两边的两个算式相等.
3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做乘法分配律.
4.反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?
根据练习学生从而得出:
(a+b)×c=a×c+b×c
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.
5.教学例7:演示课件“乘法分配律”出示例7 下载
(1)出示例7:102×43
启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整
十、整百、整千的数改写成一个整
十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.
教师板书:
(转载自本网http://www.xiexiebang.com,请保留此标记。)(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据乘法分配律,可以把原式改写成什么形式?
根据学生的回答教师板书:9×37+9×63 =9×(37+63)=9×100
=900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.
③另外两个不同的因数,是两个能凑成整
十、整百、整千的加数.
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便.现在你们会了吗?
三、巩固发展 演示课件“乘法分配律”出示练习下载
1.练习十四第1题.
根据运算定律在□里填上适当的数.
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在横线上填上适当的数.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__)×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.
3.把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)(2)(24+8)×8 24×5+24×8
(3)20×(l+15)0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25)4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选择题:
(1)28×(42+29)与下面的()相等
①28×42+28×29 ②(28+42)×(28+29)③28×42×29
(2)与a×8-b×8相等的式于是()
①(a+b)×8 ②(a-b)×(8+8)③(a-b)×8
(3)与(10+8+9)×5相等的式子是()
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5.练习十四第4题,投影出示.
一辆凤凰牌自行车420元,一辆永久牌自行车405元.现在各买三辆.买凤凰车和永久车一共用多少元?
四、课堂小结
今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.
五、布置作业
练习十四第3题.
用简便方法计算下面各题.
(80+8)×25 35×37+65×37
32×(200+3)38×29+38
板书设计
您可以访问本网(www.xiexiebang.com)查看更多与本文《数学教案-乘法分配律》相关的文章。