第一篇:按比例分配应用题教学设计
按比例分配应用题教学设计
教学目标:
1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;
2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。教学重点:
1、正确理解按比例分配的意义。
2、掌握按比例分配应用题的特征和解题方法。教学难点:能正确、熟练地解答按比例分配的实际问题。教学过程:
一、创设情境:
同学们,我们生活在深圳这个国际大都市相信对“投资”和“创业”这两个词一定不陌生吧?谁给大家说说。
1、PPT出示:李阿姨和张阿姨合伙开了家书店,第一年,她们各投资5万元,经过一年的苦心经营,除去交税,发工资和其他费用,共获利润10万元,你们说,她们各应分得利润多少万元?
2、小结:刚才两位阿姨由于投资额相同,所以他们获得的利润要按1:1来分配,这种分配方式也就叫平均分。
3、PPT出示:第二年,李阿姨仍然投资了5万元,张阿姨投资了4万元,除去一切开支,共获利润18万元。这一次,你说她们的利润该怎么分合理呢?
(组织交流)
师:这里的利润要按投资额的比进行分配比较合理。像这样,把一个数量按一定的比来进行分配,通常叫做按比例分配。(揭示课题:按比例分配)
二、初步感知
1、想一想,两位阿姨应该按怎样的比来分配?(板书:按投资数的比5:4进行分配)
2、谁能用自己的语言说说5:4的具体含义。
3、谁能用算式表示两位阿姨各应分得多少万元?
4、小结:通过刚才的生活实例,你认识了什么?(什么是按比例分配)
三、自主探究,合作研习:
1、谈话:其实,在生活中,像这样的按比例分配的例子是很多的,你有没有遇到过?说一个给大家听听,今天,我们学习第75页内容,由于我们昨天已经布置了预习,所以我们按以下提纲进行交流。
2、此时用PPT出示“学习内容”“学习目标”和“导学提纲” 学习内容:苏教版小学数学六年级上册第75页。
学习目标:
1、认识按比例分配的实际问题,掌握这类实际问题的解答方法。
2、认识连比,理解三个数量连比的意义。
导学提纲:
1、例5中“红色与黄色方格数的比是3:2”的含义是什么?
2、与同学说说例题中每种方法的解题思路。
3、你能画图理解这两种解题方法与同学交流吗?
4、你怎样理解“按照1:2:3涂成红、黄、绿三种颜色”这句话的含义?
5、“练一练”第2题是把180块巧克力按怎样的比来分配?
学生根据导学提纲进行下列活动,教师巡视,深入各小组交流,关注学困生。(1)独立思考,尝试解答。(2)小组交流,说说想法。(3)组织交流,形成思路。(4)选好内容,进行预展示。
四、集中展示
1、例5中“红色与黄色方格数的比是3:2”的含义是什么?
预设:(1)这里的3:2,也就是在30个方格,红色方格占3份,黄色方格占4份,一共有5份,红色方格占了方格总数的3/5,黄色方格占方格总数的2/5。求红色方格有多少个,就是求30的3/5是多少,求黄色方格有多少个,就是求30的2/5是多少。(2)把30个方格平均分成5份,3份是红色,2份是黄色。总份数3+2=5,红色方格为30÷5×3=18(格),黄色方格为30÷5×2=12(格)。
2、展示例5的解题思路及方法(结合图)
3、展示“试一试”的解题方法
4、说一说例5与“试一试”的相同点与不同点。
5、“练一练”第2题“练一练”与“试一试”的相同点与不同点。
小结:通过刚才的生活实例,你又有什么新的收获?你觉得按比例分配应用题的解答关键是什么?
预设:(1)关键是根据已知的比表示的份数关系,找出各种数量占总数量的几分之几,也就是把比转化成分数,再按求一个数的几分之几是多少乘法计算。(2)根据份数先求总份数,再求每份数,最后求几份数。
(板书: 比----分数 各种数量占总数量的几分之几,用乘法;比----份数,先求总份数,再求每份数,最后求几份数。)
五、反馈检测
1、本次校运动会上共有644人报名参加各项目比赛,其中男女运动员人数的比是4 :3,你知道参加各项比赛的女运动员有多少名吗?
2、低年级老师用一根长40厘米的铁丝围成一个三条边的比是4 : 7 : 9的三角形,请你帮低年级老师算算三条边的长度各是多少?
3、保税区小学六(1)班有学生35人,六(2)班有学生36人,六(3)班有学生34人。在第十二届田径运动会入场式上需要制作210面彩旗,按照六年级各班学生人数的比,六年级三个班各需要做多少面彩旗?
4、一个标准的篮球场是长方形,它的周长是86米。长与宽的比是28:15。求这个标准的篮球场的面积。
六、课堂小结:
学了这节课,你有什么收获?
七、课堂作业:76页,1、2、3、4。
板书设计:
按比例分配的解题方法
一要知道分配的数量,二要知道按怎样的比分配
第二篇:按比例分配应用题教学设计(范文模版)
按比例分配应用题教学设计
教学内容:苏教版第十一册75页例5 教学目标:
1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;
2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。教学重点:
1、正确理解按比例分配的意义。
2、掌握按比例分配应用题的特征和解题方法。教学难点:能正确、熟练地解答按比例分配的实际问题。教学过程:
一、创设情境:
同学们,我们生活在深圳这个国际大都市相信对“投资”和“创业”这两个词一定不陌生吧?谁给大家说说。
1、PPT出示:李阿姨和张阿姨合伙开了家书店,第一年,她们各投资5万元,经过一年的苦心经营,除去交税,发工资和其他费用,共获利润10万元,你们说,她们各应分得利润多少万元?
2、小结:刚才两位阿姨由于投资额相同,所以他们获得的利润要按1:1来分配,这种分配方式也就叫平均分。
3、PPT出示:第二年,李阿姨仍然投资了5万元,张阿姨投资了4万元,除去一切开支,共获利润18万元。这一次,你说她们的利润该怎么分合理呢?
(组织交流)
师:这里的利润要按投资额的比进行分配比较合理。像这样,把一个数量按一定的比来进行分配,通常叫做按比例分配。(揭示课题:按比例分配)
二、初步感知
1、想一想,两位阿姨应该按怎样的比来分配?(板书:按投资数的比5:4进行分配)
2、谁能用自己的语言说说5:4的具体含义。
3、谁能用算式表示两位阿姨各应分得多少万元?
4、小结:通过刚才的生活实例,你认识了什么?(什么是按比例分配)
三、自主探究,合作研习:
1、谈话:其实,在生活中,像这样的按比例分配的例子是很多的,你有没有遇到过?说一个给大家听听,今天,我们学习第75页内容,由于我们昨天已经布置了预习,所以我们按以下提纲进行交流。
2、此时用PPT出示“学习内容”“学习目标”和“导学提纲” 学习内容:苏教版小学数学六年级上册第75页。
学习目标:
1、认识按比例分配的实际问题,掌握这类实际问题的解答方法。
2、认识连比,理解三个数量连比的意义。
导学提纲:
1、例5中“红色与黄色方格数的比是3:2”的含义是什么?
2、与同学说说例题中每种方法的解题思路。
3、你能画图理解这两种解题方法与同学交流吗?
4、你怎样理解“按照1:2:3涂成红、黄、绿三种颜色”这句话的含义?
5、“练一练”第2题是把180块巧克力按怎样的比来分配?
学生根据导学提纲进行下列活动,教师巡视,深入各小组交流,关注学困生。(1)独立思考,尝试解答。(2)小组交流,说说想法。(3)组织交流,形成思路。
(4)选好内容,进行预展示。
四、集中展示
1、例5中“红色与黄色方格数的比是3:2”的含义是什么?
预设:(1)这里的3:2,也就是在30个方格,红色方格占3份,黄色方格占4份,一共有5份,红色方格占了方格总数的3/5,黄色方格占方格总数的2/5。求红色方格有多少个,就是求30的3/5是多少,求黄色方格有多少个,就是求30的2/5是多少。(2)把30个方格平均分成5份,3份是红色,2份是黄色。总份数3+2=5,红色方格为30÷5×3=18(格),黄色方格为30÷5×2=12(格)。
2、展示例5的解题思路及方法(结合图)
3、展示“试一试”的解题方法
4、说一说例5与“试一试”的相同点与不同点。
5、“练一练”第2题“练一练”与“试一试”的相同点与不同点。
小结:通过刚才的生活实例,你又有什么新的收获?你觉得按比例分配应用题的解答关键是什么?
预设:(1)关键是根据已知的比表示的份数关系,找出各种数量占总数量的几分之几,也就是把比转化成分数,再按求一个数的几分之几是多少乘法计算。(2)根据份数先求总份数,再求每份数,最后求几份数。
(板书: 比----分数 各种数量占总数量的几分之几,用乘法;比----份数,先求总份数,再求每份数,最后求几份数。)
五、反馈检测
1、本次校运动会上共有644人报名参加各项目比赛,其中男女运动员人数的比是4 :3,你知道参加各项比赛的女运动员有多少名吗?
2、低年级老师用一根长40厘米的铁丝围成一个三条边的比是4 : 7 : 9的三角形,请你帮低年级老师算算三条边的长度各是多少?
3、保税区小学六(1)班有学生35人,六(2)班有学生36人,六(3)班有学生34人。在第十二届田径运动会入场式上需要制作210面彩旗,按照六年级各班学生人数的比,六年级三个班各需要做多少面彩旗?
4、一个标准的篮球场是长方形,它的周长是86米。长与宽的比是28:15。求这个标准的篮球场的面积。
六、课堂小结:
学了这节课,你有什么收获?
七、课堂作业:76页,1、2、3、4。
板书设计:
按比例分配的解题方法
一要知道分配的数量,二要知道按怎样的比分配
《按比例分配》导学设计
预习内容:课本第75页的例5及相应的“试一试”,“练一练”
一、理解题中比的含义
1、我班男生有20人,女生有14人。可以说成()人数是()人数的 ;也可以说成()人数是()人数的,()人数是全班人数的。
2、例5中,给30个方格分别涂上红色和黄色,使红色和黄色方格数的比是3:2,这里的3:2的含义可以理解为以下几种:(1)()方格数是()方格数的,()方格数是()方格数的。(2)()方格数是总方格数的,()方格数是总方格数的。(3)把30个方格平均分成()份,其中红色是()份,黄色是()份。
二、按比例分配的方法
1、我会解例5,方法是:
方法一:我是把比转化成(),先求,再求。求每
份数列式为,红色格子数列式为,黄色格子数列式为。
方法二:我是把比转化成(),先求,再求。红色
格子数是格子总数的(),求红色格子数列式为,黄色格子数是格子
总数的(),求黄色格子数列式为。
2、我喜欢第()种方法,因为。
3、我知道“试一试”中的1:2:3的含义是:红色格子数是格子总数的(),黄色格子
数是格子总数的(),绿色格子数是格子总数的()。求红色格子数列式为,求黄色格子数列式为,求绿色格子数列式为。
4、我知道运用比例分配方法解决问题必须具备两个条件,一是要知道(),二是要知道()。
三、方法的应用:完成课本第75页的“练一练”
我知道“练一练”中的第2题大班有35人,中班有31人,小班有24人,可以看作大班:
中班:小班=():():()。也就是把180块巧克力按():():()分配。
教学反思:
1.情境导入合理,练习贴近生活。
《标准》指出:“使学生感受数学与现实生活的联系”,“数学教学必须从学生熟悉的生活情境和感兴趣的事例出发”。创设时代气息感强,学生感兴趣的分配利润的问题,引入课堂,激发了学生的求知欲望。练习内容来自学生的实际生活,贴近生活,使学生的学习活动更投入。让学生充分感受到数学来源于生活,生活离不开数学。2.注重学生知识的构建
新课标积极倡导学生 “主动参与、乐于探究、勤于思考”,以培养学生获取知识、分析和解决问题的能力。创设分配利润的情境,学生通过思考、交流、展示的方式来经历数学,获得感性经验,进而理解所学知识,完成知识创造过程,同时也为学生多彩的思维、创设良好的平台,由于学生的经历不同,认识问题的角度不同,促使他们解决问题的策略的多样化,使生生、师生评价在价值观上都得到了发展。3.在交流和合作上获得发展
整节课以思考、交流、展示贯穿全过程,让学生在观察、对比、交流中思考,在思考中探索、获取新知,在交流中训练了思维,尤其是特别注重为学生创设独立思考、合作交流的空间。教学中,无论是学生 “探索创新”或是“巩固深化”或是“联系实际”都是让学生独立思考,再进行小组合作或再组织讨论交流,最后进行集中展示,这样才能使学生有话可说、有话想说、有话能说,充分发挥每个学生的积极性,有利于培养学生独立思考的习惯和自主探索的能力。培养了学生自主、自信、质疑的能力。4.再教需要完善之处
(1)教师要加强语言的提炼,关键之处适时板书。(如:“比”转化成“份数”;“比”转化成“分数”)
(2)对“试一试”中的1:2:3的含义要进一步强调,注意与“练一练”第2题的对比。
(3)反馈练习的第4题提高练习没有完成,精彩之处没有呈现。
第三篇:按比例分配应用题
《按比例分配应用题》教学设计
【教学目标】
1.使学生理解按比例分配的意义,掌握按比例分配应用题的特征和基本解题方法。
2.培养学生探究知识的能力和良好的思维品质,以及解决简单实际问题的能力。
3.培养初步的合作意识,学会评价他人,欣赏他人。
【教学重点】掌握按比例分配应用题的基本解题方法
【教学流程】
一、创设情境,激趣引入
1.谈话引入:星期天,小明和小华相约来到一家儿童文具店,他们先来到铅笔专柜,小华拿出4元,小明也拿出4元,合买了1盒(20支)铅笔。想一想,他们各自可分得多少支铅笔?
2、小结:刚才两位同学由于拿的钱相同,所以他们分得的铅笔支数相同,我们把这种分配方式叫做平均分。
3、PPT出示:他们又来到笔记本专柜,小华拿出9元钱,小明拿了3元钱,一共买了24本同样的笔记本。
师:他们应该怎么分这些笔记本?是平均分吗?如果不平均分,那又该如何分?(同桌讨论,并阐明理由。)
师:这里的笔记本要按拿出钱数的比进行分配比较合理。下面就请同学们帮他俩算一算,他们各应分得多少个笔记本?
二、探索交流
1.活动组织:先自己独立尝试着解答,然后把你的想法告诉你们小组内的伙伴,说说你是怎么想的,比比谁的方法更好。
2.学生活动:
(1)独立探索解题方法。
(2)小组合作讨论,教师参与并适当指导,同时收集各种方案的解法,以备展示。
3.集体交流。
师:发言人先介绍一下你们组的解法。其他的同学来当一回“小记者”:如果有不同的解法可以补充交流;当然也可以向发言人提问
(1)学生发言
方法一:先算出每个笔记本的价钱,用(9+3)÷24=0.5(元),再算出小华和小明各应分得的笔记本个数.9÷0.5=18(本)
3÷0.5=6(本)
方法二: 24÷(9+3)=2(本)
小华:9×2=18(本)小明:3×2=6(本)
方法三(分数乘法):你是怎么想的?用乘法做的依据是什么?(小华和小明拿出的钱的比是9:3,化简后是3:1,小华出的钱占总钱数的3÷3+1 ,分得的本数也应该是总本数的3÷3+1。把总本数看作单位“1”,求小华分得的本数,就是求总本数的3÷3+1,用乘法做。)
方法四:3+1=4
24÷4=6(本)
小华:6×3=18(本)小明:6×1=6(本)
(2)你们觉得哪种方法更好?为什么?
4.分析归纳
像刚才这样,把 一个数量按照一定的比例来进行分配,我们把这种分配方法叫做按比例分配。(揭示课题:按比例分配)
5、你见到过、听说过类似的情况吗?学生举例。(如学生无法举例,则出示图片介绍在生活、生产中的应用:混凝土、农药配比等。)
三、知识应用
1.只要你做个有心人,一定会发现很多按比例分配的例子。下面,我们来做个实验,看看你对自己有多了解。说说你的身高,猜猜自己头部的高度大约是多少?
老师曾经看到这样一条信息:12周岁的儿童头部与头以下的高度的比一般是2:13。
结合这条信息,请你算一算自己的头部的长度,看看你估计得准不准?注意,结果保留整数。
2.你们见过野生丹顶鹤吗?它可是国家一级保护动物,我国和其他国家拥有丹顶鹤的数量约是1:3。2001年全世界也大约只有2000只。我国和其他国家各有多少只丹顶鹤?(你有什么感想?)(进行思想教育,并发出倡议)
四、情境延续
1.师:买完了笔记本之后,小华和小明又在文具店蹓跶了一圈,恰好碰到了小强,于是他们三人商量决定一起凑钱去买一套故事书(一共18本)。小华拿出5元,小明拿出10元,小明拿出15元钱,聪明的小朋友,请你再帮他们算一算,他们各自可分得多少本故事书?
2.尝试解答,同桌互相讨论。
3.展示交流各种方法,你打算如何检验?
4.这题与刚才做的题有什么相同点和不同点?
五、综合运用
1.像这种连比,在我们生活中还有很多。
例如:在学生的营养餐的食物中,除了主食(米饭)外,还包括瓜果蔬菜类、豆制品类、鱼肉禽蛋类,它们的比为13:2:5较为适宜。像你们这种年龄所需要的营养中除了主食外,还需100克这样的食物。现在请你算算,你们的营养餐中所需的瓜果蔬菜类、豆制品类、鱼肉禽蛋类各占多少克?
师:同学们,你们平时的餐点是否这样合理搭配了呢?
(出示课件)师:有这样一首诗是来称赞营养餐的“少年儿童成长快,合理营养体质强。鱼肉蛋奶豆制品,五谷杂粮有营养。瓜果蔬菜不可少,科学搭配保健康。不偏食、不挑食,饮食习惯要养好!”
师:所以我们平时更要注意合理饮食,这样才能有一个健康的身体,为以后的学习、工作打下扎实的基础!
2、(利润的分配)
张叔叔和李叔叔、王大伯三家合资办厂,由于他们齐心合力,经营有道,一年下来,除去缴纳税款、发工资和其他费用,获得利润14万元。该怎么分配这些利润。
三家投资者的情况如下表:
姓名
在厂工作人数
投资金额 张叔叔
李叔叔王大伯
现在同学们四人一组,也像他们一样围在一起,商量商量如何分配这14万元的利润。生1:我们小组认为按照人数来分配,14×2/7=4(万元)14×3/7=6(万元)14×2/7=4(万元)生2:我们小组有不同意见:我们认为应该按照投资金额来分。
14×20/40=7(万元)14×12/40=4.2(万元)14×8/40=2.8(万元)生3:我们小组认为一半按照人数来分,另一半按照投资金额来分
张叔叔:7×2/7=2(万元)7×20/40=3.5(万元)2+3.5=5.5(万元)李叔叔:7×3/7=3(万元)7×12/40=2.1(万元)3+2.1=5.1(万元)王大伯:7×2/7=2(万元)7×8/40=1.4(万元)2+1.4=3.4(万元)生4:我们小组认为先留下4万元,作为发展再生产用,再按照投资金额来分配。
(14-4)×20/40=5(万元)(14-4)×12/40=3(万元)(14-4)×8/40=2(万元)
生5:我们认为先留下一半,再按人数的多少来分。
生6:老师,我认为应该按协议来分配。因为现在合资办厂的,事先都签订了协议,所以按协议上规定的来分配是最合理合法。
师:同学们,真是既能干,又有个性,想到了这么多的分配方案,了不起!
四、小结
第四篇:“按比例分配的应用题”教学设计
“按比例分配的应用题”教学设计
荆林中心校
杨春仙
教学内容:苏教版数学第十一册第58-59页,例
2、例3 教学要求:
1、联系生活实际,使学生理解按比例分配问题的意义。
2、使学生认识按比例分配应用题的结构特点和解题思路。
3、能运用所学的知识,正确解答按比例分配应用题。教学重点:能够应用已有知识解答按比例分配应用题。教学难点:如何应用比的知识解决生活中的实际问题。设计思路:
1、给学生提供现实生活中的素材,理解按比例分配的意义。按比例分配问题是把一个数量按照一定的比例进行分配。它是“平均”问题的发展。显然平均分是按比例分配的特例,解决这些问题需要老师为学生提供他们所熟知的材料,如中奖金额如何分配等,让学生学习身边的数学。
2、发挥学生的主体作用,引导学生合作学习,主动探索。在教学中教师鼓励学生解决问题的多样化,充分展开学生的思考过程,引导学生之间的讨论和辩论,让学生在讨论和辩论中相互启发、质疑,从而促进学生思维能力的提高。
教学过程:
一、创设情境
同学们,听说上学期我们班的同学都购买过彩票,说说你们是怎么买的,有人中奖吗?
看来只买
一、两张中奖的可能性太小了,但是如果两个人或者几个人把钱合在一起买彩票,中奖的机会就会多一些。
出示例1:甲、乙两位同学,共同出资10元钱买了体育彩票,中奖200元了,请你说说这200元钱怎么分配呢?
老师想请同座位的2位同学自己先说说,你们打算怎么分这笔钱。学生讨论后汇报。(大致方案可能有以下几种)
1、平均分。
2、共同再买彩票──再次支持体育事业,如果中奖就可以为社会做出更大贡献。
3、请客,剩下的平均分。
4、按出资金额的多少来分。„„
老师引导学生评价,怎么分配最合理?引出课题。
解决问题:按出资金额的多少来分,怎么分这200元钱?把你的想法说给你的同桌听听。
⑴
200÷10=20(元)⑵
4×20=80(元)
6×20=120(元)
你认为第⑴、⑵式分别表示什么意义? 老师小结:这样分大家都没意见(合理、公平)。除了甲出4元,乙出6元,他们两个还可能是怎样出资的。
师根据学生的回答整理板书成:
甲
乙
5元
5元
按1:1(平均分)
2元
8元
按1:4分
3元
7元
按3:7分
„„
刚才大家认为按各人出资的比例来分比较合理,这叫按比例分,其中两人各出自5元时,平均分实际上是按比例分的特例。
[充分利用学生已经有的生活经验激发学生学习的积极性,同时让学生在用不同分钱方法的争议中,充分暴露各自的思维过程,就“怎样分配最合理”,发表自己的看法,在多种分配方案比较的基础上,得出“按比例分配”最合理,从而展现知识的产生过程,让学生感受“按比例分配的必要性”,很自然地解决了平静分是按比例分的特例。]
二、主动探索,归纳方法
我们学校的徐老师与张叔叔根据自己多年研究彩票的经验都认为合伙买彩票能挣钱,就约定了出资比为,同学们对这个2∶3怎么理解?
①徐老师出资2元,张叔叔 3元;
②徐老师出资20元,张叔叔出资30元; ③徐老师王叔叔出资4元,张叔叔出资6元; 老师引导:徐老师占总出资的()张叔叔占总出资的(); [复习铺垫,只作为一个准备随时可用的环节,使课堂教学具有更大的弹性,作为已经历了半个多世纪的必要环节,我们应从中吸取精华,赋予它一种与时俱进的内涵──在全面深入研究学生和钻石教材的基础上进行整合,使教学方案更具有效性]。
出示例2:徐老师和张叔叔买体育彩票,按2∶3的比例出资共中奖500元,同学们想怎么分这笔钱?(让学生独立完成)
交流,把自己列式以及想法告诉大家。(着重是分数的方法。)教师小结:像刚才这样,把一个数量(500元)按一定比2∶3来分配,这种方法叫做按比例分配。解题步骤如何?(学生归纳,教师补充说明)
生活中像这样按比例分配的例子很多很多,请大家把书本打开到P58~~59页,看书上的例子,不懂可以提问。
[学生在教师指导下,以主体的姿态带着探究的精神,自主地参与学习过程,通过独立探索,合作交流,研究解决问题,体会同一问题可以从不同角度去思考,得到不同的解决问题的方法,有利于多向思维的发展,凸显个性化学习。]
三、运用知识,解决问题
1、初步应用
徐老师、张叔叔中奖了,很高兴,两人一商量,准备请请他们的朋友小聚聚。准备花80元买肉和买鱼,其中用钱比是3∶5,买肉和买鱼各用多少元钱?(口答)
师引导:宴请朋友,单买鱼和肉行吗?买鱼、肉、蔬菜你认为应该按什么比例去分配80元钱呢?(分小组讨论,从实际出发,从生活出发)
例如,按鱼、肉、蔬菜比为3∶2∶1来分配,(告诉大家这个叫连比)
按自己设想的比例,算出买鱼、肉、蔬菜各需要多少钱。2、变式练习:(只列式不计算)
⑴一个运输队一共运货物140吨,上午运了3小时,下午运了4小时,上午和下午各运了多少吨?
⑵一个长方形的周长是32米,长和宽的比是3:5,这个长方形的长和宽各是多少米?
3、拓展提高(每人选做一题)
⑴一个班男生与女生的人数比是3:4,男生比女生少7人,男女生各是多少人?
⑵一种药水由药粉和水按1:100配制而成,在8000 千克水中应加药粉多少千克?
⑶、一次,吴明、朱强和李红三位朋友合乘一辆出租车,大家商定,出租车费一定要大家合理分摊,吴明在全程三分之一处下车,到三分之二处朱强也下了车,最后李红一个人坐到终点,付出90元车费,请你帮他们算算三人如何承担车费比较合理?
[美国教育学家布鲁纳说过:“向学生提出挑战性的问题,可以引导学生发展智慧”。练习设计有坡度,体现由浅入深的认识规律,同时也注重开放问题情景的内容、条件和结果,给学生很大的探索空间。通过练习,有利于数学知识的领会、掌握、巩固和发展,有利于探索精神和创新意识的培养。]
四、课堂总结,师生评价
上了这节课,同学们有什么收获?
[让学生说这节课的收获,就将把教师零散的知识,方法进行归类整理,使学生知道如何有序地,重点地重温知识点,达到增强理解记忆又培养整理知识能力的目的,激发学生学习数学的兴趣。]
第五篇:按比例分配应用题_8
按比例分配应用题
教学目标
1.使学生理解按比例分配问题的意义。
2.使学生掌握按比例分配应用题的结构及解答方法。
3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。教学重点和难点
1.理解按比例分配问题的意义。
2.掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。教学过程设计
(一)复习准备
1.复习比的有关知识,为学习新知识做准备。已知六年级1班男生人数和女生人数的比是3∶4。
男生人数与全班人数的比是()∶()。
女生人数与全班人数的比是()∶()。
2.创设情境,提出课题。
(1)妈妈有10块糖,平均分给哥哥和弟弟。每人可以得到几块糖?(每人可分到5块糖。)提问:妈妈是怎样分的?(平均分)(2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。)提问:这样分还是平均分吗?
日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。
(二)学习新课 1.讲解例2。
例2 一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。两种作物各播种多少公顷?
(1)这道题是一道分配问题的应用题,想一想:分谁?按照什么分?求的是什么?
(2)分析思考:看到“播种大豆和玉米面积的比是3∶2”这句话你想到了哪些倍数关系?小组讨论。
④玉米的面积与播种总面积的比是2∶5,玉米面积是播种面积的
各小组选代表汇报,教师提前把学生要汇报的内容制成活动投影片,逐步出现。
(3)解答例2。
①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的?
②说说你是怎样做的?
方法a:3+2=5 播种大豆的面积 100÷5×3=60(公顷)播种玉米的面积 100÷5×2=40(公顷)方法b:总面积平均分成的份数为
3+2=5
③比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算。)说说这种方法的思路?(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就
(4)这道题做得对不对?如何进行检验?请你检验一下同组同学做得对不对?(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积。或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2。)2.练习:第62页中的“做一做”(1)。
六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份。两个班各订了多少份?
(1)弄懂题意。
(2)提问:这道题分配的是什么?按照什么进行分配?(这道题分配的是49份报纸,按照3∶4的比例分给六一班和六二班。)(3)独立完成。组员之间互相检验。3.学习例3。
例3 学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(1)小组讨论:这道题分配的是什么?按照什么来分配?(分配的是280棵树,按照一班、二班、三班的人数的比来分配。)(2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几?(3)请你在练习本上独立完成。
①三个班的总人数:
47+45+48=140(人)②一班应栽的棵数:
③二班应栽的棵数:
④三班应栽的棵数:
答:一班、二班、三班分别栽树94棵、90棵、96棵。
(4)同组同学互相检验。
4.练习:第62页中的“做一做”(2)。
一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的。要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克?
(1)在练习本上独立完成。
(2)同组同学互相检验。(三)课堂总结
今天这节课我们学习了什么知识?(板书课题:按比例分配应用题)想想看这种应用题有什么特点?(已知总数量和部分量的比,求部分量是多少。)解答这种应用题怎样想?(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量。)回到准备题,问:平均分按几比几分配的?是不是按比例分配的应用题?指出平均分应用题是按比例分配的应用题的一种特殊情况。
(四)巩固反馈
1.填空练习:
①把35千克苹果平均分成7份,每份()千克,2份()千克,5份是()千克。
2.专业户王大伯共养鸡和鸭2100只。鸡和鸭只数的比是4∶3。王大伯各养了多少只鸡和鸭? 3.第62页的“做一做”(3)。
一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米。三条边的长度分别是多少厘米?
与练习题2有什么区别?
如果求它的最短边、最长边怎么求?
4.判断练习:(正确举√,错误举×)一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米?
(五)布置作业
第63页第1,2,3,4题。
课堂教学设计说明
本节课的复习分为两部分:首先是复习比的有关知识,为学习新知识做准备,接着通过与学生生活实际密切联系的题目为学习新知识创设情境,从而提出课题。学习新课部分中,例
2、例3的教学有扶有放,例2侧重于引导、讲解;例3则是先让学生分小组讨论,之后独立完成,最后说说怎么想的,从而掌握解题关键。巩固反馈部分由易到难,逐步提高。第4题是学生很容易错的一道题,所以采用了判断的方法,指出易错的地方,引起学生注意。
本节课采用小组协作学习的教学方法,课堂气氛活跃,调动了学生学习的积极性和主动性。