第一篇:诱导公式教学设计
三角函数的诱导公式教学设计
教材分析 地位与作用
“三角函数的诱导公式”是普通高中课程标准实验教科书人教A版必修4第一章第三节,其主要内容是三角函数的诱导公式中的公式二至公式六。它是圆的对称性的“代数表示”。利用对称性,探究角的终边分别关于原点或坐标轴对称的角的三角函数值之间的关系,体现“数形结合”的数学思想;诱导公式的主要用途是把任意角的三角函数值问题转化为求锐角的三角函数值,体现“转化”的数学思想。诱导公式学习还反映了从特殊到一般的归纳思维形式,对培养学生的创新意识、发展学生的思维能力具有积极的作用。教学目标 1.知识与技能
借助单位圆,推导出诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,掌握有关三角函数求值问题。2.过程与方法
经历诱导公式的探索过程,体验未知到已知、复杂到简单的转化过程,培养化归思想。3.情感、态度与价值观
感受数学探索的成功感,激发学习数学的热情,培养学习数学的兴趣,增强学习数学的信心。重、难点 1.重点:诱导公式二、三、四的探究,运用诱导公式进行简单三角函数式的求值,提高对数学内部联系的认识。
2.难点:发现圆的对称性与任意角终边的坐标之间的联系;诱导公式的合理运用。教学环节
一、课题引入
问题1:任意角α的正弦、余弦、正切是怎样定义的? 学生口述三角函数的单位圆定义:sin=y,cos=x, tan=(x≠0)问题2:求下列三角函数值:(1)sin,(2)cos,(3)tan。
给学生3分钟左右的时间独立思考,教师请1名学生到黑板上展示其答题情况。学生独立思考,尝试用定义解答。1名学生到黑板上板演。抓住学求的三角函数值时产生思维上认识的冲突,引出课题《三角函数的诱导公式》。
根据教师的引导产生探索新知识的欲望
设计意图(三角函数的定义是学习诱导公式的基础,设置问题情境,产生知识冲突,引发思考,既调动学生学习积极性,激发探究欲望,又顺利导入新课。)
二、合作探究公式
1.根据学生黑板上用定义求角考:
问题3:(1)角(2)设角与角
和角的终边有何关系? 的三角函数值的情况,引导学生思的终边分别交单位圆于点P1、P2,点P1的坐标为P1(x,y),则点 P2的坐标如何表示?(3)它们的三角函数值有何关系?
2.教师用几何画板演示角α可以是任意角,引导学生体会 1.学生观察图形,结合教师的问题发现:角
和角
数量上相差,图形上它们的终边关于原点对称,与单位圆的交点坐标互为相反数。再根据定义得出角
和角
三角函数之间的关系。
2.观察教师给出的动画演示,体会角α的任意性,得出任意角α与角π+α的终边关于
原点对称,其三角函数值之间满足公式二。特殊角到一般角的变化,归纳出公式二: sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)= tanα。3.练习:求sin2250
学生根据公式二求2250的正弦值。自主探究公式
三、公式四
1.引导学生回顾刚才探索公式二的过程,明确研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。为学生指明探索公式三、四的方向。2.探究:给定一个角a。
(1)角π-a和角a的终边有什么关系?它们的三角函数之间有什么关系?
(2)角-a和角a的终边有什么关系?它们的三角函数之间有什么关系?
3.组织学生分组探索角π-a和角a、角-a和角a的三角函数之间的关系。
先让学生先独立思考,然后小组交流。在学生交流时教师巡视,让两个小组到黑板上展示。同时派出优秀学生到其他小组提供帮助。4.在学生解答后教师用几何画板演示其中的角a也可以为任意角,验证学生的结论。1.体会研究诱导公式的线路图。画出图形,先独立思考尝试自主解答,一定时间后在组长的带领下展开组内讨论。
2.两个小组的代表到黑板上展示。3至4名优秀学生到其他小组提供帮助。
3.观察教师的动画演示,验证讨论的结论。得到公式三: sin(-a)=-sin a,cos(-a)= cos a,tan(-a)=-tan a。公式四:
sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα.4.学生先自由发言,尝试归纳公式的特征。然后在教师的引导下小组交流讨论形成对公式的正确认识。归纳出公式的特征: 的三角函数值,等于a的同名函数
活动四:公式运用
练习:利用公式求下列各三角函数值:(1)sin;(2)cos();(3)tan(-2040°)1.让3名学生到黑板上板演,组织全班学生观察纠错。
2.引导学生归纳用诱导公式将任意角的三角函数化为锐角的三角函数的一般步骤。课堂小结:
1.本节课我们学习了什么知识? 2.谈谈您本节课学习的感想!
引导学生回忆诱导公式的内容及其作用。强调探索诱导公式中的思想方法。作业:
习题1.3A组 1、2;
第二篇:三角函数诱导公式(一)教学设计
三角函数诱导公式
(一)教学设计
【主题释义】
教师是教学活动中的参与者、组织者与引导者,课堂上必须留足学生活动的时间。课堂教学是教师在有限的时空中最大限度地引导学生获取知识、技能的过程,更是学生生命活动的过程。
【设计思想】
三角函数的诱导公式是普通高中课程标准实验教科书数学必修四第一章第三节的内容,其主要内容是三角函数诱导公式中的公式
(一)至公式
(六).本节是第一课时,教学内容为公式
(一)、(二)、(三)、(四).本课内容主要是通过学生在已经掌握的任意角的三角函数的定义的基础上推导出诱导公式
(一),并且利用对称思想发现任意角 与其终边关于 x轴、y 轴和原点对称的角的关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即从“角的关系”到“对称关系”到“坐标关系”再到“角的三角函数关系”的流程,渗透了转化与化归等数学思想方法,本课内容的实质是将终边对称的图形关系“翻译”成三角函数的代数关系,为培养学生思考、动手、动脑提出了要求,也有助于培养学生养成数学学习的思维习惯。【教学设计】 三维目标:
(一)、知识与技能:
1、借助于单位圆,推导出正弦、余弦的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式的证明问题。
2、能通过公式的运用,了解未知到已知、复杂到简单的转化过程,提高分析和解决问题的能力。
(二)、重点难点:
1、诱导公式的推导、理解和符号的判断
2、诱导公式的应用
(三)、过程与方法
1、师生之间,生生之间相互交流,逐步使学生学会共同学习
2、通过探讨诱导公式,明确数学概念的严谨性和科学性,做一个具备严谨科学态度的人.
(四)、情感,态度与价值观
1、通过单位圆中三角函数线的利用,体会三角函数线是一类重要的运算工具,逐步培养学生的应用意识.
2、在教学过程中,通过现代信息技术的合理应用,让学生体会到现代信息技术是认识世界的有效手段,也是的抽象的数学符号变得直观具体.
【教学过程】:
(一)复习:
1. 利用单位圆表示任意角的正弦值和余弦值;
设计意图:顺应学生认知,指明学习方向,为接下来的内容推导打好铺垫。
(二)新课探究
问题一:你能求3900的正弦值和余弦值吗?(学生思考并回答,教师即时点评与归纳)教师板书:公式一及其作用
设计意图:承上启下,利用刚才的复习旧知引入今天的课题
问题二:同名的三角函数值相等,角的终边一定相等吗?比如你能找到和300的正弦值相同,但是终边不相同的角吗?
(学生活动,教师利用几何画板展示学生的探讨结果)
说明:
1、推导出两角关于y轴对称的公式三
2、公式三的作用,教师板书:公式三及其作用
设计意图:问题的目的在于锻炼学生逆向思维能力,同时也从反面来考察学生对概念的掌握情况.并由此设置阶梯帮助学生寻找第二组公式。同时结合多媒体技术,利用几何画板直观的展示两角关于y轴对称的三角函数关系。
问题三:请大家回顾一下,我们刚才是如何推导出这组公式的?
(学生活动)
说明:推导流程:从“角的关系”到“对称关系”到“坐标关系”再到“角的三角函数关系”的转化和化归思想。(教师板书)
设计意图:帮助学生整理数学思维方法,明确推导公式过程中的本质内容,从而为以下内容铺垫。
问题四:你还能推导任意角与其终边关于 x轴和原点对称的角的三角函数关系吗?
(学生活动)
说明:
1、推导出两角关于x轴和原点对称的公式二、四
2、公式的作用,这里的是任意角,在弧度制和角度制下都成立
3、从“角的关系”到“对称关系”到“坐标关系”再到“角的三角函数关系”的推导流程是本课的本质内容。
教师板书:公式二、四及其作用
设计意图:通过问题四加强学生对概念的理解与运用。感知数学。同时结合多媒体技术,利用几何画板直观的展示两角关于x轴和原点对称的三角函数关系
(三)探究成果
2、三角函数诱导公式:公式一
公式二
公式三
公式四(教师板书)
问题五:四组公式的符号有什么特点规律?
学生活动,教师点评归纳
设计意图:锻炼学生的分析总结能力,并减轻学生记忆12个公式的思维负担,体现数学的美。
(四)数学应用 例
1、求值:
(1)sin;
(2)cos7611;
(3)tan(1560)4设计意图:考察学生的数学运用能力,以及公式运用过程中的转
化和化归思想,体会数学重要的思想方法。
cos(1800)sin(3600)变
1、化简 00sin(180)cos(180)
sin[(k1)]sin[(k1)]变
2、:化简
其中kZ. sin(k)cos(k)设计意图:巩固学生所掌握的诱导公式的运用能力,考察学生的分类讨论数学思想方法,并能解决问题。
(四)课堂小结
问题六:这节课你主要学习到了哪些重要知识?并且你有哪些心得体会可以和我们一起分享?
说明:
1、诱导公式的实质是将终边对称的图形关系“翻译”到三角函数之间的代数关系。
2、推导中从“角的关系”到“对称关系”到“坐标关系”再到“角的三角函数关系”的流程,渗透了转化与化归等数学思想方法
3、利用诱导公式可以将任意角的三角函数值转化为锐角的三角函数值。
(五)课后作业
书本第20页练习1、2、3题
(六)板书设计
三角函数诱导公式
(一)1)公式及其作用:
公式一:
作用:
公式二:
作用: 公式三:
作用: 公式四:
2)公式的记忆规律: 3)数学应用:
例1:
变题2: 4)课后小结: 5)作业布置:
作用:
变题1: 6
第三篇:三角函数诱导公式(一)教学设计
学科:数学
年级:高一
教材:
学校:江苏省羊尖高级中学 姓名:郭丽娟
三角函数诱导公式
(一)教学设计
【主题释义】
教师是教学活动中的参与者、组织者与引导者,课堂上必须留足学生活动的时间。课堂教学是教师在有限的时空中最大限度地引导学生获取知识、技能的过程,更是学生生命活动的过程。
【设计思想】
三角函数的诱导公式是普通高中课程标准实验教科书数学必修四第一章第三节的内容,其主要内容是三角函数诱导公式中的公式
(一)至公式
(六).本节是第一课时,教学内容为公式
(一)、(二)、(三)、(四).本课内容主要是通过学生在已经掌握的任意角的三角函数的定义的基础上推导出诱导公式
(一),并且利用对称思想发现任意角 与其终边关于 x轴、y 轴和原点对称的角的关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即从“角的关系”到“对称关系”到“坐标关系”再到“角的三角函数关系”的流程,渗透了转化与化归等数学思想方法,本课内容的实质是将终边对称的图形关系“翻译”成三角函数的代数关系,为培养学生思考、动手、动脑提出了要求,也有助于培养学生养成数学学习的思维习惯。【教学设计】 三维目标:
(一)、知识与技能:
1、借助于单位圆,推导出正弦、余弦的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式的证明问题。
2、能通过公式的运用,了解未知到已知、复杂到简单的转化过程,提高分析和解决问题的能力。
(二)、重点难点:
1、诱导公式的推导、理解和符号的判断
2、诱导公式的应用
(三)、过程与方法
1、师生之间,生生之间相互交流,逐步使学生学会共同学习
2、通过探讨诱导公式,明确数学概念的严谨性和科学性,做一个具备严谨科学态度的人.
(四)、情感,态度与价值观
1、通过单位圆中三角函数线的利用,体会三角函数线是一类重要的运算工具,逐步培养学生的应用意识.
2、在教学过程中,通过现代信息技术的合理应用,让学生体会到现代信息技术是认识世界的有效手段,也是的抽象的数学符号变得直观具体.
【教学过程】:
(一)复习:
1. 利用单位圆表示任意角的正弦值和余弦值;
设计意图:顺应学生认知,指明学习方向,为接下来的内容推导打好铺垫。
(二)新课探究
问题一:你能求3900的正弦值和余弦值吗?
(学生思考并回答,教师即时点评与归纳)教师板书:公式一及其作用
设计意图:承上启下,利用刚才的复习旧知引入今天的课题
问题二:同名的三角函数值相等,角的终边一定相等吗?比如你能找到和300的正弦值相同,但是终边不相同的角吗?
(学生活动,教师利用几何画板展示学生的探讨结果)
说明:
1、推导出两角关于y轴对称的公式三
2、公式三的作用,教师板书:公式三及其作用
设计意图:问题的目的在于锻炼学生逆向思维能力,同时也从反面来考察学生对概念的掌握情况.并由此设置阶梯帮助学生寻找第二组公式。同时结合多媒体技术,利用几何画板直观的展示两角关于y轴对称的三角函数关系。
问题三:请大家回顾一下,我们刚才是如何推导出这组公式的?
(学生活动)
说明:推导流程:从“角的关系”到“对称关系”到“坐标关系”再到“角的三角函数关系”的转化和化归思想。(教师板书)
设计意图:帮助学生整理数学思维方法,明确推导公式过程中的本质内容,从而为以下内容铺垫。
问题四:你还能推导任意角与其终边关于 x轴和原点对称的角的
三角函数关系吗?
(学生活动)
说明:
1、推导出两角关于x轴和原点对称的公式二、四
2、公式的作用,这里的是任意角,在弧度制和角度制下都成立
3、从“角的关系”到“对称关系”到“坐标关系”再到“角的三角函数关系”的推导流程是本课的本质内容。
教师板书:公式二、四及其作用
设计意图:通过问题四加强学生对概念的理解与运用。感知数学。同时结合多媒体技术,利用几何画板直观的展示两角关于x轴和原点对称的三角函数关系
(三)探究成果
2、三角函数诱导公式:公式一
公式二
公式三
公式四(教师板书)
问题五:四组公式的符号有什么特点规律?
学生活动,教师点评归纳
设计意图:锻炼学生的分析总结能力,并减轻学生记忆12个公
式的思维负担,体现数学的美。
(四)数学应用 例
1、求值:
(1)sin;
(2)cos7611;
(3)tan(1560)4设计意图:考察学生的数学运用能力,以及公式运用过程中的转化和化归思想,体会数学重要的思想方法。
cos(1800)sin(3600)变
1、化简 00sin(180)cos(180)
sin[(k1)]sin[(k1)]变
2、:化简
其中kZ. sin(k)cos(k)设计意图:巩固学生所掌握的诱导公式的运用能力,考察学生的分类讨论数学思想方法,并能解决问题。
(四)课堂小结
问题六:这节课你主要学习到了哪些重要知识?并且你有哪些心得体会可以和我们一起分享?
说明:
1、诱导公式的实质是将终边对称的图形关系“翻译”到三角函数之间的代数关系。
2、推导中从“角的关系”到“对称关系”到“坐标关系”再到“角的三角函数关系”的流程,渗透了转化与化归等数学思想方法
3、利用诱导公式可以将任意角的三角函数值转化为锐角的三 5
角函数值。
(五)课后作业
书本第20页练习1、2、3题
(六)板书设计
三角函数诱导公式
(一)1)公式及其作用:
公式一:
作用:
公式二:
作用: 公式三:
作用: 公式四:
作用:
2)公式的记忆规律: 3)数学应用:
例1:
变题1: 变题2: 4)课后小结: 5)作业布置:
第四篇:诱导公式教案
诱导公式教案1
教学目标
1.通过本节课的教学,使学生掌握诱导公式的推导方法和记忆方法.
2.会运用这些公式求解任意角的三角函数的值,并会进行一般的三角关系式的化简和证明.
3.培养学生观察问题、解决问题、抽象概括问题的能力,并注意完善学生的基本数学思想和数学意识.
教学重点与难点
诱导公式的推导.
教学过程设计
师:我们前面学习过诱导公式一,请说出诱导公式一及其文字叙述.它在转化任意角的三角函数中所起的作用是什么?
生:(学生口述的同时,教师板书诱导公式一.)
sin(k²360°+α)=sinα,cos(k²360°+α)=cosα,tan(k²360°+α)=tanα,cot(k²360°+α)=cotα.(k∈Z)
文字叙述:终边相同的角的同一个三角函数的值相等.
它在转化任意角的三角函数中所起的作用是:把求任意角的三角函数值的问题,转化为求0°~360°(或0~2π)之间角的三角函数值的问题.
师:(副板书)试求出sin 2016°的值.
生:由公式一,sin 2016°=sin(5³360°³216°)=sin 216°.
(至此,绝大多数同学已无法再演算下去了.)
(以旧知识的复习,导出新的问题,使学生新的求知欲得到激发,渴望得到回答,以达到以旧带新,以旧拓新的目的.)
师:能否导出一些新的公式来解决这类问题?可先看这道具体问题如何求解.我们知道0°~90°之间的角的三角函数值可以通过查表求得.那么,能否借助一个工具,在0°~90°之间找到一个角α,把求sin 216°的值的问题转化为求α角的三角函数值问题?(进一步诱导,使学生进入愤悱状态.)
师:(投影图1)216°角的终边OP在第三象限内,将OP反向延长,与单位圆交于P′点,则在0°~90°之间找到一个角α=216°-180°=36°.由于△OPM≌△OP′M′,所以有MP=M′P′.又因为sin 216°=MP,sin 36°=M′P′,而MP与M′P′的长度相同、方向相反,所以有sin 216°=-sin 36°.这样便把求sin 216°的值的问题,转化为可查表的36°角的三角函数求值问题.
你能把以上几何变换的过程,用三角关系式表示出来吗?(向“公式化”过渡.实际上我们先经过了一次将三角问题几何化——利用正弦线.)
生:sin 216°=sin(180°+36°)=-sin36°.
师:180°~270°之间角的余弦函数问题,是否也可以通过这种变换,转化为求α角在0°~90°之间的三角函数问题?(迁移作用)
(师适当提示:观察余弦线的数量关系.)
生:„„
师:180°~270°之间角的正切、余切函数的求值问题,是否也可以通过这样的变换转化求值?
(师适当提示:方法1,仍通过三角函数线观察出结果;方法2,可通过同角三
生:„„
师:可见180°~270°之间角的三角函数求值问题都可以通过类似的变换求出三角函数的值.能否把这种变换求值的方法,总结成公式形式?
(从具体问题的求解,到公式的形成是一种质的飞跃.)
师:(适当提示:先把180°~270°之间的角用α(α是0°~90°之间的角)表示出来.)
生:(板书)
sin(180°+α)=-sinα,cos(180°+α)=-cosα,tan(180°+α)=tanα,cot(180°+α)=cot α.
师:这组公式通常称为诱导公式二.观察其结构特征:①同名函数关系;②符号规律:右边符号与180°+α角所在象限(第三象限)角的原三角函数值的符号相同.(为总结公式的记忆方法打基础.)
师:任意角的三角函数值问题,可以由公式一化为0°~360°之间角的三角函数值问题;180°~270°之间角的三角函数值,又可通过诱导公式二化为0°~90°之间角的三角函数值,从而得出函数值;那么90°~180°、270°~360°之间的角的三角函数值问题,能否转化为0°~90°之间角的三角函数值来求出解答?(横向联想,公式二的归纳过程,会对学生的思维产生正向的影响.)
(师提示:由对称性找出角的终边间的关系,再证出三角函数线的数量关系,正切、余切函数的诱导公式可由同角三角函数的基本关系式推出.)
生:„„(讨论的同时,完成图2.)
师:(板书)
生:(板书完成)
sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=tanα,cot(-α)=-cotα.
(及时评价、反馈.)
师:这组公式通常称为诱导公式三.观察其结构特征:①同名函数关系;②符号规律是:右边符号与-α所在的第四象限角的原三角函数值的符号相同.
师:(板书)
生:(完成板书)
sin(180°-α)=sinα,cos(180°-α)=-cosα,tan(180°-α)=-tanα,cot(180°-α)=-cotα.
(师及时评价、反馈.)
师:这组公式通常称为诱导公式四.观察其结构特征:①同名函数关系;②符号规律:右边符号与180°-α所在的第二象限角的原三角函数值的符号相同.
师:由于360°-α角与-α角的终边相同,它们的同一三角函数值相等,所以有(板书)
sin(360°-α)=-sinα,cos(360°-α)=cosα,tan(360°-α)=-tanα,cot(360°-α)=-cotα.
师:目前,连同公式一,我们一共得到了五组诱导公式,利用它们,可以求出任意角的三角函数值.为使公式更具一般性,不妨大胆猜测:若公式中的角α为任意角,公式是否仍能成立?(推广到一般性.)
生:„„
师:大胆猜测,还要小心求证.没有大胆猜测,就没有事物的发展和进步;(鼓励猜想),没有经过证明的结论总是危险的.我们可先以公式二为例,证明究竟谁猜的对.(要证明猜测的结论,学生情绪进一步高涨.)
师:(投影图3)
生:„„
(师提示:可先由三角函数线或由三角函数定义,推出sin(180°+α)与sinα,cos(180°+α)与cosα的数量关系,再用同角三角函数的基本关系式推出
师:由此可见,α为任意角时,公式二仍然成立.类似于公式二的推证方法,可以证明公式三也成立.而180°-α可以写成180°+(-α),360°-α又与-α角终边相同,容易推出,对任意角α,公式三、四、五也都成立.验证过程由同学们在课下完成.
(给学生留有细心体验发现的空间.)
(到此完成了又一次的升华.)
师:本节课推得的公式较多,如何记忆这些公式呢?(机械记忆显然不可行.)由推证公式的过程可知,其结构具有一定的规律性:①等号两边的函数名称相同;②符号规律:把α看作锐角时,等号右边的符号与k²360°+α(k∈Z)(第一象限角)、-α(第四象限角)、180°+α(第三象限角)、180°-α(第二象限角)、360°-α(第四象限角)所在象限的原三角函数值的符号相同.(可回顾图2)
综上所述,这些公式可以概括如下:
k²360°+α(k∈Z),-α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号.
师:(投影图4,用红色标出x轴)由于把α看作锐角时,k²360°+α,180°±α,-α,360°-α均可看作由x轴出发加或减α得到的,所以这五组诱导公式又可称为“水平诱导”公式.按如下方法记忆:
水平诱导名不变;符号看象限.
师:下面给大家半分钟,体会上述记忆方法并考虑用弧度制如何表示上述公式?
生:„„
(师个别提问.及时反馈.这样可提高学生的学习积极性和学习效率.)
师:用诱导公式都可以解决哪些问题?(自问自答)
作用1:求值.一般可按如下步骤进行:
以上步骤可简化为:
负化正;正化主;主化锐角可查表.
(0°~360°之间的角α叫做主值或主角)
例1 求下列各三角函数值.
主”,注意去掉的是2kπ即12π,而不能去掉13π;由公式四“主化锐”为
(2)tan 2025°=tan(5³360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1.
师:新学公式,不得跳步.(3)、(4)小题请同学完成.(各请一位同学板演,同时教师巡视.)
(3)cos(-519°)=cos 519°=cos(360°+159°)=cos 159°
=cos(180°-21°)=-cos 21°=-0.933 6.
师:运用熟练后,还可以总结出简炼快捷的求值方法.(提出更高的目标.由公式指导实践是质的又一次升华.)
作用2:化简或证明.可把复杂问题化简单,直到解决问题.
分析:本题既要看代数结构,三角结构,还要观察角的结构.请同学观察:
(1)各项均与角α有关,所以先用诱导公式化简为同角的三角函数;
(2)需求sinα,cosα,tanα的值;
(3)求和可得到解答.
cos(π-α)+tan(-α)=-cosα-tanα=-(cosα+tanα)=
(说明:以上过程可由学生先解,然后老师及时反馈.)
例3 求证:
师:请同学注意观察此题的代数结构、三角结构和角的结构,然后独立完成.(一名同学板演,同时老师巡视.)
=1.
(师及时反馈.)
师:(小结)诱导公式(二)~(五)的推导方法类似,应抓住角的终边位置对称(关于原点、y轴、x轴对称)的特点及三角函数的数量关系、同角三角函数的关系.
记忆公式,要把握五组公式的结构特征:
(1)函数名称关系:函数名相同;
(2)符号规律:公式右边的符号为把α视为锐角时,角k²360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号.(回顾图2-7)
记忆:水平诱导名不变;符号看象限.
应用:(1)计算求值.步骤可简单记为:负化正,正化主,主化锐角可查表.(2)化简证明.要分析题目的三个结构——代数结构、三角结构和角的结构.
希望同学们今后在不断的应用实践中,总结出更简捷的方法和解题步骤.(鼓励学生不断实践和总结,以达到更好地使公式内化的目的.)
课堂练习:课本P158练习第3题.
课外题:课本P163习题十三第4.(1)~(4),第5题.
课堂教学设计说明
一、本节课的教学过程:
1.复习旧知识,引出新课;
2.由sin216°的求值过程,引导学生发现推证公式的方法和途径;
3.将解题过程抽象化、概括化,推出公式
sin(180°+α)=-sinα.(其中α为0°~90°之间的角)
4.类比推出公式二,从而推出公式三、四、五;
5.推广到任意角并加以证明;
6.找规律,谈记忆;
7.讲应用,说方法;
8.例题、小结、练习、作业.
二、本节课的指导思想:
课本上采用的是直接给出90°~180°,180°~270°,270°~360°之间的角,可以用180°-α,180°+α,360°-α(0°≤α≤90°)来表示,然后加以证明出结论.其简捷、节约时间的特点是显而易见的.但总有一种把知识作为“结果”传授给学生的感觉,学生只要接受、反复练习就算完成了“内化”的过程.而利用环节1~5,把从实践经验(解题)上升到理论高度(公式),再由理论(公式)去指导实践(解题)的过程,展现给学生;也使学生的数学思想和数学意识得到了提高;培养了学生“发现”问题.“解决”问题的能力.
美国心理学家布鲁纳指出:“教学过程是一种提出问题和解决问题的持续不断的活动.”思维永远是从问题开始的.所以本节课采用了逐步设疑、诱导、解疑,指导学生去“发现”的方法,使学生始终处在兴趣盎然的状态,课堂气氛活跃.
另外,本节课公式的验证方法,是以学生已经掌握了“三角函数线”为基础的,这样可以加强几何直观,便于理解和应用.在环节4,先推出诱导公式在0°~360°范围内成立的目的是:便于发现公式的结构特征,理解求值的步骤,以便学生掌握和熟练应用.
第五篇:1.3三角函数诱导公式(一)教学设计
1.3三角函数的诱导公式(第一课时)[教学目标] 1)学习从单位圆的对称性和任意角终边的对称性中,发现问题,提出研究方法,从而借助于单位圆推导诱导公式.
2)能正确运用诱导公式求任意角的三角函数值,以及进行简单三角函数式的化简和恒等式的证明,并从中体会未知到已知,复杂到简单的转化过程. [重点、难点、疑点] 重点:用联系的观点,发现并证明诱导公式,进而运用诱导公式解决问题. 难点:如何引导学生从单位圆的对称性和任意角终边的对称性中,发现问题,提出研究方法. 疑点:运用诱导公式时符号的确定. [课时安排] 2课时
第一课时,诱导公式二、三、四 [教学设计] 引入新课:
先让同学们思考单位圆的对称性并举出一些特殊的对称轴和对称中心,如轴,轴,原点.这些对称性对三角函数的性质有什么影响呢?先思考阅读教科书第26页的“探究”.
1、角的对称关系: 给定一个角,发现:
1)终边与角的终边关于原点对称的角可以表示为; 同样,让学生探究问题(2),(3)不难发现.
2)终边与角的终边关于轴对称的角可以表示为(或); 3)终边与角的终边关于轴对称的角可以表示为:; 4)终边与角的终边关于直线=对称的角可以表示为.
2、三角函数的关系 诱导公式二:
以问题(1)为例,引导学生去思考,角的对称关系怎样得出三角函数的关系?
角————
终边与单位圆交点————
————
∴
同理,,∴
诱导公式二:
请同学们自己完成公式三、四的推导: 诱导公式三:
诱导公式四:
让学生把探究诱导公式二、三、四的思想方法总结概括,引导学生得出: 圆的对称性____________角的终边的对称性
对称点的数量关系
角的数量关系
三角函数关系即诱导公式
总结规律,引导学生记忆学过的四组公式,即:
,的三角函数值,等于角的同名三角函数值,前面加上一个把角看成锐角时的原函数的符号.
P28 例1,例2.
思考:诱导公式有什么作用? 负角→正角
大角→小角→锐角三角函数
即所有的角的三角函数值都可转化成锐角三角函数来求. 上述步骤体现了未知转化为已知的化归思想.
P27
例3 [练习] P30
1,2,3.
通过对公式的应用,加深对公式的理解,并对学生所做练习进行点评.
[小结]本节课我们学习了诱导公式二、三、四,并运用诱导公式求任意角的三角函数值及化简,在学习过程中逐步学习化归思想,要注意诱导公式中符号的确定. [作业] P3
3A组 2,3,4. 化简: 1、2、