第一篇:按比例分配的教学设计
【教学内容】
九年义务教育六年制小学教科书《数学》第十一册。
红专小学
周俊霞
【教材分析】
这部分内容是在学生学过比、分数乘法意义以及分数乘除应用题的基础_L进行教学的。按比例分配问题是把一个数量按照一定的比进行分配。它是“平均分”问题的发展。按比例分配问题有不同解法。主要有以下三种:一是把比看作分的份数,用归一法来解答;二是把比转化为分数用分数知识来解答;三是用比例知识来解答。现在小学教材中一般都采用第二种方法(也是本课的一个重点)。学生在理解比和分数的关系以及掌握分数应用题的基础上容易接受。而且有利于加强知识间的内在联系。
【学情分析】
学生在己有的比的知识、分数乘法的意义以及分数应用题的基础上学习。可以顺利地实现旧知识的迁移。因此学生在教师的引导下。学习新知会感到比较轻松。学生学习本节课的重点应放在如何把比的问题转化为分数问题来解决。
【教学目标】
1.学会应用己有知识解决简单的按比例分配问题。
2.培养学生运用所学的数学知识解决简单的实际问题的能力。体验数学的应用价值。
3.使学生在动手操作实践中。养成认真观察、动脑思考的好习惯。
【教学准备】
1.教师准备:写有合作探究中的两个问题及例
2、例3的投影片。
2.学生准备:一根长54厘米的铁丝。
【教学过程】
一、谈话导入
“比”在我们生活中有着非常广泛的应用。这节课我们就进一步学习和研究比的应用(板书课题:比的应用)。
二、联系实际,提出问题
1.请同学们利用比的知识。根据我们班的人数提出一个比的问题。
学生可能会提出以下问题:
问题一:男生与女生人数的比是多少?
问题二:男生与全班人数的比是多少?
问题三:女生与男生人数的比是多少?
2.针对学生提出的问题,教师提问:“肴到这个比你想到什么?”
学生可能会想到以下问题:
问题一:女生是男生人数的几分之几?
问题二:男生是女生人数的几分之几?问题三:女生占全班人数的几分之几?
【设计意图】:让学生以本班人数提出比的问题。写出同学们比较熟知的数量比。这样做沟通了知识间的内在联系。使学生感受到数学就在身边。“看到这个比你想到了什么”。这个问题的创设。让学生进行发散思维训练。为“比”转化为“一个数是另一个数的几分之几”解决比例问题奠定了基础。
三、创设情景,合作探究
(一)教师以谈话形式创设情景最近我校要组建一支64人的合唱队。准备参加济南市的合唱比赛。要求男、女生人数按3:5搭配,请你们帮音乐教师算算需要多少名女生?多少名男生?
1.先给学生自主学习探究的时间。然后分组汇报交流,说一说自己的想法。
2.教师鼓励学生看哪个组想出的方法多。
3.集体汇报交流。
(1)每组介绍一下是怎样解决这个问题的。
学生可能汇报以下几个方案:
方案一:64=(3+5)=64=8=8(人)8X3=24(人)8X5=40(人)方案二:
方案三:
方案四:
3+5=8 64X3/8=24(人)64=(1+3/5)=40(人)64一(1+5/3)=24(人)64 X 5/8=40(人)64一40=24(人)64一24=40(人)(2)对于出现的这些方案。重点让学生说一说第二种方案每一步是什么意思。
【设计意图】:通过创设情景。使学生感受到数学与生活息息相关。对于第二种方案。重点让学生理解谁是单位“I ".知道总数量与总份数的对应关系。由此将比的应用题转化为分数应用题来思考问题,从而提高学生解决问题的灵活性。
(二)选择方法,解决生活中的数学问题投影显示:我校教师宿舍楼一单元三楼的三户居民合用一块电表,9月份应付电费40元。301住户分电表数45千瓦时。302住户分电表数24千瓦时.303住户分电表数30千瓦时。请你帮他们算一算每家应付电费多少元比较合理?
1.学生先独立思考,自主探究,然后小组合作交流谈一谈自己的想法,看哪个组给他们分的比较合理。为什么?小精灵儿童网站2.集体汇报交流。
3.师生共同归纳总结:看来大家在算每个居民应付多少电费时是按照一定的份数的比来分的。在日常生活中像这样的分配方法。我们会经常遇到。还有前面大家帮助音乐老师解决问题的方法。我们把这种方法叫做按比例分配(板书:按比例分配)。
【设计意图】:教师两次求助于学生帮助解决生活中的按比例分配问题,让学生通过己有的知识自主探究。合作交流,发现新旧知识之间的内在联系,顺利地实现新旧知识的迁移,使学生不但知其然。而且知其所以然。
四、实践应用,解决问题
1.基本应用:解决教材中的例
2、例3所提出的问题。
2.综合应用(动手操作):
(1)你能将一根长54厘米的铁坟弯成一个边长为4 3.2的三角形吗?
(2)你还能将这根54厘米的铁丝弯成一个长与宽的比是4:5的长方形吗?
【设计意图】:教师将实践应用题设计为基本应用和综合应用。
通过基本应用让学生熟练地掌握按比例分配应用题的基本解题方法。通过综合运用。让学生手脑并用。让学生在动手操作中发现解决问题的办法,体现让学生“做”数学。
【教学反思】
本节课能够从学生的生活实际出发,使学生感受到数学就在身边。教师十分重视利用学生原有经验。精心设计题目。问题由实际生活引入。密切联系实际。让学生懂得学好数学就能解决生活中的问题。
课堂上。采用自主探索、合作交流的学习方式,既鼓励学生独立尝试又重视学生的互动。给学生提供自评互评的时间。从而培养学生解决问题的能力。
鼓励求异思维。激发创新潜能。教师在课堂上鼓励学生肴哪个组解决问题的方法多”。激活了学生的思维。
最后设计的综合实践活动题。达到了培养学生动手实践、自主解决问题的能力.
第二篇:按比例分配教学设计
按比例分配教学设计
泥河小学:刘兵 【教学内容】:苏教版教材第十一册,P59;例11 【教学目标】:知识目标:让学生结合生活经验,自主探索、再进行小组合作交流,在积极的环境中进一步沟通比和分数之间的关系,掌握用按比例分配的方法解决实际问题。
能力目标:帮助学生沟通比和分数之间的关系,掌握用按比例分配的方法解决实际问题,培养学生自主学习、合作交流、解决问题的能力。
情感目标:使学生感受数学与生活的联系,培养学习数学的兴趣和解决问题的能力。
【重点、难点】
教学重点:利用已有知识迁移、类推、发现按比例分配问题的解题方法,使学生了解和掌握按比例分配问题的一般思考步骤,理解按比例分配的解题思路,会解决实际问题。
教学难点:探索发现按比例分配问题的解题方法,理解按比例分配的解题思路。
【教学关键】: 把比转化成份数或分数,使题目转化为归一应用题或分数应用题。
【教学过程】:
创设情境创设情境,导入新课。
(一)复习比与分数之间的转化。
1、师:孩子们,听语文老师说,上语文课时大家的语言特别的丰富。是这样吗?今天,我倒想见识见识,请看大屏幕。
2、课件:六年级(1)男、女生人数的比是3:2 看到这个比,你能想到些什么?
男生人数占3份,女生人数占2份,全组人数占5份。
男生人数是女生人数的几分之几?
男生人数占全组人数的几分之几? 女生人数占全组人数的几分支几?
3、师:同学们想到的可真多,老师写出几个,大家读一读并填空。(课件)
二)创设情境导入。
1、师:孩子们,为了让学校更加整洁、美观,学校决定让六年级(1)班和二年级(1)班共同承担面积为100平方米的卫生区的保洁任务,平均每个年级的保洁区是多少平方米?
2、生:平均分配,每个班50平米。
3、师:你觉得六年级和二年级这样分合理吗?为什么?
4、师:同学们,在我们日常的生活中,往往有些问题不能平均分配,你们知道还可以怎么分配吗(课件)?今天我们就来学习一种新的分配方法---按比例分配。(板书:按比例分配)请同学们把书翻到59页。齐念课题:按比例分配
二、尝试探究:
1.出示例题,感知解题信息。(课件)
师问:红色与黄色方格数的比是3:2是什么意思?
学生可能回答:
①30个方格平均分成5份,3份涂红色,2份涂黄色。
② 红色方格占总格数的3/5,黄色方格占2/5。
2.讨论解题方法
(1)师:想一想,你们有什么办法可以计算两种颜色各应涂多少格?
生尝试列式解答,小组内交流、讨论。
(2)组织交流讨论结果,归纳、板书:
①解法一:根据比,先求出总份数,再求出每份数量,最后求出各部分数量。
30个方格平均分成5份,3份涂红色,2份涂黄色。
3+2=5
红色方格:30÷5×3=18(格)
黄色方格:30÷5×2=12(格)
② 解法二:
根据比得出各部分量占总量的几分之几,然后按求一个数的几分之几是多少的方法来解,将比转化成分数来解。
红色方格占总格数的3/5,黄色方格占2/5。
红色方格:30×3/5=18(格)
黄色方格:30×2/5=12(格)
3.验证解题方法。
我们怎么知道自己解题是否正确?
引导学生在方格纸上涂一涂,算一算进行验证。4.初步运用解题方法。初步应用:试一试
如果把图的30个方格按照1:2:3涂成红、黄、绿三种颜色,你能算出三种颜色各应涂多少格吗?
讨论:(1)1:2:3是什么意思?
(2)三各颜色各占总数的几分之几? 5.小结解题方法。
(1)学习这两个例题后,老师问你学到了什么。
(2)师生共同小结:一个数量按照一定的比来进行分配,这种分配方法叫做按比例分配,计算时可以根据比,先求出总份数,再求出每份数量,最后求出各部分数量,也可以根据比得出各部分量占总量的几分之几,然后按求一个数的几分之几是多少的方法来解,将比转化成分数来解。
三、实践运用,深化发展
课本第60页“练一练”和“动手操作”(课件)
四、全课总结:
通过这节课的学习,你学到了什么? 怎样进行按比例分配? 生回合答后,师总结:
1、按比例分配应用题基本特征:已知:
1、总量
2、各部分量的比求:各部分的量。
2、步骤:第一步求总份数;第二步求各部分量。
3、解题关健在把比转化成每一个数量占总数量的几分之几,根据求一个数的几分之几是多少,用乘法来解答。
五、布置作业
课本练习十第1、2、3题。【板书设计】:
按比例分配的实际问题
把一个数量按照一定的比来进行分配
例:
方法一:
方法二:
总份数:
3+2=5 红 色:
30÷5×3=18(格)
30× 3/5 = 18(格)黄 色:
30÷5×2=12(格)
30× 2/5 = 12(格)答:红色应涂18格,黄色应涂12格。
第三篇:按比例分配教学设计
《按比例分配》教学设计
威远县龙会镇中心学校 袁桂凤
教学目标
1、让学生了解比在生活中的广泛应用,探索按比例分配的解决方法,并能用来解决有关实际问题。
2、培养学生自主探索解决问题的能力,培养学生的创造性思维和实践能力。
3、树立用自己学来的知识帮忙解决问题的意识。教学重点 掌握按比例分配的解决方法.教学难点 灵活解决实际问题。
教材分析:这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比例分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。教学过程
一、知识铺垫
出示:数学兴趣小组男生和女生的人数比是5︰4。问题:1.从这个信息中你能想到什么?
2.根据这个信息能确定这个兴趣小组男生和女生各有多少人吗?
二、创设情境,导入新知
问题:
1.什么是稀释液?什么是浓缩液? 2.1︰2的稀释液怎么配制呢?
2.阅读与理解 问题:1.题目中要分配什么?是按什么进行分配的? 2.500mL是配好的稀释液的体积,1︰4表示什么? 3.要解决的问题是什么?
问题:1.根据信息画出线段图;说一说线段图所表示的意思。2.独立尝试解决问题。3 反馈与交流:
(1)你知道方法一中每一步求的是什么吗?(2)你知道方法二中每一步求的是什么吗?
4.沟通与比较:两种方法有什么相同和不同之处? 5.回顾与反思
三、巩固应用,拓展思路
1.某妇产科医院上月新生婴儿303名,男女婴儿人数之比是51︰50。上月新生男女婴儿各有多少人?
问题:1.观察上面两道题,说一说按比例分配问题有什么特点。2.解决此类问题时要注意什么?
2.有一个长方形的花坛,周长200米,长与宽的比是3∶2。这个花坛的长和宽分别是多少米?
3.学校把栽70棵树的任务,按照六年级三个班的人数分配给 各班。一班46人,二班44人,三班50人。三个班各应栽树多少棵?
四、布置作业
作业:第55页练习十二,第2题、第3题。
第四篇:《按比例分配》教学设计
《按比例分配》教学设计
教学目标
1.使学生受到初步的辩证唯物主义观点的教育。
2.使学生学会并掌握“按比例分配”应用题的解答方法,掌握“比例分配”问题的特征,能熟练地计算。
教学重点和难点 把比转化成分数。教学过程设计(一)复习准备
2.甲数与乙数的比是4∶5。①甲数是乙数的几分之几? ②乙数是甲数的几分之几?
③甲数是甲、乙总数的几分之几? ④乙数是甲、乙总数的几分之几? 3.出示投影图:
师:看到此图你能想到什么? 学生说,老师写在胶片上: ①女生与男生的比是3∶2。②男生与女生的比是2∶3。
4.某生产队运来60吨化肥,平均分给5个小队。每个小队分到多少吨? 60÷5=12(吨)这种解答的方法,在算术上叫什么方法?
刚才我们解题的方法叫平均分配的方法,在工农业生产和日常生活中应用很广泛,而且这种方法你们早已比较熟悉,也经常用它解决一些实际问题。但有些事情,用这种方法就行不通了。
如:你们单元住着18家,每月交的水电费能平均分配吗? 又如:国家搞绿化建设,能把绿化任务平均分配给各单位吗?
比如生产队的土地,也要根据国家计划,合理安排种植,不能想种什么就种什么,所有这些,都需要把一个数量按照一定的“比”进行分配,这样的分配方法叫“按比例分配”。(板书课题)(二)学习新课 1.出示例题。
例1 第四生产队计划把400公顷地按照3∶2的比例播种粮食作物和经济作物。粮食作物和经济作物各种多少公顷?
学生读题,分析题中的条件与问题,教师把条件与问题简写出来: 然后再让学生带着三个问题去思考。(1)两种作物一共几份?怎样求?
(3)400公顷是总数,要求的两种作物各种多少公顷?怎样计算? 分析:①用一个长方形表示全部土地。(画图)②根据粮、经之比是3∶2,你知道什么意思?(粮3份,经2份。)师边说边把长方形平均分成5份,其中3份标粮,其中2份标经。观察:①从图上看,把全部土地平均分成几份?你怎么算出来的?(板书)总份数:
3+2=5 3∶2,实质都表示倍数关系。现在这道题能够解决了。粮食作物多少公顷?怎么算? 经济作物多少公顷?怎么算?
验算:①求总数
240+160=400 ②求比
240∶160=3∶2 答:粮食作物240公顷,经济作物160公顷。(附图)这道题就是“按比例分配”的问题。解决这个问题的关键是:首先 多少。
师归纳:问题通过分析得到解决,又经过验算证明方法正确,从这道题可以悟出解答“按比例分配”应用题的规律为:
已知两个数的和与两个数的比,把两个数的比转化成各占几分之几,然后按“求一个数的几分之几是多少用乘法”的方法解答。
2.试一试。
抓住主要矛盾练习,运用规律解决问题。
把45棵树苗分给两个中队,使两个中队分得的树苗的比是4∶5,每个中队各得几棵树苗?
总份数是几?怎么算?一中队占几分之几?二中队占几分之几? ①总份数 4+5=9 验算:①总棵树
20+25=45(棵)②比
20∶25=4∶5 答:一中队得20棵,二中队得25棵。(三)巩固反馈
1.某工厂有职工1800人,男女职工人数比是5∶4,求男女职工各多少人?
2.沙子灰是灰和沙子混合而成的,它们的比是7∶3。要用280吨沙子灰,则灰和沙子各需多少吨?
3.图书馆买来160本儿童故事书,按1∶2∶3分给低、中、高年级同学阅读。低、中、高年级各分到多少本?
以上三题只列出主要算式即可。
4.学校把560棵的植树任务,按照五年级三个班人数分配给各班。一班47人,二班45人,三班48人。三个班级各植树多少棵?
分析条件、问题以后让学生讨论: ①三个班植树的总棵树是几?
②题目要求按什么比?人数比是几比几?
③三个数的和及三个数的比知道后,根据“按比例分配”的规律,怎样计算这道题?
试着让学生在本上做,老师巡视,然后把方法集中到黑板上。(找用不同方法计算的学生板演。)5.有一块试验田,周长200米,长与宽的比是3∶2。这块试验田的面积是多少平方米?(这道题给了长与宽的比是3∶2,指的是一个长与一个宽的比,而周长包括2个长和2个宽,因此先求出一个长宽的和,即200÷2,然后把100按3∶2去分配。)6.看图编一道按比例分配题解答。
7.水是由氢和氧按1∶8的重量比化合而成的。5.4千克的水中含氢、氧各多少千克?(看谁用的方法多。)方法1 8+1=9 方法2 5.4÷9=0.6(千克)0.6×1=0.6(千克)0.6×8=4.8(千克)方法3 方法4 5.4÷(8+1)=0.6(千克)0.6×8=4.8(千克)方法5 解:设氢为x千克。5.4-x=8x 5.4=9x x=0.6 5.4-x =5.4-0.6 =4.8 方法6 解:设氧为x千克。x=(5.4-x)×8 x=43.2-8x 9x=43.2 x=4.8 5.4-x =5.4-4.8 =0.6 以上方法4,5,6要写全过程。(四)布置作业(略)课堂教学设计说明
1.通过复习,使学生认识到比与分数是有联系的。
2.讲授新课时,先讲了一个最一般的按比例分配题,练习1~3题以后出现另一种形式的按比例分配题,这里老师采用讲练结合的方法。最后让学生用多种方法解答一道题,从而让学生认识到整数、分数、比和比例这些知识的内在联系,使学生明确,当题中给出比的条件时,可以直接用比例的知识解题,也可以根据整数、分数、比和比例之间的联系,把比所表示的两个数量之间的关系用分数、整数之间的关系来表示,并解答题。但是由于分析的思路不同,解答的方法也不同。不管学生采用哪种方法解答,老师都要加以肯定,并鼓励学生采用多种方法解答。
第五篇:按比例分配-教学设计
《按比例分配》教学设计
杨丽红
教学目标:
1.使学生掌握按比例分配的题型特征,会正确用按比例分配的方法解决生活中的实际问题。
2.加强知识之间的联系,发展学生的知识结构。
3.激发学生学习的兴趣,培养学生自主学习、自我探究能力。
教学过程:
一、复习铺垫,实现迁移。
1. 一段路长480米,第一天修了全长的,第一天修了多少米? 2. 从“甲乙两人修路长度的比是5:3”你能想到什么?
3. 把100个苹果平均分给幼儿园两个班的小朋友,平均每个班分得多少个?
(板书:平均分)
二、导入新课,明确目标。
在工农业生产和日常生活中,有时不能实现平均分,或者不平均不够合理,需要按一定的比来进行分配,习惯上我们把这一类的问题称为“按比例分配”。今天这一堂课,就请同学们通过自己学习、小组合作自行解决这一类问题的方法。
三、设疑激趣,明确方向。
教师出示一个盒子,问学生,如果老师要请你们分这个盒子里的东西,你要向老师寻问什么信息。使学生明白:
分什么
有多少
分给谁
怎样分(板书)
四、尝试学习、探索方法。1.出示尝试题:
一块地800平方米,种植粮食作物和蔬菜面积的比是5:3,种植粮食作物和蔬菜面积各是多少平方米? 2.学生自主探索。
可以先练习再看书,也可以先看书上的例题再尝试练习。3.小组交流。
说清解题的思路,想一想还有其它方法吗? 4.交流方法,明确思路。方法一: 5+3=8(份)800÷8=100
100×5=500(平方米)100×3=300(平方米)
答:种植粮食作物500平方米,种植蔬菜300平方米。方法二:
800×=500(平方米)800×=300(平方米)
答:种植粮食作物500平方米,种植蔬菜300平方米。
五、多种练习、形成技能。1.定向练习——掌握对应。一个直角三角形,两个锐角的比是3:2。这两个锐角分别是多少度?(练习十四第4题)
明确,把两个锐角按比例分配,必须知道两个锐角的和是多少?总量必须与部分量的和对应。(板书:对应)2.发展练习——巩固方法。将尝试题改编为:
一块地800平方米,种植粮食作物、蔬菜和鲜花面积的比是5:3:2,种植粮食作物、蔬菜和鲜花的面积各是多少平方米? 3.变式练习——形成技能。
蓓蕾幼儿园大班有35人,中班有31人,小班有24人。张阿姨准备把180块巧克力按班级人数的比分给三个班。每个班各应分得多少块?(书上练一练第2题)
使学生明确,按35:31:24进行分配 4.对比练习——形成结构。
学校合唱队有48人,其中男生和女生人数的比是1:3。男、女生各有多少人? 在学生口答的基础上将题中的比依次改为1:2,1:1。使学生知道按1:1分配就是“平均分”,平均分是按比例分配的特殊情况。教师完成“平均分”与“按比例分配”关系图。附:板书