第一篇:小学六年级奥数教案-圆与扇形
小学六年级奥数教案—11圆与扇形
本教程共30讲
圆与扇形
五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、面积等问题。
圆的面积=πr2,圆的周长=2πr,本书中如无特殊说明,圆周率都取π=3.14。
例1 如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。已知每条跑道宽1.22米,那么外道的起点在内道起点前面多少米?(精确到0.01米)
分析与解:半径越大,周长越长,所以外道的弯道比内道的弯道长,要保证内、外道的人跑的距离相等,外道的起点就要向前移,移的距离等于外道弯道与内道弯道的长度差。虽然弯道的各个半径都不知道,然而两条弯道的中心线的半径之差等于一条跑道之宽。
设外弯道中心线的半径为R,内弯道中心线的半径为r,则两个弯道的长度之差为
πR-πr=π(R-r)
=3.14×1.22≈3.83(米)。
即外道的起点在内道起点前面3.83米。
例2 有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下图),此时橡皮筋的长度是多少厘米?
分析与解:由右上图知,绳长等于6个线段AB与6个BC弧长之和。将图中与BC弧类似的6个弧所对的圆心角平移拼补,得到6个角的和是360°,所以BC弧所对的圆心角是60°,6个BC弧等于直径5厘米的圆的周长。而线段AB等于塑料管的直径,由此知绳长=5×6+5×3.14=45.7(厘米)。
例3 左下图中四个圆的半径都是5厘米,求阴影部分的面积。
分析与解:直接套用公式,正方形中间的阴影部分的面积不太好计算。容易看出,正方形中的空白部分是4个四分之一圆,利用五年级学过的割补法,可以得到右上图。右上图的阴影部分的面积与原图相同,等于一个正方形与4个半圆(即2个圆)的面积之和,为(2r)2+πr2×2=102+3.14×50≈257(厘米2)。
例4 草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。问:这只羊能够活动的范围有多大?
分析与解:如右上图所示,羊活动的范围可以分为A,B,C三部分,所以羊活动的范围是
例5 右图中阴影部分的面积是2.28厘米2,求扇形的半径。
分析与解:阴影部分是扇形与等腰直角三角形相差的部分。
所以,扇形的半径是4厘米。
例6 右图中的圆是以O为圆心、径是10厘米的圆,求阴影部分的面积。
分析与解:解此题的基本思路是:
从这个基本思路可以看出:要想得到阴影部分S1 的面积,就必须想办法求出S2和S3的面积。
S3的面积又要用下图的基本思路求:
现在就可以求出S3的面积,进而求出阴影部分的面积了。
S3=S4-S5=50π-100(厘米2),S1=S2-S3=50π-(50π-100)=100(厘米2)。
练习11
1.直角三角形ABC放在一条直线上,斜边AC长20厘米,直角边BC长10厘米。如下图所示,三角形由位置Ⅰ绕A点转动,到达位置Ⅱ,此时B,C点分别到达B1,C1点;再绕B1点转动,到达位置Ⅲ,此时A,C1点分别到达A2,C2点。求C点经C1到C2走过的路径的长。
2.下页左上图中每个小圆的半径是1厘米,阴影部分的周长是多少厘米?
3.一只狗被拴在一个边长为3米的等边三角形建筑物的墙角上(见右上图),绳长是4米,求狗所能到的地方的总面积。
5.右上图是一个400米的跑道,两头是两个半圆,每一半圆的弧长是100米,中间是一个长方形,长为100米。求两个半圆的面积之和与跑道所围成的面积之比。
6.左下图中,正方形周长是圆环周长的2倍,当圆环绕正方形无滑动地滚动一周又回到原来位置时,这个圆环转了几圈?
7.右上图中,圆的半径是4厘米,阴影部分的面积是14π厘米2,求图中三角形的面积。
答案与提示 练习11
1.68厘米。
2.62.8厘米。
解:大圆直径是6厘米,小圆直径是2厘米。阴影部分周长是6π+2π×7=62.8(厘米)。
3.43.96米2。
解:如下页右上图所示,可分为半径为4米、圆心角为300°的扇形与两个半径为1米、圆心角为120°的扇形。面积为
4.60°。
解:设∠CAB为n度,半圆ADB的半径为r。由题意有
解得n=60。
5.1∶3。
6.3圈。
7.8厘米2。
解:圆的面积是42π=16π(厘米2),空白扇形面积占圆面积的1-的等腰直角三角形,面积为4×4÷2=8(厘米2)。
第二篇:小学六年级奥数教案
小学六年级奥数教案:行程问题
第一讲 行程问题
走路、行车、一个物体的移动,总是要涉及到三个数量: 距离走了多远,行驶多少千米,移动了多少米等等;速度在单位时间内(例如1小时内)行走或移动的距离;时间行走或移动所花时间.这三个数量之间的关系,可以用下面的公式来表示: 距离=速度×时间
很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如
总量=每个人的数量×人数.工作量=工作效率×时间.因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题.当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧.这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米
一、追及与相遇
有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,甲走的距离-乙走的距离
= 甲的速度×时间-乙的速度×时间 =(甲的速度-乙的速度)×时间.通常,“追及问题”要考虑速度差.例1 小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米? 解:先计算,从学校开出,到面包车到达城门用了多少时间.此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此
所用时间=9÷6=1.5(小时).小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是
面包车速度是 54-6=48(千米/小时).城门离学校的距离是 48×1.5=72(千米).答:学校到城门的距离是72千米.例2 小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远? 解一:可以作为“追及问题”处理.假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是
×10÷(75-50)= 20(分钟)? 因此,小张走的距离是 75× 20= 1500(米).答:从家到公园的距离是1500米.还有一种不少人采用的方法.家到公园的距离是
一种解法好不好,首先是“易于思考”,其次是“计算方便”.那么你更喜欢哪一种解法呢?对不同的解法进行比较,能逐渐形成符合你思维习惯的解题思路.例3 一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是 35千米/小时,要 40分钟才能追上.问自行车的速度是多少? 解一:自行车1小时走了 30×1-已超前距离,自行车40分钟走了
自行车多走20分钟,走了
因此,自行车的速度是
答:自行车速度是20千米/小时.解二:因为追上所需时间=追上距离÷速度差
1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.请看下面示意图:
马上可看出前一速度差是15.自行车速度是 35-15= 20(千米/小时).解二的想法与第二讲中年龄问题思路完全类同.这一解法的好处是,想清楚后,非常便于心算.例4 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分? 解:画一张简单的示意图:
图上可以看出,从爸爸第一次追上到第二次追上,小明走了 8-4=4(千米).而爸爸骑的距离是 4+ 8= 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了 4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.8+8+16=32.答:这时是8点32分.下面讲“相遇问题”.小王从甲地到乙地,小张从乙地到甲地,两人在途中相遇,实质上是小王和小张一起走了甲、乙之间这段距离.如果两人同时出发,那么 甲走的距离+乙走的距离 =甲的速度×时间+乙的速度×时间 =(甲的速度+乙的速度)×时间.“相遇问题”,常常要考虑两人的速度和.例5 小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇? 解:走同样长的距离,小张花费的时间是小王花费时间的 36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是 36÷(3+1)=9(分钟).答:两人在9分钟后相遇.例6 小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.解:画一张示意图
离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米
小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是 2÷(5-4)=2(小时).因此,甲、乙两地的距离是(5+ 4)×2=18(千米).本题表面的现象是“相遇”,实质上却要考虑“小张比小王多走多少?”岂不是有“追及”的特点吗?对小学的应用题,不要简单地说这是什么问题.重要的是抓住题目的本质,究竟考虑速度差,还是考虑速度和,要针对题目中的条件好好想一想.千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”.请再看一个例子.例7 甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.解:先画一张行程示意图如下
设乙加速后与甲相遇于D点,甲加速后与乙相遇于E点.同时出发后的相遇时间,是由速度和决定的.不论甲加速,还是乙加速,它们的速度和比原来都增加5千米,因此,不论在D点相遇,还是在E点相遇,所用时间是一样的,这是解决本题的关键.下面的考虑重点转向速度差.在同样的时间内,甲如果加速,就到E点,而不加速,只能到 D点.这两点距离是 12+ 16= 28(千米),加速与不加速所形成的速度差是5千米/小时.因此,在D点
(或E点)相遇所用时间是 28÷5= 5.6(小时).比C点相遇少用 6-5.6=0.4(小时).甲到达D,和到达C点速度是一样的,少用0.4小时,少走12千米,因此甲的速度是
12÷0.4=30(千米/小时).同样道理,乙的速度是 16÷0.4=40(千米/小时).A到 B距离是(30+ 40)×6= 420(千米).答: A,B两地距离是 420千米.很明显,例7不能简单地说成是“相遇问题”.例8 如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问:(1)小张和小王分别从A,D同时出发,相向而行,问多少时间后他们相遇?(2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米? 解:(1)小张从 A到 B需要 1÷6×60= 10(分钟);小王从 D到 C也是下坡,需要 2.5÷6×60= 25(分钟);当小王到达 C点时,小张已在平路上走了 25-10=15(分钟),走了
因此在 B与 C之间平路上留下 3-1= 2(千米)由小张和小王共同相向而行,直到相遇,所需时间是 2 ÷(4+ 4)×60= 15(分钟).从出发到相遇的时间是 25+ 15= 40(分钟).(2)相遇后,小王再走30分钟平路,到达B点,从B点到 A点需要走 1÷2×60=30分钟,即他再走 60分钟到达终点.小张走15分钟平路到达D点,45分钟可走
小张离终点还有2.5-1.5=1(千米).答:40分钟后小张和小王相遇.小王到达终点时,小张离终点还有1千米.二、环形路上的行程问题
人在环形路上行走,计算行程距离常常与环形路的周长有关.例9 小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王? 解:(1)75秒-1.25分.两人相遇,也就是合起来跑了一个周长的行程.小张的速度是 500÷1.25-180=220(米/分).(2)在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是
500÷(220-180)=12.5(分).220×12.5÷500=5.5(圈).答:(1)小张的速度是220米/分;(2)小张跑5.5圈后才能追上小王.例10 如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是 80×3=240(米).240-60=180(米).180×2=360(米).答:这个圆的周长是360米.在一条路上往返行走,与环行路上行走,解题思考时极为类似,因此也归入这一节.例11 甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少? 解:画示意图如下:
如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是 40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了 6×2-2=10(千米).小王已走了 6+2=8(千米).因此,他们的速度分别是 小张 10÷2=5(千米/小时),小王 8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.例12 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)? 解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了 3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是 10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了 3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村 8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.下面仍回到环行路上的问题.例13 绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇? 解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:
12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.出发后2小时10分小张已走了
此时两人相距 24-(8+11)=5(千米).由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是 5÷(4+6)=0.5(小时).2小时10分再加上半小时是2小时40分.答:他们相遇时是出发后2小时40分.例14 一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只
爬虫出发后多少时间第一次到达同一位置? 解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米0.30÷(5-3)=15(秒).因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要 90÷(5-3)=45(秒).B与C到达同一位置,出发后的秒数是 15,105,150,195,…… 再看看A与B什么时候到达同一位置.第一次是出发后 30÷(10-5)=6(秒),以后再要到达同一位置是A追上B一圈.需要 90÷(10-5)=18(秒),A与B到达同一位置,出发后的秒数是 6,24,42,78,96,…
对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.请思考,3只爬虫第二次到达同一位置是出发后多少秒? 例15 图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求
解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个“相遇”,解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.设汽车行驶CD所需时间是1.根据“走同样距离,时间与速度成反比”,可得出
分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18.从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与 P→C→B所用时间相等.PC上所需时间-PD上所需时间 =DA所需时间-CB所需时间 =18-12 =6.而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据“和差”计算得 PC上所需时间是(24+6)÷2=15,PD上所需时间是24-15=9.现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有 BN上所需时间-AN上所需时间 =P→D→A所需时间-CB所需时间 =(9+18)-12 = 15.BN上所需时间+AN上所需时间=AB上所需时间 =16.立即可求BN上所需时间是15.5,AN所需时间是0.5.从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些.三、稍复杂的问题
在这一节希望读者逐渐掌握以下两个解题技巧:(1)在行程中能设置一个解题需要的点;(2)灵活地运用比例.例16 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间? 解:画一张示意图:
图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于
这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是 1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要 130÷2=65(分钟).从乙地到甲地需要的时间是 130+65=195(分钟)=3小时15分.答:小李从乙地到甲地需要3小时15分.上面的问题有3个人,既有“相遇”,又有“追及”,思考时要分几个层次,弄清相互间的关系,问题也就迎刃而解了.在图中设置一个B点,使我们的思考直观简明些.例17 小玲和小华姐弟俩正要从公园门口沿马路向东去某地,而他们的家要从公园门口沿马路往西.小华问姐姐:“是先向西回家取了自行车,再骑车向东去,还是直接从公园门口步行向东去快”?姐姐算了一下说:“如果骑车与步行的速度比是4∶1,那么从公园门口到目的地的距离超过2千米时,回家取车才合算.”请推算一下,从公园到他们家的距离是多少米? 解:先画一张示意图
设A是离公园2千米处,设置一个B点,公园离B与公园离家一样远.如果从公园往西走到家,那么用同样多的时间,就能往东走到B点.现在问题就转变成: 骑车从家开始,步行从B点开始,骑车追步行,能在A点或更远处追上步行.具体计算如下:
不妨设B到A的距离为1个单位,因为骑车速度是步行速度的4倍,所以从家到A的距离是4个单位,从家到B的距离是3个单位.公园到B是1.5个单位.从公园到A是 1+1.5=2.5(单位).每个单位是 2000÷2.5=800(米).因此,从公园到家的距离是 800×1.5=1200(米).答:从公园门口到他们家的距离是1200米.这一例子中,取计算单位给计算带来方便,是值得读者仿照采用的.请再看一例.例18 快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间? 解:画一张示意图:
设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面“取单位”准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是 14÷(2+3)=2.8(小时).慢车从C到A返回行驶至与快车相遇共用了 7.5+0.5+2.8=10.8(小时).答:从第一相遇到再相遇共需10小时48分.例19 一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A至B两地距离.解:1小时是行驶全程的一半时间,因为去时逆水,小船到达不了B地.我们在B之前设置一个C点,是小船逆水行驶1小时到达处.如下图
第二小时比第一小时多行驶的行程,恰好是C至B距离的2倍,它等于6千米,就知C至B是3千米.为了示意小船顺水速度比逆水速度每小时多行驶8千米,在图中再设置D点,D至C是8千米.也就是D至A顺水行驶时间是1小时.现在就一目了然了.D至B是5千米顺水行驶,与C至B逆水行驶3千米时间一样多.因此 顺水速度∶逆水速度=5∶3.由于两者速度差是8千米.立即可得出
A至B距离是 12+3=15(千米).答:A至B两地距离是15千米.例20 从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米.已知第一段公路的长恰好是第三段的2倍.现有两辆汽车分别从甲、乙两市同时出发,相向而行.1小时20分后,在第二段的
解一:画出如下示意图:
当从乙城出发的汽车走完第三段到C时,从甲城出发的汽车走完第一段的
到达D处,这样,D把第一段分成两部分
时20分相当于
因此就知道,汽车在第一段需要
第二段需要 30×3=90(分钟);
甲、乙两市距离是
答:甲、乙两市相距185千米.把每辆车从出发到相遇所走的行程都分成三段,而两车逐段所用时间都相应地一样.这样通过“所用时间”使各段之间建立了换算关系.这是一种典型的方法.例
8、例13也是类似思路,仅仅是问题简单些.还可以用“比例分配”方法求出各段所用时间.第一段所用时间∶第三段所用时间=5∶2.时间一样.第一段所用时间∶第二段所用时间=5∶9.因此,三段路程所用时间的比是 5∶9∶2.汽车走完全程所用时间是 80×2=160(分种).例21 一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米? 解:设原速度是1.%后,所用时间缩短到原时间的
这是具体地反映:距离固定,时间与速度成反比.用原速行驶需要
同样道理,车速提高25%,所用时间缩短到原来的
如果一开始就加速25%,可少时间
现在只少了40分钟,72-40=32(分钟).说明有一段路程未加速而没有少这个32分钟,它应是这段路程所用时间
真巧,320-160=160(分钟),原速的行程与加速的行程所用时间一样.因此全程长
答:甲、乙两地相距270千米.十分有意思,按原速行驶120千米,这一条件只在最后用上.事实上,其他条件已完全确定了“原速”与“加速”两段行程的时间的比例关系,当然也确定了距离的比例关系.全程长还可以用下面比例式求出,设全程长为x,就有 x∶120=72∶32
第三篇:六年级奥数教案
思源学校第二课堂(第六周)
判断与推理 2 授课人:雍尧
教学要求:(1)理解逻辑推理的四条基本规律,学会运用分析、推理方法解决问题。
(2)培养学生逻辑推理能力.教学重点:学会运用分析、推理方法解决问题。
教学难点: 理解、掌握分析、推理方法。
教学方法:讲解法、图表法、练习法。
(一)教学过程:
一、复习。
上节课的习题例2
二、教学新课 教学例3
甲乙丙三人被蒙上眼睛,告诉他们每个人头上都戴了一顶帽子,帽子的颜色不是红的就是绿的。然后,就去掉蒙眼睛的布,要求每个人如果看见别人(一个或两个)戴的是红帽子就举手,并且谁能断定自己头上帽子的颜色,谁就马上离开房间。三人碰巧戴的都是红帽子,因此三个人都举了手,几分钟后,丙首先走开了,他是怎么推导出自己头上帽子的颜色的?
(1)学生审题,理解题意。(2)同座位讨论。
(3)分析:此题关键:注意到甲乙两人没有立即离开房间这个事实。丙推理,我的帽子如果是绿的,甲根据乙举手立即知道自己的帽子是红的,那他应走出房间,乙会做同样的推理离开房间。甲乙不能很快判断自己帽子的颜色,说明我的帽子不是绿的,而是红的。(4)说说你的推理过程。
3、比较前面例2例3有什么相同不同之处。
三、巩固练习。教学例4 学田小学举行科技知识竞赛,同学们对一贯刻苦学习爱好读书的四名学生的成绩作了如下估计:(1)丙得第一,乙得第二;
(2)丙得第二,丁得第三;(3)甲得第二,丁得第四。
比赛结果一公布,果然是这四名学生获得前四名。但以上三种估计,每一种都对了一半错一半。他们各得第几名?(1)学生审题,理解题意。(2)同座位讨论。(3)分析:利用图表帮助学生去推理判断。
第一种假定“丙第一错,乙第二对”出现矛盾。照此推理“丙第一对,乙第二错”没有出
现矛盾。所以丙第一,甲第二,丁第三,乙第四。(4)每人口述推理过程。
四、小结。
这节课你学会了什么?
第四篇:小学六年级奥数教案相遇与追击
小学六年级奥数教案—相遇与追击
有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,甲走的距离-乙走的距离
= 甲的速度×时间-乙的速度×时间
=(甲的速度-乙的速度)×时间.通常,“追及问题”要考虑速度差.例1:
甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车在距中点32千米处相遇。东西两地相距多少千米?
思路导航:两车在距中点32千米处相遇,由于甲车的速度大于乙车的速度,所以相遇时,甲车应行了全程的一半多32千米,乙车行了全程的一半少32千米,因此,两车相遇时,甲车比乙车共多行了32=64(千米)。两车同时出发,又相遇了,两车所行的时间是一样的,为什么甲车会比乙车多行64千米?因为甲车每小时比乙车多行56-48=8(千米)。64 =8(时),所以两车各行了8小时,求东西两地的路程只要用(56+48)8=832(千米)
例2:快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时快车已驶过中点25千米,这时快车与慢车还相距7千米。慢车每小时行多少千米?
思路导航:快车3小时行驶403=120(千米),这时快车已驶过中点25千米,说明甲乙两地间路程的一半是120-25=95(千米)。此时,慢车行了95-25-7=63(千米),因此慢车每小时行633=21(千米)
例4 甲乙两队学生从相距18千米的两地同时出发,相向而行。一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时,骑自行车的同学共行多少千米?
思路导航;要求骑自行车的同学一共行多少千米,就要知道他的速度和时间。骑自行车同学的速度是每小时14千米,而他所行的时间就是甲、乙两队学生从出发到相遇这段时间。因此用18=2(时)
142=28(千米)
例5:甲、乙两车早上8时分别从A、B两地同时相向出发,到10时两车相距112.5千米。两车继续行驶到下午1时,两车相距还是112.5千米。A、B两地间的距离是多少千米?
思路导航:从10时到下午1时共经过3小时,3小时里,甲、乙两车从相距112.5千米到又相距112.5千米,共行2=225(千米)。两车的速度和是每小时行2253=75(千米)。从早上8时到10时共经过2小时,2小时共行752=150(千米)因此,A、B两地间的距离是150+112.5=262.5(千米)
例
6、一辆汽车从甲地开往乙地要行360千米,开始按计划以每小时45千米的速度行驶,途中因汽车出故障修车2小时。因为要按时到达乙地,修好后必须每小时多行30千米。问汽车是在离甲地多远处修车的?
思路导航:途中修车用了2小时,汽车就少行了452=90(千米),修车后,为了按时到达乙地,每小时多行30千米。90千米里面包含有3个30千米,也就是说,再行3小时就能把修车少行的90千米行完。因此修车后再行(45+30)3=225(千米)就能到达乙地。汽车是在离甲地360-225=135(千米)处修车的。
例
7、甲骑车,乙慢跑,二人同时从一点出 发沿着长4千米的环形公路同方向进行晨练。假设两人速度一直不变,出发后10分钟,甲便从乙身后追上了乙,已知两人的速度和是每分钟行700米,求甲乙二人的速度各是多少?
思路导航:出发10分钟后,甲从乙身后追上了乙,也就是10分钟内甲比乙多行了一圈。因此,甲每分钟比乙多行400010=400(米)。知道了两人的速度差是每分钟400米,速度和是每分钟700米,就能算出骑车的速度是(700+400)2 =550(米/分),乙跑步的速度是700-550=150(米/分)
练习:
1.甲、乙两汽车同时从两地出发,相向而行。甲汽车每小时行50千米,乙汽车每小时行55千米,两车在距中点15千米相遇。求两地之间的路程是多少千米 ?
2、一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行60千米,摩托车每小时行70千米,当摩托车行到两城中点处时,与汽车还相距30千米,求A、B两城之间的距离?
3、下午放学时,小红从学校回家,每分钟走100米,同时,妈发也从家里出发到学校去接小红,每分钟走120米,两人在距中点100米的地方相遇,小红家到学校有多少米?
4、兄弟二人同时从学校和家中出发,相向而行。哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距 30米。弟弟每分钟行多少米?
5、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?
6、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。如果这批树苗全部给五(1)班的同学去植,平均每人植多少棵树?
7、两支队伍从相距55千米的两地相向而行。通讯员骑马以每小时16千米的速度在两支队伍之间不断往返联络。已知一支队伍每小时行5千米,另一支队伍每小时行6千米,两队相遇时,通迅员共行多少千米?
8、甲、乙两人同时从两地出发,相向而行,距离是100千米。甲每小时行6千米,乙每小时行4千米。甲带着一只小狗,狗每小时行10千米。这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇时。这只狗一共走了多少千米?
9、甲、乙两车同时从A、B两地相向出发,3小时后,两车还相距120千米,又行3小时,两车又相距120千米。A、B两地相距多少千米?
10、快、慢两车早上6时同时从甲、乙两地相向开出,中午12时两车还相距50千米继续行驶到14时,两车又相距170千米。甲、乙两地相距多少千米?
11、甲、乙两车分别从A、B两地同时相向而行,8小时后相遇,相遇后两车继续行驶,3小时后两车相距360千米,求A、B两地的距离。
第五篇:六年级奥数教案3
第二课堂
牛吃草问题(2)练习课
一、课堂例题:
5.快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车。三车的速度分别是每小时24千米、20千米、19千米。快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用()小时。
注释:12 自行车的速度是:(20×10-24×6)÷(10-6)=14(千米/小时)
三车出发时自行车距A地:(24-14)×6==60(千米)
慢车追上自行车所用的时间为:60÷(19-14)=12(小时)
6.一水池中原有一些水,装有一根进水管,若干根抽水管。进水管不断进水,若用24根抽水管抽水,6小时可以把池中的水抽干,那么用16根抽水管,()小时可将可将水池中的水抽干。
注释:18 设1根抽水管每小时抽水量为1份。(1)进水管每小时卸货量是:(21×8-24×6)÷(8-6)=12(份)(2)水池中原有的水量为:21×8-12×8=72(份)
(3)16根抽水管,要将水池中的水全部抽干需:72÷(16-12)=18(小时)
8.有一片草地,每天都在匀速生长,这片草可供16头牛吃20天,可供80只羊吃12天。如果一头牛的吃草量等于4只羊的吃草量,那么10头牛与60只羊一起吃可以吃多少天?
注释:8天
(1)按牛的吃草量来计算,80只羊相当于80÷4=20(头)牛。(2)设1头牛1天的吃草量为1份。(3)先求出这片草地每天新生长的草量:(16×20-20×12)÷(20-12)=10(份)
(4)再求出草地上原有的草量:16×20-10×20=120(份)(5)最后求出10头牛与60只羊一起吃的天数:120÷(10+60÷4-10)=8(天)
9.某水库建有10个泄洪闸,现在水库的水位已经超过安全警戒线,上游的河水还在按一不变的速度增加。为了防洪,需开闸泄洪。假设每个闸门泄洪的速度相同,经测算,若打开一个泄洪闸,30小时水位降到安全线,若打开两个泄洪闸,10小时水位降到安全线。现在抗洪指挥部要求在5.5小时内使水位降到安全线,问:至少要同时打开几个闸门?
注释:4个 设1个泄洪闸1小时的泄水量为1份。(1)水库中每小时增加的上游河水量:(1×30-2×10)÷(30-10)=0.5(份)
(2)水库中原有的超过安全线的水量为:1×30-0.5×30=15(份)(3)在5.5小时内共要泄出的水量是:15+0.5×5.5=17.75(份)(4)至少要开的闸门个数为:17.75÷5.5≈4(个)(采用“进1”法取值)
二、学生课后练习:
1.一个水池有一根进水管,有若干相同的抽水管,进水管不间断的进水,若用24根抽水管抽水,6小时可以把池中的水抽干;若用21根抽水管抽水,8小时可以将池中的水抽干。用16根抽水管,多少小时可以将池中的水抽干?
2.甲、乙、丙三人同时从同一个地点出发,沿同一路线追赶前面的小明,他们分别用9分钟、15分钟、20分钟追上小明,已知甲每小时行24千米,乙每小时行20千米,丙每小时行多少千米?