金属切学原理与刀具教案(精选五篇)

时间:2019-05-12 19:01:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《金属切学原理与刀具教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《金属切学原理与刀具教案》。

第一篇:金属切学原理与刀具教案

金属切学原理与刀具

【内容提要】

本章主要介绍本课程的基本内容、性质、特点和学习本课程的基本要求。【目的要求】

1、明确本课程的基本内容和性质;

2、了解本课程的特点;

3、掌握学习本课程的基本要求。【本章内容】

一、本课程的内容

《金属切学原理与刀具》这门课,原理讨论的是金属切削加工过程中的主要物理现象的变化规律,以及对规律的控制及应用;刀具是要我们学习常用金属切削刀具的选择、使用以及常用非标准刀具的设计,如成形车刀、成形铣刀和拉刀等。

二、本课程的性质

根据所学专业的教学计划基本课程的教学大纲的规定,本课程是一门专业基础课,为培养与机制方面有关的应用型人才服务,为本专业的其他专业课如《金属切削机床》、《机械制造工艺学》及《机械加工技术》等提供必要的基础知识。

我国自1949年以来各高等工科院校相继进行了金属切削原理与刀具方面的科学研究。可见在工科院校与机制有关的专业中本课程占有重要的地位,因此一直列为考试课,在我校的数控、机制、机电等专业自然也是考试课。

三、本课程的特点(1)涉及知识面广

本课程是一门专业课。在学习这门专业课之前,应先掌握《画法几何》、《机械制图》、《金属工艺学》、《机械设计》等基本理论及《公差配合与技术测量》等基础知识。

(2)实验理论多 许多公式都是在不同的实验条件下得出的。如切削力的实验指数公式和单位切削力公式,虽都是计算切削力,但实验条件不同,则得出的结论也不同。因此说专业课中没有绝对的理论,或许有些还要做近似处理。

(3)实践性强

学习理论就是为实践服务,但经过实践又可以提高理论水平。如果学习了不会用,那就是“纸上谈兵”,因此,一定要做到理论与实践相结合。

四、学习本课程的要求

1、具有正确图示和选择刀具合理几何参数的能力。

2、基本掌握切削过程中的主要物理现象的变化规律和应用及控制方法,具有解决实际生产问题的能力。

3、具有根据具体要求选择使用常用刀具,以及设计一般非标准刀具的能力。

4、要求课上认真听讲,抓住重点,做好笔记,课下复习,辅导与自学相结合。

第一章 刀具材料

【内容提要】

本章主要介绍刀具材料应具备的性能,以及常用刀具材料中高速钢和硬质合金材料的特性及应用场合;简单介绍了其他刀具材料的性能及应用。

【目的要求】

1、明确刀具材料应具备的性能;

2、掌握常用刀具材料中高速钢和硬质合金的性能及应用场合;会根据具体加工工艺情况选择不同牌号的刀具材料。

3、了解其他刀具材料的性能。【本章内容】 概 述

刀具材料是指刀具上参与切削的那部分材料。刀具的切削部分不但要求具有一定的几何形状,而且还要求有相应的刀具材料。目前广泛应用的刀具材料由高速钢和硬质合金。随着生产率的不断提高和难加工材料的日益广泛应用,超硬刀具材料也不断涌现如陶瓷、立方氮化硼以及金刚石(人造)等。

时间 刀具材料 切削速度 1900年以前 碳工钢 低 1900年左右 高速钢 提高六倍

在以后的相继几十年里,据统计,每十年切削速度能提高一倍,耐用度可提高两倍。高速钢一般允许切削速度为25~30m/min;硬质合金允许的切削速度为100m/min.要提高切削加工的生产率,就需要提高切削速度和刀具耐用度,那末就要求提供切削性能更好的刀具材料,以便进一步提高切削加工生产率及加工质量。

由于切削过程中会产生切削抗力、切削热、冲击和振动,那么刀具材料具有哪些性能才能满足要求呢? §1-1 刀具材料应具备的性能

一、硬度和耐磨性

刀具材料的硬度一定要大于工件材料的硬度,一般常温硬度超过60HRC以上。高速钢在63~66HRC 以上,硬质合金在74~81.5HRC左右,人造金刚石10000HV。

一般来说,刀具材料的硬度越高,耐磨性越好。因为均匀分布的细化碳化物数量越多,颗粒越小,耐磨性就越高。

二、强度和韧性

在切削过程中,刀具承受很大的压力,只有抗弯强度好,切削用量才不会发生变化。粗加工余量不均,切削力发生变化,对刀具有冲击和震动,如果韧性不好,常会出现崩刃或折断。

硬度和韧性是一对不可解决的矛盾,如高速钢的韧性好,而硬质合金的硬度高,在下一节中我们会讲到。

三、耐热性 耐热性是指在高温下刀具材料保持硬度、耐磨性、强度和韧性的性能。用红硬性表示。高温下硬度越高,则红硬性越好。

碳素工具钢的红硬性200~250℃,高速钢不超过650℃,硬质合金约800~1000℃。

四、良好的工艺性

总之,刀具应具备的性能主要就这四个方面,当然还有经济性、切削性能的可预测性等要求,这里不作为讲述内容。

§1-2 常用刀具材料

目前在切削加工中常用的刀具材料有:碳素工具钢、合金工具钢、高速钢、硬质合金及陶瓷等。

一、碳素工具钢

碳素工具钢是一种含C量较高的优质钢(含C一般为0.65~1.35%)。

1、常用牌号

T7A、T8A„„T13A 其中 T 碳,A 高级优质碳素工具钢

2、主要性能

淬火后硬度较高,可达HRC61~65;红硬性为200℃~250℃,价格低廉,不耐高温,切削速度因此而不能提高,允许切削速度VC≤10m/min,只能制作低速手用刀具,如板牙、锯条、锉等;优点:易刃磨,可获得锋利的刀刃。

二、合金工具钢

在碳素工具钢中加入一定量的铬(Cr)、钨(W)、锰(Mn)等合金元素,能够提高材料的耐热性、耐磨性和韧性,同时还可以减少热处理时的变形。

1、主要牌号 9SiCr:9表示平均含C量为0.90%,Si、Cr平均含量均小于1.5%; CrWMn:平均含C量大于1.0%,Cr、W、Mn平均含量均小于1.5%。

2、主要性能

淬火后的硬度可达HRC61~65,红硬性为300℃~400℃,允许切削速度Vc=10~15m/min,制作低速、形状比较复杂、要求淬火后变形小的刀具。如板牙、拉刀、手用铰刀(孔的精加工)等。

三、高速钢

高速钢是一种高合金工具钢,钢中含有W、Mo、Cr、V等合金元素,这些合金元素的含量较高,主要改变以往工具钢的性能。

(一)高速钢的性能:

1、具有高的强度和韧性;

2、良好的耐磨性,63~66HRC(加入V元素的作用);

3、红硬性为600℃(加入W元素的作用);

4、允许切削速度Vc=25~30m/min;

高速钢经过适当热处理,可获得良好的切削性能。用高速钢制成的刀具,在切削时显得比一般低合金工具钢刀具更加锋利,因此又俗称锋钢。高速钢区别于其他一般工具钢的主要特性是它具有良好的热硬性(红硬性),当切削温度高达600℃左右时硬度仍无明显下降,能以比合金工具钢更高的切削速度进行切削,高速钢由此而得名。

5、具有良好的制造工艺性;

高速钢能锻造,易刃磨,能制造形状复杂的及大型成形刀具,如钻头、丝锥、成形刀具、拉刀、齿轮刀具、整体铣刀盘等都用高速钢。高速钢的焊接、韧性、热处理性能好。

6、可获得锋利的刀刃(锋钢之称);

7、加工范围较大:铸铁、有色金属、钢(指正火状态下,淬火状态不能加工)

(二)高速钢的分类

高速钢按用途来分可分为普通高速钢和高性能高速钢。

1、普通高速钢:工艺性好,可满足一般工程材料的切削加工。又可分为

2、高性能高速钢

通过调整基本化学成分和添加其他合金元素,使其性能比普通高速钢提高一步,可用于切削高强度钢,高温合金、钛合金等难加工材料。分类:

四、硬质合金

指有高硬度、高熔点的碳化物,用金属粘结剂,经过高压成形,在500℃的高温下烧结而成的材料为硬质合金。

组成:硬质相(TiC或WC)+ 粘结相(Co、Ni、Mo等,其中Co比较常用)

(一)主要性能

1、常温硬度74~81.5HRC,红硬性为800℃~1000℃,耐磨性优良。

2、允许切削速度Vc=100m/min以上,最高不能超过200m/min.硬质合金刀具的切削速度比高速钢提高4~7倍,刀具寿命可提高5~80倍。有的金属材料如奥氏体耐热钢和不锈钢等用高速钢无法切削加工,若用含WC的硬质合金就可以切削加工,硬质合金还可加工硬度在HRC50左右的硬质材料。

3、脆性较大,怕冲击和振动。容易出现崩刃,因此注意加工条件。

4、制造工艺性差。由于硬度太高,不能进行机械加工,因而硬质合金经常制成一定规格的刀片,焊在刀体上使用。如硬质合金端铣刀(非整体式的)

5、加工范围较广。脆性材料、钢材、有色金属等均可加工。

(二)分类 硬质合金分为

1、钨钴钛类硬质合金YG(1)组成:WC+Co(2)常用牌号:YG3、YG6、YG8(3、6、8、代表Co含量占3%、6%、8%)

当Co的含量较多时,WC的含量较小时,则硬度较低,韧性和强度提高,硬度下降,耐磨性降低;反之,韧性和强度下降,硬度提高,耐磨性、耐热性提高。

(3)应用:

YG3(精加工)YG6(半精加工)YG8(粗加工)

Co的含量↑ 韧性↑ 强度↑ HRC↓ 耐磨性↓

Co的含量↓ 韧性↓ 强度↓ HRC↑ 耐磨性↑ 脆性↑

主要用于加工铸铁、青铜等脆性材料,不适合加工钢料,因为在640℃时发生严重粘结,使刀具磨损,耐用度下降。

为了适应各种加工情况的需要,在含Co量相同的情况下,按WC粉末的不同粒度分为粗晶粒(YG3C)、细晶粒(YG3X)、中间晶粒(YG3)。一般硬质合金为中间晶粒。

2、钨钴钛类硬质合金(YT)

(1)组成:硬质相(WC+TiC)+粘结相(Co)

(2)常用牌号:YT5、YT14、YT15、YT30(数字表示TiC的百分含量)(3)应用:

YT5(粗加工)

YT14、YT15(半精加工)YT30(精加工)

TiC含量↑ 硬度↑ 耐磨性↑ 脆性↑ 韧性↓

TiC含量↓ 硬度↓ 耐磨性↓ 脆性↓ 韧性↑

主要用于加工钢材及有色金属,一般不用与加工含Ti的材料,如1Cr15Ni9Ti,Ti与Ti的亲合力较大,使刀具磨损较快。

3、添加稀有金属硬质合金

钨钽(铌)钴类硬质合金(YA)和钨钛钽(铌)钴类硬质合金(YW),是在钨钴钛类硬质合金(YT)中加入TaC(NbC),可提高其抗弯强度、疲劳强度和冲击韧性,提高和金的高温硬度和高温强度,提高抗氧化能力和耐磨性。这类合金可以用于加工铸铁及有色金属,也可用于加工钢材,因此常成为通用硬质合金,他们主要用于加工难加工材料。

4、碳化钛基硬质合金(YN)

这种合金有很高的耐磨性,有较高的耐热性和抗氧化能力,化学稳定性好,与工件材料的亲合力小,抗粘结能力较强。主要用于钢材、铸铁的精加工、半精加工和粗加工。

(三)涂层硬质合金的选用

涂层硬质合金是采用韧性较好的基体(如硬质合金刀片或高速钢等),通过化学气相沉积和真空溅射等方法,对硬质合金表面涂层厚度为5~12μm的涂层材料以提高刀具的抗磨损能力。

涂层材料为TiC、TiN、Al2O3等。适合于各种钢材、铸铁的半精加工和精加工,也适合于负荷较小的精加工。

§1-2 其他刀具材料

1、陶瓷材料

主要是以氧化铝(Al2O3)或氮化硅(Si3N4)等为主要成分,经压制成型后烧结而成的刀具材料。陶瓷的硬度高,化学性能稳定,耐氧化,所以被广泛用于高速切削加工中。但由于其强度低,韧性差,长期以来主要用于精加工。近几年来采用先进的工艺,使其抗弯强度、抗冲击性能有很大的提高,应用范围在日益扩大。除适于一般的精加工和半精加工外,还可用于冲击负荷下的粗加工。陶瓷刀具和传统硬质合金刀具相比,具有以下优点: 1)可加工硬度高达HRC65的高硬度难加工材料; 2)可用于扒荒粗车及铣、刨等大冲击间断切削; 3)耐用度提高几倍至几十倍;

4)切削效率提高3~10倍,可实现以车、铣代磨。

2、立方氮化硼

它是70年代才发展起来的一种人工合成的新型刀具材料。它是立方氮化硼在高温、高压下加入催化剂转变而成的。其硬度很高,可达8000~9000HV,仅次于金刚石,并具有很好的热稳定性,可承受1000℃以上的切削温度,它的最大的优点是在高温1200℃~1300℃时也不会与铁族金属起反应。因此既能胜任淬火钢、冷硬铸铁的粗车和精车,又能胜任高温合金、热喷涂材料、硬质合金及其他难加工材料的高速切削。

3、金刚石

分为人造和天然两种,是目前已知最硬的,硬度约为HV10000,故其耐磨性好,不足之处是抗弯强度和韧性差,对铁的亲和作用大,故金刚石刀具不能加工黑色金属,在800℃时,金刚石中的碳与铁族金属发生扩散反应,刀具急剧磨损。

金刚石价格昂贵,刃磨困难,应用较少。主要用作磨具及磨料,有时用于修整砂轮。

第二篇:木材切削原理与刀具填空总结

绪论

1,木材切削的实质:__________________(木材在刀具作用下,切削区发生变形的过程)

2,木材切削研究的基本问题:___________和_________(切屑类型;切削区木材变形)3,木材切削的发展趋势:

(1)___________________(2)___________________(3)____________________(4)_____________________

(探索新的加工方法;提高刀具耐用度,刀具寿命和加工质量;用近现代试验手段深入研究木材切削;加强电子计算机在木材切削研究中的应用)第一章木材切削的基本原理 1,木材切削(定义):___________________________________________________(刀具沿着预定的工件表面,切开木材之间的联系,从而获得要求的尺寸,形状和粗糙度的制品,此工艺过程称为---木材切削)2,切屑(定义):__________________________ 绝大多数情况下,切屑不是______,但是有特例:________(工件上被切去的相对变形较大的一层木材;制品;单板旋切)

3,2种基本的切削方式:__________和__________ _________是________的特例,是刀具半径_____,切削刃角速度为____的情况。

(直角自由切削;直齿圆柱铣削;直角自由切削;直齿圆柱铣削;无限大;零)4,直角自由切削(定义):_______________________________________ 直齿圆柱铣削(定义):_________________________________________

(指刀刃⊥刀具与工件的相对运动方向,且主运动为直线运动的切削; 指刀刃⊥刀具与工件的相对运动方向,且主运动为回转运动的切削)ζ1.1基本概念

1,木材切削三要素:_________,________,_____(刀具,工件,运动)

2,刀具作直线运动的为:_______;刀具作回转运动的为______(刨削;铣削)

3,切削运动是指:_________________________ 包括:________和_________

(切削运动:指刀具切削木材过程中刀具和工件之间的相对运动 主运动;进给运动)4,主运动(定义):_________________________,用___(符号)表示,通常是速度___,消耗功率___的运动。

主运动方向:___________________________ 主运动大小:________________(主运动为回转运动)* D应取___________,原因_______________ 5,进给运动(定义):_________________________,用______(符号)表示

进给运动的表示分4种:____,_____,_____,_____(1)进给速度(__),表示______________________ 单位:_______(2)每转进给量(__),表示_____________________ 公式:_____________,单位:_________(3)每齿进给量(__),表示____________________ 公式:_____________,单位:_________(4)每双行程进给量(___)

6,切削运动是_______和_________的合成。大小为___________,方向________________________ 7,进给运动与主运动同时进行的运动(例子):_______ 进给运动和主运动间隙交替进行的运动(例子):________ 8,运动后角(___),是____运动方向和______运动方向的夹角 运动遇角(___),是____运动方向和______运动方向的夹角 _______是反应进给速度对切削速度的影响。图:

9,切削运动的2个基本运动元:__________和________ 10,常见的运动组合:

刨削,刮削:_________;带锯,排锯锯切:________ 铣削,圆锯切削运动,钻削:__________________ 仿形铣削:_________________

11,工件的3个与刀具相关的表面:_____,_____,______ 12,切削层参数:______,_______,_______

_________对切削力的影响最大。

公式:__________

13,刀具分为2部分:________,________

14,坐标平面是_______(__)和__________(__)切削平面_基面

15,测量平面是_______(__)和_________(__)16,刀具的角度有____,_____,_____,_______

前角:反应________________(前角越大,变形越__)

前角分___________

后角:反应________________(后角越大,摩擦越__)

后角__0,(一般后角为___-___之间)

契角:反应______________

契角越大,_____越大,但刃口_____

契角越小,_____越小,但刃口______

切削角:反应______________________

17,工作角度,影响木材切削的是________,而不是_______ 18工作角度与标注角度的关系? ζ1,2木材切削变形

1,3种切削方向:_______,________,________ 2,纵向切削(90-0),90代表_____________,0代表___________ 3,切屑类型:

(1)纵向切削:________,________,________

质量评比:______>_______>_____ 纵Ⅱ型切屑形成的条件:(1)(2)(3)

(2)横向切削:________,_________,_______

质量评比:_______>________>______(3)端向切削:______(分______,_______)_______(分______,________)

质量评比:_____>_____>_____>_____ 4,切削力分析:

(1)前刀面对Ⅰ区的作用力:

公式:________________ 当___________________(2)后刀面对Ⅱ区的作用力:

公式:________________ 5,切削力Fx= 前刀面对Ⅰ区木材在切削方向上作用力+后刀面对Ⅱ区木材在切削面上作用力 公式:_______________ 当切削厚度a=0,Fx=_______ 6,切削力的经验计算

(1)确立单位切削力p与切削厚度a的关系: A,当切削厚度a≥0.1mm,其关系为: B,当切削厚度a<0.1mm,其关系为: 当切削厚度a=0时,刀具对Ⅰ区的作用力为__,此时,切削力就是后刀面对Ⅱ区的作用力。前刀面的单位切削力随a 的增大,而__ 切削厚度a对______无影响!

(2)确立单位切削力p与刀具磨损变钝的关系:

刀具磨损与_______有关,与______无关

钝化系数___,刀具锋利,Cp=____,刀具磨损增大,Cp______ 考虑刀具磨损变钝在内的单位切削力p的计算公式:(1)当a≥0.1mm,p=(2)当a<0.1mm,p= 7,切削力的影响因素:______,_______,______,______,_______(有时_________)8,钝化系数Cp与后刀面的摩擦系数的关系: 表:

由表知:当刀具磨损变钝厉害,摩擦系数__,这说明后刀面法向力Fay的增加程度____后刀面的切削力Fax。【考】 第二章木工刀具材料及刀具磨损 ζ2.1木工刀具特点及材料 1,木工刀具的特点:

(1)_________________

(2)______________________________(3)_____________________ 2,木工刀具切削部分材料应具有的性能:【必考】

(1)________(2)_________(3)________(4)________(5)_________ 3,木工刀具的材料(分类):

(1)_________(2)__________(3)_______(4)_________(5)___________(6)______ 4,高速钢的主要特性:_______(弥补了______钢的致命缺点)5,硬质合金钢的组成:___________和_________

6,硬质合金钢的性能:______,_________,_______ 7,硬质合金钢的分类:________,_______,_______ 代号分别是____,_____,______ 木工刀具常使用_______,YG6A:__________________________ *细晶粒硬质合金--超细晶粒硬质合金 8,立方氮化硼(______),硬度仅低于__________

9,超硬刀具材料:______,_________,________ 金刚石刀具的优点? 聚晶金刚石刀具的优点?

10,PCD: ________,CBN: _________;PCBN: ______

CVD: _________ *刀具材料的性能比较?

11,木工刀具磨损分为3阶段:_____;________;______ 12,木工刀具磨损的原因:【考】(1)(2)(3)(4)

13,提高木工刀具耐磨性技术:(1)(2)(3)(4)

第三章铣削与铣刀 1,铣削(定义):__________________________ 2,最基本的铣削形式:________ 3,直齿圆柱铣削的铣削要素:

(1)切削速度:_________

(2)进给速度:__________(包括______,______)(3)切削深度:___(4)切削宽度:___(5)接触弧长l,接触角: 公式:

(6)运动遇角,动力遇角【不要求】(7)切削厚度a【计算】 公式:

瞬时切削速度:______________ 切屑平均厚度:______________ 切屑最大厚度:______________ 切削平均厚度:______________(8)切屑横断面积A:_________ 4,铣削的特点?【看一下】 5,铣刀的分类?【重点】 6,铣刀设计

(1)铣刀的主要几何参数;铣刀直径D和孔径d;________,铣刀角度(2)铣刀齿数计算:Z=_____________(3)______决定了工件表面的运动不平度

________,工件表面光滑;________,工件表面质量中等 ________,工件表面粗糙

(4)成形刀齿廓形确定原则:_______________________________________

(5)工件截形分为________,__________(6)刀齿廓形有____,_____,______ 关系:________________ 公式: A, hw= B, hr= C, hf=(7)刀齿法平面后角___:

公式:_________________

当λ=0°时,法面后角______,摩擦_____,表面_______ 7,套装铣刀分为_________,_________

8,铲齿铣刀的后刀面为_________或____________ 9,阿基米德螺旋线公式:____________________

由公式可得:____________________________ 10,尖齿铣刀刃口上选定点的后刀面为_____,是在磨床上磨出的。11,与铲齿铣刀相比,尖齿铣刀刃磨前刀面后,后角改变_____ 12,尖齿铣刀分为3种:_______;______;_____ 13,装配铣刀的刀片分为2种:_______,________

14,组合铣刀的调节方法:_______,_______,______ 15,偏心装夹刃铣刀的后刀面为__________,铣刀以一定的装刀角偏心固定住装刀卡头上,以获得适当的____。第四章锯切和锯子 1,锯切(定义):___________________________ 2,夹锯现象(原因):________________________ 解决方法:锯路宽度____锯身宽度 3,锯料的方法:

(1)____________________________(2)____________________________(3)____________________________ 应用:小带锯使用的方法:________

4,齿形分为:________和________

5,锯切一次可以完成____切削面--锯路底和两侧的锯路壁

6,木材纵锯是指________________________ 特点:____________________________ 前角________

7,木材横锯是指___________________________ 特点:________________________________ 前角:________

8,纵锯齿多为________,横锯齿都是________

9,直磨齿以________为主,斜磨齿只能________

10,锯切运动:得到一条______________,即________(1)切削厚度a:____________是(常数)(2)切削长度l:________(3)主运动速度:________(4)进给运动速度:________

(5)主运动与进给运动的关系:________________

11,带锯条的4个应力____________,____________ ____________,____________

12,硬质合金圆锯片上的特殊结构有________,________,________,________ 第五章钻削与钻头

1,钻削的种类:________和________

2,横纹钻削:________________________ 弦向钻削:____________________ 径向钻削:____________________ 图:

3,纵向钻削:________________________ 图:

4,钻削时,主运动和金给运动是________进行,刃口各点的相对运动轨迹为________________________

钻削时,主刃的运动后脚的计算:____________________ 当半径R____,运动后脚________ 第六章旋切与旋刀

1,旋切的主运动:___________,进给运动:________ 2,旋切工作后角的变化规律:(后角的变化与旋切的装刀高度有关)总结:

(1)________________________________(2)________________________________(3)________________________________ 3,压尺的种类:________,________,________ 第七章磨料与磨具

1,磨削加工在木材加工工业的用途?【问答题】

(1)____________________________(2)____________________________(3)____________________________(4)____________________________

2,磨具的磨料分为:________,________,_______ 3,磨具硬度(定义):________________________ 4,带式砂光机的功能:________,________ 5,影响磨削表面质量的因素?{看一下}(1)(2)(3)(4)(5)(6)

第三篇:金属凝固原理复习大纲

金属凝固原理复习大纲

绪论

1、凝固定义

宏观上:物质从液态转变成固态的过程。微观上:激烈运动的液体原子回复到规则排列的过程。

2、液态金属凝固的实质:原子由近程有序状态过渡为长程有序状态的过程

液态金属的结构特征:“近程有序”、“远程无序”

组成:液态金属是由游动的原子团、空穴或裂纹构成

3、液态金属的性质:粘度和表面张力

粘度的物理意义:单位接触面积,单位速度梯度下两层液体间的内摩擦力

粘度的本质上是原子间的结合力

影响液体金属粘度的主要因素是:化学成分、温度和夹杂物

表面张力的物理意义:作用于表面单位长度上与表面相切的力,单位N/m

影响液体金属表面张力的主要因素是:熔点、温度和溶质元素。取决于质点间的作用力

4、液体结构的特性:近程有序和远程无序

晶体:凡是原子在空间呈规则的周期性重复排列的物质称为晶体。

单晶体:在晶体中所有原子排列位向相同者称为单晶体

多晶体:大多数金属通常是由位向不同的小单晶(晶粒)组成,属于多晶体。

吸附是液体或气体中某种物质在相界面上产生浓度增高或降低的现象。

金属从液态过渡为固体晶态的转变称为一次结晶

金属从一种固态过渡为另一种固体晶态的转变称为二次结晶

当向溶液中加入某种溶质后,使溶液表面自由能降低,并且表面层溶质的浓度大于溶液内部深度,则称该溶质为表面活性物质(或表面活性剂),这样的吸附称为正吸附。反之,如果加入溶质后,使溶液的表面自由能升高,并且表面层的溶质浓度小于液体内部的浓度,则称该溶质为非表面活性物质(或非表面活性剂),这样的吸附为负吸附

第一章 凝固过程的传热

1、凝固过程的传热特点:“一热、二迁、三传”

“一热”指热量的传输是第一重要;

“二迁”指存在两个界面,即固-液相间界面和金属-铸型间界面。

“三传”指动量传输、质量传输和热量传输的三传耦合的三维热物理过程。

2、金属型特点:具有很高的导热性能;非金属型铸造特点:与金属相比具有非常小热导率,故凝固速度主要取决于铸型的传热性能。铸型外表面温度变化不大,故可把铸型看成是半无限厚的。

第二章 凝固动力学

1、自发过程:从不平衡态自发地移向平衡态的过程(不可逆过程)

2、化学势:某一组元的化学势为1mol该组元物质的吉布斯自由能,是1mol的恒温等压势。

3、公切线原理求相平衡P61.63

4、判断平衡相(液相还是固相)P65

4、溶质平衡分配系数K0:恒温下固相溶质浓度CS与液相溶质浓度CL达到平衡时的比值。

K0=CS/CL=mL/mS=

5、界面曲率对溶质平衡分配系数k0影响:曲率半径小的晶体,其固液界面前沿富集起来的液相溶质浓度比曲率半径大的晶体小。在理想溶液中是均匀向下移动相图中液固相线位置。

6、压力对溶质平衡分配系数k0的影响:均匀地向上移动相图中液固相线位置。

第三章 凝固动力学

1、形核:亚稳定的液态金属通过起伏作用在某些微观小区域内生成稳定存在的晶态小质点的过程。

2、均质形核:在没有任何外来的均质溶体中,依靠液体金属内部自身结构自发地形核。均质形核在溶体各处概率相同,全部固液界面都由形核过程提供。因此热力学能障大,所需驱动力大。

异质形核:在不均匀的溶体中依靠外来夹杂或型壁界面所提供的异质界面进行形核。异质形核首先发生在外来界面处,因此能障较小,所需的驱动力也较小。

3、形核相变的驱动力:固液相体积自由能差;阻力:界面能。

4、形核速率是在单位体积中单位时间内形成的晶核数目。

5、在液相中那些对形核有催化作用的现成界面上形成的晶核称为非自发形核

6、均质形核理论的局限性:

均质形核是对理想纯金属而言的,其过冷度很大比实际液态金属凝固时的过冷度大多了。实际上金属结晶时的过冷度一般为几分之一摄氏度到十几摄氏度。实际的液态金属(合金)在凝固过程中多为异质形核。

7、均质形核与异质形核的异同:

相同点:异质形核的临界晶核半径在形式上与均质形核临界晶核半径完全相同

不同点:①均质形核临界晶核是球体,而异质形核的晶核为球体的一部分(球冠),因而异质晶核中所含原子数目少,这样的晶坯易形成。②润湿角θ与均质形核无关,而影响异质晶核的体积

8、形核剂的条件:

①适配度小 ②粗糙度大 ③分散性好 ④温稳定性好

9、当晶格点阵适配度δ≤5% 时,通过点阵畸变过渡,可以实现界面两侧原子之间的一一对应。这种界面称为完全共格界面,其界面能较低,衬底促进非均质生核的能力很强;当5%<δ<25%时为部分共格界面;当δ≥25% 时,为不共格,夹杂物衬底无形核能力。

10、界面共格对应原则:固相杂质表面的原子排列规律和原子(晶粒细化剂的选择原则)间距与新相晶核相近。(晶粒细化剂选择原则)

11、粗糙界面(非小晶面):微观粗糙,宏观光滑。非小晶面长大。大部分金属属于此类。

光滑界面(小晶面):微观光滑,宏观粗糙。小晶面长大。非金属、类金属(Bi、Sb、Si)属于此。

第四章 单相合金的凝固

1、合金可分为单相合金和多相合金两大类。单相合金是指在凝固过程中只析出一个固相的合金,如固溶体、金属间化合物等。多相合金是指凝固过程中同时析出两个以上新相的合金如有共晶、包晶或偏晶转变的合金。

2、溶质再分配:合金在凝固过程中,已析出固相排出多余的溶质原子(或溶剂原子),并富集在界面的液体中,造成成分分离的现象。(合金凝固过程的一大特点)

3、平衡分配系数Ko实际上描述了在固、液两相共存的条件下溶质原子在界面两侧的平衡分配特征。

4、成分过冷:合金晶体在长大过程中,因溶质再分配而引起的过冷,称为成分过冷。其过冷度称为成分过冷的过冷度。

5、热过冷:金属凝固过程中,纯粹由热扩散控制形成的过冷,称为热过冷,其过冷度称为热过冷的过冷度。

6、成分过冷条件:①合金凝固过程中溶质在固-液界面前沿富集;②满足成分过冷判别式。

7、成分过冷的过冷度在生长着的固-液界面处最小,离开界面逐渐增大,因此界面很不稳定。

8、成分过冷降低了实际过冷度,阻碍了晶体的生长。凡是溶质富集的地方,那里成分过冷就越大,其过冷度就越小,该处生长就越慢。

9、影响成分过冷的因素:

由成分过冷判据式可知,下列因素有利于成分过冷: ①液相中温度梯度小,GL小; ②晶体生长速度快,v大; ③陡的液相线斜率,mL大; ④原始成分浓度高,C0大; ⑤液相中溶质扩散慢,DL低; ⑥k0<1时,k0小;k0>1时,k0大

备注:①和②属于工艺因素,③-⑥属于合金方面因素。

10、强成分过冷元素(表面活性元素)的选取原则: ①熔点低

(液相线斜率陡,mL大)

②原子半径大

(液相中溶质扩散慢,DL 低)③在合金中的固溶度小

(k0小)

11、成分过冷的单相合金四种宏观生长方式(如右图):

①无成分过冷的平面生长

(GL1)②窄成分过冷区的胞状生长

(GL2)③较宽成分过冷区的柱状树枝晶生长(GL3)④宽成分过冷区的自由树枝晶生长

(GL4)

12、“外生生长”与“内生生长”的概念:

外生生长:晶体自型壁生核,然后由外向内单向延伸的生长方式。平面生长、胞状生长和柱状枝晶生长皆属此类。

内生生长:等轴枝晶在熔体内部自由生长的方式。

13、合金固溶体凝固时的晶体生长形态:

 不同的成分过冷情况(成分过冷主要结论!)

①无成分过冷——平面晶 ②窄成分过冷区间——胞状晶

③成分过冷区间较宽——柱状树枝晶 ⑤宽成分过冷——内部等轴晶

14、平面生长→胞状生长→树枝晶生长演变过程:

由大逐渐减小,即随“成分过冷”程度增大,固溶体生长方式变化为:

平面晶→胞状晶→胞状树枝晶(柱状树枝晶)→内部等轴晶(自由树枝晶)

第五章 多相合金的凝固

1、共晶组织的分类:

①规则共晶(金属一金属共晶),属于非小平面—非小平面共晶。 固一液界面:在原子尺度上是粗糙界面。

 组成:金属—金属相或金属—金属间化合物相。

 组织形态:层片状及棒状(出现哪种结构要取决于:①α与β相间的体积比②第三组元的存在。若某一相体积分数小于1/π时,该相出现棒状结构;若体积分数在1/π-1/2之间时,两相均以片状结构出现。造成原因:结构表面能的大小。体积分数小于1/π时,棒状结构表面能小于片状结构;体积分数在1/π-1/2之间时,片状结构表面能小于棒状结构)。

 决定共晶两相长大的因素:热流的方向和两组元在液相中的扩散,两相长大过程互相依赖的关系是界面附近的溶质横向扩散。

固一液界面形态:将近似地保持着平面,其等温面基本上也是平直的。(每一相的长大受着另一相存在的影响,当共晶结晶时,两相并排地结晶出来并垂直于固一液界面长大)。

②非规则共晶(金属一非金属共晶),属于非小平面一小平面。 固一液界面:一个是特定的晶面。

 组织形态:多种多样,简化为片状与丝状两大类。

 固一液界面形态:非平面的且是极不规则的,其等温面也不是平直的。△金属—金属共晶与金属—非金属共晶相同点:热力学原理和动力学原理一样;不同点如上所述。

2、共生生长:在共晶合金结晶时,后析出的相依附于领先相表面而析出,进而形成相互交叠的双相晶核且具有共同的生长界面,依靠溶质原子在界面前沿两相间的横向扩散,互相不断地为相邻的另一相提供生长所需的组元,彼此偶合的共同向前生长。

3、离异生长:两相没有共同的生长界面,它们各以不同的速度而独立生长,在形成的组织中没有共生共晶的特征,这种非共生生长的共晶结晶方式称为离异生长,所形成的组织称为离异共晶。

4、偏晶合金的最终显微形貌将要取决于三个界面能、L1与L2的密度差以及固一液界面的推进速度

5、晶体生长机制(方式):

 非小晶面结构——连续长大(正常长大)

 小晶面结构——侧面长大

①二维晶核台阶

②晶体缺陷台阶:螺位错、孪晶沟槽。

6、“侧面长大”方式的三种机制:

 二维晶核机制:台阶在界面铺满后即消失,要进一步长大仍须再产生二维晶核。 螺旋位错机制:这种螺旋位错台阶在生长过程中不会消失。 孪晶面机制:长大过程中沟槽可保持下去,长大不断地进行。

7、非平衡状态下的共晶生长区P173

第六章 金属凝固的宏观组织

1、浇注及凝固过程中液体的三种流动形式: ①浇注时存在液流的冲刷——强制对流。②浇注时及浇注完毕后液体存在自然对流。

③存在着枝晶间及分枝间的液体流动——微观流动。

2、金属凝固的典型宏观组织: ①表层细晶区

②内部柱状晶区:晶粒垂直于型壁排列,且平行于热流方向 ③中心等轴晶区:晶粒较为粗大

3、获得细等轴晶的措施:

①增大冷却速度(V冷↑)和降低浇注温度(t浇↓)

②加强液体在浇注和凝固期间的流动

(促使型壁上已凝固层晶体的脱落,分枝的熔断脱落及脱落晶体的增殖。)③孕育处理 ⑴外加晶核:

(在浇注时向液流中加入被细化相具有界面共格对应的高熔点物质或同类金属的碎粒,使之成为异质形核的有效衬底,促使异质形核,增加晶粒数而细化晶粒。)⑵采用生核剂

(加入的物质不一定能作为晶核,但通过它与液态金属的某些元素相互作用,能产生晶核或成为有效衬底,这类物质称为生核剂。)⑶采用强过冷成分元素

(强成分过冷元素在Al-Si合金中称为变质剂,生产中称为变质处理)

孕育处理是指在凝固过程中,向液态金属中添加少量其它物质,促进形核、抑制生长,达到细化晶粒的目的。

——————————————————————————————————————— 简答题目:

1、纯金属和实际金属液态结构有何异同?

纯金属的液态结构:接近熔点的液态金属是由和原子晶体显微晶体和“空穴”组成。

实际金属的液态结构:存在着两种起伏:能量起伏、浓度起伏。微观上是由结构和成分不同的游动原子集团,空穴和许多固态,气态,液态化合物组成,是一种浑浊液体,而从化学键上看除了金属基体与其合金元素组成的金属键外,还存在着其他化学健。

2、液态金属的基本特征是什么?

①有固定的体积。②有很好的流动性。③物理化学性质接近于固态,而远离气态。

3、相平衡条件 相平衡时,每一组元在共存的各相中的化学势都必须相等。在k个元素含有p个相的体系中,恒温等压的化学平衡条件是:

4、固液界面在结构上有哪两种类型?他们在微观和宏观上的特点是什么?

光滑界面(小平面)和粗糙界面(非小平面)。粗糙界面:微观粗糙,宏观光滑;光滑界面:微观光滑,宏观粗糙。

5、界面类型的实质是什么?

能量最低时的原子沉积几率不同。能量最低时原子沉积几率近似为0或1,说明是光滑界面;能量最低时原子沉积几率近似为远离0或1,说明是粗糙界面。

6、讨论长大机制与过冷度的关系。

①过冷度小,按螺位错方式长大;②过冷度大,连续长大;③二维晶核长大在任何情况下,可能性都不大。

7、形核的首要条件是什么?

形核的首要条件是系统必须处于亚稳态提供相变驱动力;其次需要通过起伏作用克服能障才能形成稳定存在的晶核并确保其进一步生长。

8、为什么自发形核的临界形核功等于形成临界形核表面能的1/3? 见P93

9、均质形核机制必须具备哪些条件?

①冷液体中存在相起伏,以提供固相晶核的晶胚。

②形核导致体积自由能降低,界面自由能提高。为此,晶胚需要体积达到一定尺寸才能稳定存在。

③过冷液体中存在能量起伏和温度起伏,以提供临界形核功。④为维持形核功,需要一定的过冷度

10、即三个基本条件:过冷度,能量起伏,结构起伏。为什么过冷度是液态金属凝固的驱动力?

等压条件下,体系自由能随温度升高而降低,且液态金属自由能随温度降低的趋势大于固态金属。在熔点附近凝固时,热焓和熵值随温度的变化可忽略不计,则有相变驱动力:

过冷度△T=T-Tm为金属凝固的驱动力,过冷度越大,凝固驱动力越大;金属不可能在T=Tm时凝固。

11、为什么说异质形核比均质形核容易?影响异质形核的基本因素和其他条件是什么?(1)因为均质形核在其形核过程中为克服过程中的能障,所需要的过冷度是很大的,而实际金属凝固过程中的过冷度远小于此,所以较难发生;对异质形核而言,液态金属中存在一些微小的固相杂质质点,并且液态金属在凝固时还和型壁相接触,于是晶核就可以优先依附于这些现成的固体表面形核,因此形核所需的过冷度大大降低,所以异质形核比均质形核更容易。

12、界面共格对应原则的实质是什么? 增大固、液两相界面附着力,减小异质形核的形核功,使固相质点成为异质形核的有效衬底。

13、成分过冷的判据式(有过冷/无过冷)无成分过冷判据式为:

有成分过冷判据式

为:

14、成分过冷的本质是什么?

①成分过冷使实际过冷度降低,阻碍固液界面的推进。②成分过冷使界面不稳定,不能保持平面生长。

③成分过冷阻止原有界面的生长,促进界面前方液相中形核。

15、共生生长具备的两个基本条件是什么?

①两相生长能力要相近,且析出相要容易在先析出相上形核和长大。②A、B两组元在界面前沿的横向传输能保证两相等速生长的需要。期末成绩=考试60%+平时40%

一、填空题

15×1分=15分

二、名词解释题

5×4分=20分

三、简答题

5×5分=25分

四、计算与证明

3×10分=30分

五、论述题

1×10分=10分

第四篇:《金属塑性成形原理》复习题

《金属塑性成形原理》复习题 1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点? 塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;

塑性变形---当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;

塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能 的加工方法,也称塑性加工或压力加工;

塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高 2.试述塑性成形的一般分类。

Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类 1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。可分为一次成型和二次加工。

一次加工:

①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。分纵轧、横轧、斜轧;

用于生产型材、板材和管材。

②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。分正挤压、反挤压和复合挤压;

适于(低塑性的)型材、管材和零件。

③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。生产棒材、管材和线材。

二次加工:

①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形 状和尺寸的加工方法。精度低,生产率不高,用于单件小批量或大锻件。

②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从 而获得与模腔形状、尺寸相同的坯料或零件的加工方法。分开式模锻和闭式模锻。

2)板料成型一般称为冲压。分为分离工序和成形工序。

分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;

成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。

Ⅱ.按成型时工件的温度可分为热成形、冷成形和温成形。

3.试分析多晶体塑性变形的特点。

1)各晶粒变形的不同时性。不同时性是由多晶体的各个晶粒位向不同引起的。

2)各晶粒变形的相互协调性。晶粒之间的连续性决定,还要求每个晶粒进行多系滑移;

每个晶粒至少要求有 5个独立的滑移系启动才能保证。

3)晶粒与晶粒之间和晶粒内部与晶界附近区域之间的变形的不均匀性。

Add:

4)滑移的传递,必须激发相邻晶粒的位错源。

5)多晶体的变形抗力比单晶体大,变形更不均匀。

6)塑性变形时,导致一些物理,化学性能的变化。

7)时间性。hcp系的多晶体金属与单晶体比较,前者具有明显的晶界阻滞效应和极高的加工硬化率,而在立方晶系金属中,多晶和单晶试样的应力—应变曲线就没有那么大的差别。

4.试分析晶粒大小对金属塑性和变形抗力的影响。

①晶粒越细,变形抗力越大。晶粒的大小决定位错塞积群应力场到晶内位错源的距离,而这个距离又影响位错的数目n。晶粒越大,这个距离就越大,位错开动的时间就越长,n也就越大。n越大,应力场就越强,滑移就越容易从一个晶粒转移到另一个晶粒。

②晶粒越细小,金属的塑性就越好。

a.一定体积,晶粒越细,晶粒数目越多,塑性变形时位向有利的晶粒也越多,变形能较均匀的分散到各个晶粒上;

b.从每个晶粒的应力分布来看,细晶粒是晶界的影响区域相对加大,使得晶粒心部的应变与晶界处的应变差异减小。这种不均匀性减小了,内应力的分布较均匀,因而金属断裂前能承受的塑性变形量就更大。

5.什么叫加工硬化?产生加工硬化的原因是什么?加工硬化对塑性加工生产有何利弊? 加工硬化----随着金属变形程度的增加,其强度、硬度增加,而塑性、韧性降低的现象。加工硬化的成因与位错的交互作用有关。随着塑性变形的进行,位错密度不断增加,位错反应和相互交割加剧,结果产生固定割阶、位错缠结等障碍,以致形成胞状亚结构,使位错难以越过这些障碍而被限制在一定范围内运动。这样,要是金属继续变形,就需要不断增加外力,才能克服位错间强大的交互作用力。

加工硬化对塑性加工生产的利弊:

有利的一面:可作为一种强化金属的手段,一些不能用热处理方法强化的金属材料,可应用加工硬化的方法来强化,以提高金属的承载能力。如大型发电机上的护环零件(多用高锰奥氏体无磁钢锻制)。

不利的一面:①由于加工硬化后,金属的屈服强度提高,要求进行塑性加工的设备能力增加;

②由于塑性的下降,使得金属继续塑性变形困难,所以不得不增加中间退火工艺,从而降低了生产率,提高了生产成本。

6.什么是动态回复?为什么说动态回复是热塑性变形的主要软化机制? 动态回复是在热塑性变形过程中发生的回复(自发地向自由能低的方向转变的过程)。

动态回复是热塑性变形的主要软化机制,是因为:

①动态回复是高层错能金属热变形过程中唯一的软化机制。动态回复是主要是通过位错的攀移、交滑移等实现的。对于层错能高的金属,变形时扩展位错的宽度窄,集束容易,位错的交滑移和攀移容易进行,位错容易在滑移面间转移,而使异号位错相互抵消,结果使位错密度下降,畸变能降低,不足以达到动态结晶所需的能量水平。因为这类金属在热塑性变形过程中,即使变形程度很大,变形温度远高于静态再结晶温度,也只发生动态回复,而不发生动态再结晶。

②在低层错能的金属热变形过程中,动态回复虽然不充分,但也随时在进行,畸变能也随时在释放,因而只有当变形程度远远高于静态回复所需要的临界变形程度时,畸变能差才能积累到再结晶所需的水平,动态再结晶才能启动,否则也只能发生动态回复。

Add:动态再结晶容易发生在层错能较低的金属,且当热加工变形量很大时。这是因为层错能低,其扩展位错宽度就大,集束成特征位错困难,不易进行位错的交滑移和攀移;

而已知动态回复主要是通过位错的交滑移和攀移来完成的,这就意味着这类材料动态回复的速率和程度都很低(应该说不足),材料中的一些局部区域会积累足够高的位错密度差(畸变能差),且由于动态回复的不充分,所形成的胞状亚组织的尺寸小、边界不规整,胞壁还有较多的位错缠结,这种不完整的亚组织正好有利于再结晶形核,所有这些都有利于动态再结晶的发生。需要更大的变形量上面已经提到了。

7.什么是动态再结晶?影响动态再结晶的主要因素有哪些?动态再结晶是在热塑性变形过程中发生的再结晶。动态再结晶和静态再结晶基本一样,也会是通过形核与长大来完成,其机理也是大角度晶界(或亚晶界)想高位错密度区域的迁移。

动态再结晶的能力除了与金属的层错能高低(层错能越低,热加工变形量很大时,容易出现动态再结晶)有关外,还与晶界的迁移难易有关。金属越存,发生动态再结晶的能力越强。当溶质原子固溶于金属基体中时,会严重阻碍晶界的迁移、从而减慢动态再结晶的德速率。弥散的第二相粒子能阻碍晶界的移动,所以会遏制动态再结晶的进行。

9.钢锭经过热加工变形后其组织和性能发生了什么变化?(参见 P27-31)①改善晶粒组织②锻合内部缺陷③破碎并改善碳化物和非金属夹杂物在钢中的分布④形成纤维组织⑤改善偏析 10.冷变形金属和热变形金属的纤维组织有何不同? 冷变形中的纤维组织:轧制变形时,原来等轴的晶粒沿延伸方向伸长。若变形程度很大,则晶粒呈现为一片纤维状的条纹,称为纤维组织。当金属中有夹杂或第二相是,则它们会沿变形方向拉成细带状(对塑性杂质而言)或粉碎成链状(对脆性杂质而言),这时在光学显微镜下会很难分辨出晶粒和杂质。在热塑性变形过程中,随着变形程度的增大,钢锭内部粗大的树枝状晶逐渐沿主变形方向伸长,与此同时,晶间富集的杂质和非金属夹杂物的走向也逐渐与主变形方向一致,其中脆性夹杂物(如氧化物,氮化物和部分硅酸盐等)被破碎呈链状分布;

而苏醒夹杂物(如硫化物和多数硅酸盐等)则被拉长呈条状、线状或薄片状。于是在磨面腐蚀的试样上便可以看到顺主变形方向上一条条断断续续的细线,称为“流线 ”,具有流线的组织就称为“纤维组织”。在热塑性加工中,由于再结晶的结果,被拉长的晶粒变成细小的等轴晶,而纤维组织却被很稳定的保留下来直至室温。所以与冷变形时由于晶粒被拉长而形成的纤维组织是不同的。

12.什么是细晶超塑性?什么是相变超塑性? ①细晶超塑性它是在一定的恒温下,在应变速率和晶粒度都满足要求的条件下所呈现的超塑性。具体地说,材料的晶粒必须超细化和等轴化,并在在成形期间保持稳定。

②相变超塑性要求具有相变或同素异构转变。在一定的外力作用下,使金属或合金在相变温度附近反复加热和冷却,经过一定的循环次数后,就可以获得很大的伸长率。相变超塑性的主要控制因素是温度幅度和温度循环率。

15.什么是塑性?什么是塑性指标?为什么说塑性指标只具有相对意义? 塑性是指金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力,它是金属的一种重要的加工性能。

塑性指标,是为了衡量金属材料塑性的好坏而采用的某些试验测得的数量上的指标。

常用的试验方法有拉伸试验、压缩试验和扭转试验。

由于各种试验方法都是相对于其特定的受力状态和变形条件的,由此所测定的塑性指标(或成形性能指标),仅具有相对的和比较的意义。它们说明,在某种受力状况和变形条件下,哪种金属的塑性高,哪种金属的塑性低;

或者对于同一种金属,在那种变形条件下塑性高,而在哪种变形条件下塑性低。

16.举例说明杂质元素和合金元素对钢的塑性的影响。(P41-44)①碳:固溶于铁时形成铁素体和奥氏体,具有良好的塑性。多余的碳与铁形成渗碳体(Fe 3C),大大降低塑性;

②磷:一般来说,磷是钢中的有害杂质,它在铁中有相当大的溶解度,使钢的强度、硬度提高,而塑性、韧性降低,在冷变形时影响更为严重,此称为冷脆性。

③硫:形成共晶体时熔点降得很低(例如 FeS的熔点为 1190℃,而 Fe-FeS的熔点为 985℃)。这些硫化物和共晶体,通常分布在晶界上,会引起热脆性。

④氮:当其质量分数较小(0.002%~0.015%)时,对钢的塑性无明显的影响;

但随着氮化物的质量分数的增加,钢的塑性降降低,导致钢变脆。如氮在α铁中的溶解度在高温和低温时相 差很大,当含氮量较高的钢从高温快速冷却到低温时,α铁被过饱和,随后在室温或稍高温度下,氮逐渐以 Fe 4N形式析出,使钢的塑性、韧性大为降低,这种现象称为时效脆性。

若在 300℃左右加工时,则会出现所谓“兰脆”现象。

⑤氢:氢脆和白点。

⑥氧:形成氧化物,还会和其他夹杂物(如 FeS)易熔共晶体(FeS-FeO,熔点为910℃)分布于晶界处,造成钢的热脆性。

合金元素的影响:①形成固溶体;

②形成硬而脆的碳化物;

…… 17.试分析单相与多相组织、细晶与粗晶组织、锻造组织与铸造组织对金属塑性的影响。

①相组成的影响:单相组织(纯金属或固溶体)比多相组织塑性好。多相组织由于各相性能不同,变形难易程度不同,导致变形和内应力的不均匀分布,因而塑性降低。如碳钢在高温时为奥氏体单相组织,故塑性好,而在 800℃左右时,转变为奥氏体和铁素体两相组织,塑性就明显下降。另外多相组织中的脆性相也会使其塑性大为降低。

②晶粒度的影响:晶粒越细小,金属的塑性也越好。因为在一定的体积内,细晶粒金属的晶粒数目比粗晶粒金属的多,因而塑性变形时位向有利的晶粒也较多,变形能较均匀地分散到各个晶粒上;

又从每个晶粒的应力分布来看,细晶粒时晶界的影响局域相对加大,使得晶粒心部的应变与晶界处的应变差异减小。由于细晶粒金属的变形不均匀性较小,由此引起的应力集中必然也较小,内应力分布较均匀,因而金属在断裂前可承受的塑性变形量就越大。

③锻造组织要比铸造组织的塑性好。铸造组织由于具有粗大的柱状晶和偏析、夹杂、气泡、疏松等缺陷,故使金属塑性降低。而通过适当的锻造后,会打碎粗大的柱状晶粒获得细晶组织,使得金属的塑性提高。

18.变形温度对金属塑性的影响的基本规律是什么? 就大多数金属而言,其总体趋势是:随着温度的升高,塑性增加,但是这种增加并不是简单的线性上升;

在加热过程中的某些温度区间,往往由于相态或晶粒边界状态的变化而出现脆性区,使金属的塑性降低。在一般情况下,温度由绝对零度上升到熔点时,可能出现几个脆性区,包括低温的、中温的和高温的脆性区。下图是以碳钢为例:区域Ⅰ,塑性极低—可能是由与原子热振动能力极低所致,也可能与晶界组成物脆化有关;

区域Ⅱ,称为蓝脆区(断口呈蓝色),一般认为是氮化物、氧化物以沉淀形式在晶界、滑移面上析出 所致,类似于时效硬化。区域Ⅲ,这和珠光体转变为奥氏体,形成铁素体和奥氏体两相共存有关,也可能还与晶界上出现FeS-FeO低熔共晶有关,为热脆区。

19.什么是温度效应?冷变形和热变形时变形速度对塑性的影响有何不同? 温度效应:由于塑性变形过程中产生的热量使变形体温度升高的现象。(热效应:塑性变形时金属所吸收的能量,绝大部分都转化成热能的现象)一般来说,冷变形时,随着应变速率的增加,开始时塑性略有下降,以后由于温度效应的增强,塑性会有较大的回升;

而热变形时,随着应变速率的增加,开始时塑性通常会有较显著的降低,以后由于温度效应的增强,而使塑性有所回升,但若此时温度效应过大,已知实际变形温度有塑性区进入高温脆区,则金属的塑性又急速下降。

2.叙述下列术语的定义或含义:

①张量:由若干个当坐标系改变时满足转换关系的分量所组成的集合称为张量;

②应力张量:表示点应力状态的九个分量构成一个二阶张量,称为应力张量;

.ζη η.x xy xz ③应力张量不变量:已知一点的应力状态 ④主应力:在某一斜微分面上的全应力S和正应力ζ重合,而切应力η=0,这种切应力为 零的微分面称为主平面,主平面上的正应力叫做主应力;

⑤主切应力:切应力达到极值的平面称为主切应力平面,其面上作用的切应力称为主切应力 ⑥最大切应力:三个主切应力中绝对值最大的一个,也就是一点所有方位切面上切应力最大的,叫做最大切应力ηmax ⑦主应力简图:只用主应力的个数及符号来描述一点应力状态的简图称为主应力图:

⑧八面体应力:在主轴坐标系空间八个象限中的等倾微分面构成一个正八面体,正八面体的每个平面称为八面体平面,八面体平面上的应力称为八面体应力;

⑨等效应力:取八面体切应力绝对值的3倍所得之参量称为等效应力 ⑩平面应力状态:变形体内与某方向垂直的平面上无应力存在,并所有应力分量与该方向轴无关,则这种应力状态即为平面应力状。实例:薄壁扭转、薄壁容器承受内压、板料成型的一些工序等,由于厚度方向应力相对很小而可以忽略,一般作平面应力状态来处理 11)平面应变状态:如果物体内所有质点在同一坐标平面内发生变形,而在该平面的法线方向没有变形,这种变形称为平面变形,对应的应力状态为平面应变状态。实例:轧制板、带材,平面变形挤压和拉拔等。

12)轴对称应力状态:当旋转体承受的外力为对称于旋转轴的分布力而且没有轴向力时,则物体内的质点就处于轴对称应力状态。实例:圆柱体平砧均匀镦粗、锥孔模均匀挤压和拉拔(有径向正应力等于周向正应力)。

3.张量有哪些基本性质? ①存在张量不变量②张量可以叠加和分解③张量可分对称张量和非对称张量④二阶对称张量存在三个主轴和三个主值 4.试说明应力偏张量和应力球张量的物理意义。

应力偏张量只能产生形状变化,而不能使物体产生体积变化,材料的塑性变形是由应力偏张量引起的;

应力球张量不能使物体产生形状变化(塑性变形),而只能使物体产生体积变化。

12.叙述下列术语的定义或含义 1)位移:变形体内任一点变形前后的直线距离称为位移;

2)位移分量:位移是一个矢量,在坐标系中,一点的位移矢量在三个坐标轴上的投影称为改点的位移分量,一般用 u、v、w或角标符号ui 来表示;

3)相对线应变:单位长度上的线变形,只考虑最终变形;

4)工程切应变:将单位长度上的偏移量或两棱边所夹直角的变化量称为相对切应变,也称工程切应变,即δrt = tanθxy =θxy =αyx +αxy(直角∠CPA减小时,θxy取正号,增大时取负号);

5)切应变:定义γ yx =γ xy= 1θyx 为切应变;

6)对数应变:塑性变形过程中,在应变主轴方向保持不变的情况下应变增量的总和,记为它反映了物体变形的实际情况,故称为自然应变或对数应变;

7)主应变:过变形体内一点存在有三个相互垂直的应变方向(称为应变主轴),该方向上线元没有切应变,只有线应变,称为主应变,用ε1、ε2、ε3 表示。对于各向同性材料,可以认 为小应变主方向与应力方向重合;

8)主切应变:在与应变主方向成± 45°角的方向上存在三对各自相互垂直的线元,它们的切 应变有极值,称为主切应变;

9)最大切应变:三对主切应变中,绝对值最大的成为最大切应变;

10)应变张量不变量:

11)主应变简图:用主应变的个数和符号来表示应变状态的简图;

12)八面体应变:如以三个应变主轴为坐标系的主应变空间中,同样可作出正八面体,八面体平面的法线方向线元的应变称为八面体应变 13)应变增量:产生位移增量后,变形体内质点就有相应无限小的应变增量,用dεij 来表示;

14)应变速率:单位时间内的应变称为应变速率,俗称变形速度,用ε& 表示,其单位为 s-1;

15)位移速度:

14.试说明应变偏张量和应变球张量的物理意义。应变偏张量εij /----表示变形单元体形状的变化;

应变球张量δijεm----表示变单元体体积的变化;

塑性变形时,根据体积不变假设,即εm = 0,故此时应变偏张量即为应变张量 15.塑性变形时应变张量和应变偏张量有何关系?其原因何在?塑性变形时应变偏张量就是应变张量,这是根据体积不变假设得到的,即εm = 0,应变球张量不存在了。

16.用主应变简图表示塑性变形的类型有哪些? 三个主应变中绝对值最大的主应变,反映了该工序变形的特征,称为特征应变。如用主应变简图来表示应变状态,根据体积不变条件和特征应变,则塑性变形只能有三种变形类型 ①压缩类变形,特征应变为负应变(即ε1<0)另两个应变为正应变,ε2 +ε3 =.ε1 ;

②剪切类变形(平面变形),一个应变为零,其他两个应变大小相等,方向相反,ε2 =0,ε1 =.ε3 ;

③伸长类变形,特征应变为正应变,另两个应变为负应变,ε1 =.ε2.ε3。

17.对数应变有何特点?它与相对线应变有何关系? 对数应变能真实地反映变形的积累过程,所以也称真实应变,简称真应变。它具有如下 特点:

①对数应变有可加性,而相对应变为不可加应变;

②对数应变为可比应变,相对应变为不可比应变;

③相对应变不能表示变形的实际情况,而且变形程度愈大,误差也愈大。

对数应变可以看做是由相对线应变取对数得到的。

21.叙述下列术语的定义或含义:

Ⅰ屈服准则:在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件,它是描述受力物体中不同应力状态下的质点进入塑性状态并使塑性变形继续进行所必须遵守的力学条件;

Ⅱ屈服表面:屈服准则的数学表达式在主应力空间中的几何图形是一个封闭的空间曲面称为屈服表面。假如描述应力状态的点在屈表面上,此点开始屈服。对各向同性的理想塑性材料,则屈服表面是连续的,屈服表面不随塑性流动而变化。

Ⅲ屈服轨迹:两向应力状态下屈服准则的表达式在主应力坐标平面上的集合图形是封闭的曲线,称为屈服轨迹,也即屈服表面与主应力坐标平面的交线。

22.常用的屈服准则有哪两个?如何表述?分别写出其数学表达式。

常用的两个屈服准则是 Tresca屈服准则和 Mises屈服准则,数学表达式分别为max min Tresca屈服准则:ηmax =ζ.ζ = C2 式中,ζmax、ζ min----带数值最大、最小的主应力;

C----与变形条件下的材料性质有关而与应力状态无关的常数,它可通过单向均匀拉伸试验求的。

Tresca屈服准则可以表述为:在一定的变形条件下,当受力体内的一点的最大切应力ηmax 达到某一值时,该点就进入塑性状体。

Mises屈服准则:ζ= 1(ζ1.ζ 2)2 +(ζ 2.ζ3)2 +(ζ3.ζ1)2 =ζs2 = 1 ζ)()()()2(s2zx2yz2xy2xz2zy2yx6ζηηηζζζζζ=+++.+.+.所以 Mises屈服准则可以表述为:在一定的变形条件下,当受力体内一点的等效应力 ζ达到某一定值时,该点就进入塑性状态。

23.两个屈服准则有何差别?在什么状态下两个屈服准则相同?什么状态下差别最大? Ⅰ共同点:

①屈服准则的表达式都和坐标的选择无关,等式左边都是不变量的函数;

②三个主应力可以任意置换而不影响屈服,同时,认为拉应力和压应力的作用是一样的;

③各表达式都和应力球张量无关。

不同点:①Tresca屈服准则没有考虑中间应力的影响,三个主应力的大小顺序不知道时,使用不方便;

而 Mises屈服准则则考虑了中间应力的影响,使用方便。

Ⅱ两个屈服准则相同的情况在屈服轨迹上两个屈服准则相交的点表示此时两个屈服准则相同,有六个点,四个单向应力状态,两个轴对称应力状态。

Ⅲ两个屈服准则差别最大的情况:在屈服轨迹上连个屈服准则对应距离最远的点所对应的情况,此时二者相差最大,也是六个点,四个平面应力状态(也可是平面应变状态),两个纯切应力状态,相差为 15.5%。

28.叙述下列术语的定义或含义:

1)增量理论:又称流动理论,是描述材料处于塑性状态时,应力与应变增量或应变速率之间关系的理论,它是针对加载过程中的每一瞬间的应力状态所确定的该瞬间的应变增量,这样就撇开了加载历史的影响;

2)全量理论:在一定条件下直接确定全量应变的理论,也叫形变理论,它是要建立塑性变形全量应变和应力之间的关系。

3)比例加载:外载荷的各分量按比例增加,即单调递增,中途不卸载的加载方式,满足Ti =CT i 0 ;

4)标称应力:也称名义应力或条件应力,是在拉伸机上拉伸力与原始横断面积的比值;

5)真实应力:也就是瞬时的流动应力,用单向均匀拉伸(或压缩)是各加载瞬间的载荷 P与该瞬间试样的横截面积A之比来表示;

6)拉伸塑性失稳:拉伸过程中发生缩颈的现象 7)硬化材料:考虑在塑性变形过程中因形状变化而会发生加工硬化的材料;

8)理想弹塑性材料:在塑性变形时,需考虑塑性变形之前的弹性变形,而不考虑硬化的材料,也即材料进入塑性状态后,应力不在增加可连续产生塑性变形;

9)理性刚塑性材料:在研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料;

10)弹塑性硬化材料:在塑性变形时,既需要考虑塑性变形前的弹性变形,又要考虑加工硬化的材料;

11)刚塑性硬化材料:在研究塑性变形时,不考虑塑性变形前的弹性变形,但需要考虑变形过程中的加工硬化的材料。

29.塑性变形时应力应变关系有何特点?为什么说塑性变形时应力和应变之间的关系与加载历史有关? 在塑性变形时,应力应变之间的关系有如下特点:

①应力与应变之间的关系时非线性的,因此,全量应变主轴与应力主轴不一定重合;

②塑性变形时可以认为体积不变,即应变球张量为零,泊松比 υ=0.5;

③对于应变硬化材料,卸载后在重新加载时的屈服应力就是卸载时的屈服应力,比初始屈服应力要高;

④塑性变形时不可逆的,与应变历史有关,即应力-应变关系不在保持单值关系。塑性变形应力和应变之间的关系与加载历史有关,可以通过单向拉伸时的应力应变曲线和不同加载路线的盈利与应变图来说明 P120 30.全量理论使用在什么场合?为什么? 全量理论适用在简单加载的条件下,因为在简单加载下才有应力主轴的方向固定不变,也就是应变增量的主轴是和应力主轴是重合的,这种条件下对劳斯方程积分得到全量应变和应力之间的关系,就是全量理论。

31.在一般情况下对应变增量积分是否等于全量应变?为什么?在什么情况下这种积分才能成立? 一般情况下是对应变增量积分是不等于全量应变的,因为一般情况下塑性变形时全量应变主轴与与应力主轴不一定重合。在满足简单加载的的条件下,这种积分才成立。一般情况下很难做到比例加载,但满足几个条件可实现比例加载。可参看第三章第五节中全量理论的部分内容。

1.对塑性成形件进行质量分析有何重要意义? 对塑性成形件进行质量分析,是检验成形件的质量的一种手段,能够对成形件作出较为全面的评估,指明成形件能否使用和在使用过程中应该注意的问题,可有效防止不必要的安全事故和经济损失。

2.试述对塑性成形件进行质量分析的一般过程即分析方法。

一般过程:调查原始情况→弄清质量问题→试验研究分析→提出解决措施;

分析方法:低倍组织试验、金相试验及金属变形金属变形流动分析试验。

3.试分别从力学和组织方面分析塑性成形件中产生裂纹的原因。

①力学分析:能否产生裂纹,与应力状态、应变积累、应变速率及温度等很多因素有关。其中应力状态主要反映力学的条件。

物体在外力的作用下,其内部各点处于一定的应力状态,在不同的方位将作用有不同的正应力及切应力。材料断裂(产生裂纹)形式一般有两种:一是切断,断裂面是平行于最大切应力或最大切应变方向;

另一种是正断,断裂面垂直于最大正应力或正应变方向。塑性成形过程中,材料内部的应力除了由外力引起外,还有由于变形不均匀而引起的附加应力。由于温度不均而引起的温度应力和因组织转变不同时进行而产生的组织应力。这些应力超过极限值时都会使材料发生破坏(产生裂纹)。

1)由外力直接引起的裂纹;

2)由附加应力及残余应力引起的裂纹;

3)由温度应力(热应力)及组织应力引起的裂纹。

②组织分析:塑性成形中的裂纹一般发生在组织不均匀或带有某些缺陷的材料中,同时,金属的晶界往往是缺陷比较集中的地方,因此,塑性成形件中的裂纹一般产生于晶界或相界处。

1)材料中由冶金和组织缺陷处应力集中而产生裂纹;

2)第二相及夹杂物本身的强度低和塑性低而产生裂纹:a晶界为低熔点物质;

b晶界存在脆性的第二相或非金属夹杂物;

c第二相为强度低于基体的韧性相;

3)第二相及非金属夹杂与基体之间的力学性能和理化性能上有差异而产生裂纹。

4.防止产生裂纹的原则措施是什么? 1)增加静水压力;

2)选择和控制合适的变形温度和变形速度;

3)采用中间退火,以便消除变形过程中产生的硬化、变形不均匀、残余应力等;

4)提高原材料的质量。

5.什么是钢的奥氏体本质晶粒度和钢的奥氏体实际晶粒度? 钢的奥氏体本质晶粒度是将钢加热到 930℃,保温一段时间(一般 3—8h),冷却后在室温下放大 100倍观察到的晶粒大小。钢的本事晶粒度一般反映钢的冶金质量,它表征钢的工艺特性;

钢的奥氏体实际晶粒度是指钢加热到某一温度下获得奥氏体晶粒大小。奥氏体实际晶粒度则影响零件的使用性能。

6.晶粒大小对材料的力学性能有何影响? 一般情况下,晶粒细化可以提高金属材料的屈服强度、疲劳强度、塑性和冲击韧度,降低钢的脆性转变温度。

7.影响晶粒大小的主要因素有哪些?这些因素是如何影响晶粒大小的? 对于热加工过程来说,变形温度、变形程度和机械阻碍物是影响形核速度和长大速度的三个基本参数。下面讨论这三个基本参数对晶粒大小的影响。

1)加热温度(包括塑性变形前的加热温度和固溶处理时的加热温度)温度对原子的扩散能力有重要影响。随着温度的升高,原子(特别是晶界原子)的移动、扩散能力不断增强,晶粒之间并吞速度加剧,晶粒的这种长大可以在很短的时间内完成。所以晶粒随温度升高而长大是一种必然现象。

2)变形程度:热变形的晶粒大小与变形程度之间的关系和 5-17相似。

第一个大晶粒区,叫临界变形区。临界变形区是属于一种小变形量范围。因为其变形量小,金属内部只是局部地区受到变形。在再结晶时,这些受到变形的局部地区会产生再结晶核心,由于产生的核心数目不多,这些为数不多的核心将不断长大直到它们互相接触,结果获得了粗大晶粒。当变形量大于临界变形程度时,金属内部均产生了较大的塑性变形,由于具有了较高的畸变能,因而再结晶能同时形成较多的再结晶核心,这些核心稍微长大就相互解除了,所以再结晶后获得了细晶粒。当变形量足够大时,出现了第二个大晶粒区。该区的粗大晶粒与临界变形时所产生的大晶粒不同。一般认为,该区是在变形时先形成变形织构,经再结晶后形成了织构大晶粒所致。可能的原因还可能是:

①由于变形程度大(90%以上),内部产生很大的热效应,引起锻件实际变形温度大幅度升高;

②由于变形程度大,使那些沿晶界分布的杂质破碎并分散,造成变形的晶粒与晶粒之间局部地区直接接触(与织构的区别在于这时相互接触的晶粒位向差可以是比较大的),从而促使形成大晶粒。

3)机械阻碍物:机械阻碍物的存在形式分两类:一类是钢在冶炼凝固时从液相直接析出的,颗粒比较大,成偏析或统计分布;

另一类是钢凝固后,在继续冷却过程中从奥氏体晶粒内析出的,颗粒十分细小,分布在晶界上。后一类比前一类的阻碍作用大得多。机械阻碍物的作用主要表现在对晶界的钉扎作用上。一旦机械阻碍物溶入晶内时,晶界上就不存在机械阻碍作用了,晶粒便可立即长大到与所处温度对应的晶粒大小。对晶粒的影响,除以上三个基本因素外,还有变形速度、原始晶粒度和化学成分等。

8.细化晶粒的主要途径有哪些? ①在原材料冶炼时加入一些合金元素(如钽、铌、锆、钼、钨、钒、钛等)及最终采用铝、钛等作脱氧剂。它们的细化作用主要在于:当液态金属凝固时,那些高熔点化合物起弥散的结晶核心作用,从而保证获得极细晶粒。此外这些化合物同时又都起到机械阻碍的作用,是已形成的细晶粒不易长大。

②采用适当的变形程度和变形温度。塑性变形时应恰当控制最高变形温度(既要考虑加热温度,也要考虑到热效应引起的升温),以免发生聚集再结晶。如果变形量较小时,应适当降低变形温度。

③采用锻后正火(或退火)等相变重结晶的方法。必要时利用奥氏体再结晶规律进行高温正火来细化晶粒。

11.什么是塑性失稳?拉伸失稳与压缩失稳有什么本质区别? 塑性失稳:在塑性加工中,当材料所受载荷达到某一临界值后,即使载荷下降,塑性变形还会继续,这种现象称为塑性失稳。压缩失稳的主要影响因素是刚度参数,它在塑性成形中主要表现为坯料的弯曲和起皱,在弹性和塑性变形范围内都可能产生;

拉伸失稳的主要影响因素是强度参数,它主要表现为明显的非均匀伸长变形,在坯料上产生局部变薄或变细的现象,其进一步发展是坯料的拉断和破裂,它只产生于塑性变形范围内。

13.杆件的塑性压缩失稳与板料的塑性压缩失稳其表现形式有何不同? 杆件的压缩失稳表现为弯曲;

板料的压缩失稳表现为起皱 14.塑性压缩失稳的临界压应力与那些因素有关?(P180-184)15.在板料拉深中,引起法兰变形区起皱的原因是什么?在生产实践中,如何防止法兰变形区的起皱? 原因:压缩力引起的失稳起皱。成形过程中变形区坯料的径向拉应力ζ1和切向压应力ζ3 的平面应力状态下变形,当切向压应力ζ3 达到失稳临界值时,坯料将产生失稳起皱。

防止方法:加设压边圈 一、填空题 1.衡量金属或合金的塑性变形能力的数量指标有 伸长率 和 断面收缩率。

2.所谓金属的再结晶是指 冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织 的过程。

3.金属热塑性变形机理主要有:

晶内滑移、晶内孪生、晶界滑移 和 扩散蠕变 等。

4.请将以下应力张量分解为应力球张量和应力偏张量 = + 5.对应变张量,请写出其八面体线变 与八面体切应变 的表达式。

= ;

=。

6.1864 年法国工程师屈雷斯加(H.Tresca)根据库伦在土力学中研究成果,并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果采用数学的方式,屈雷斯加屈服条件可表述为。

7.金属塑性成形过程中影响摩擦系数的因素有很多,归结起来主要有 金属的种类和化学成分、工具的表面状态、接触面上的单位压力、变形温度、变形速度 等几方面的因素。

8.变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切线方向即为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态下,塑性区内各点的应力状态不同其实质只是平均应力 不同,而各点处的 最大切应力 为材料常数。

9.在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应的速度场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场,称之为 真实 应力场和 真实 速度场,由此导出的载荷,即为 真实 载荷,它是唯一的。

10.设平面三角形单元内部任意点的位移采用如下的线性多项式来表示:

,则单元内任一点外的应变可表示为 =。

11、金属塑性成形有如下特点:

、、、。

12、按照成形的特点,一般将塑性成形分为 和 两大类,按照成形时工件的温度还可以分为、和 三类。

13、金属的超塑性分为 和 两大类。

14、晶内变形的主要方式和单晶体一样分为 和。

其中 变形是主要的,而 变形是次要的,一般仅起调节作用。

15、冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织,这个过程称为金属的。

16、常用的摩擦条件及其数学表达式。

17、研究塑性力学时,通常采用的基本假设有、、、体积力为零、初应力为零、。

19.塑性是指:

在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。

20.金属单晶体变形的两种主要方式有:

滑移 和 孪生。

21.影响金属塑性的主要因素有:

化学成分、组织、变形温度、变形速度、应力状态。

22.等效应力表达式:

23.一点的代数值最大的 __ 主应力 __ 的指向称为 第一主方向,由 第一主方向顺时针转 所得滑移线即为 线。

24.平面变形问题中与变形平面垂直方向的应力 σ z =。

25.塑性成形中的三种摩擦状态分别是:

干摩擦、边界摩擦、流体摩擦。

26.对数应变的特点是具有真实性、可靠性和可加。

27.就大多数金属而言,其总的趋势是,随着温度的升高,塑性 提高。

28.钢冷挤压前,需要对坯料表面进行磷化皂化 润滑处理。

29.为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫添加剂。

30.材料在一定的条件下,其拉伸变形的延伸率超过 100% 的现象叫超塑性。

31.韧性金属材料屈服时,密塞斯(Mises)准则较符合实际的。

32.硫元素的存在使得碳钢易于产生热脆。

33.塑性变形时不产生硬化的材料叫做理想塑性材料。

34.应力状态中的压 应力,能充分发挥材料的塑性。

35.平面应变时,其平均正应力sm 等于 中间主应力s2。

36.钢材中磷使钢的强度、硬度提高,塑性、韧性 降低。

37.材料经过连续两次拉伸变形,第一次的真实应变为e1=0.1,第二次的真实应变为e2=0.25,则总的真实应变e=0.35。

38.塑性指标的常用测量方法 拉伸试验法与压缩试验法。

39.弹性变形机理 原子间距的变化;

塑性变形机理 位错运动为主。

二、下列各小题均有多个答案,选择最适合的一个填于横线上 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响A工件表面的粗糙度对摩擦系数的影响。

A、大于;

B、等于;

C、小于;

2.塑性变形时不产生硬化的材料叫做 A。

A、理想塑性材料;

B、理想弹性材料;

C、硬化材料;

3. 用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为 B。

A、解析法;

B、主应力法;

C、滑移线法;

4. 韧性金属材料屈服时,A准则较符合实际的。

A、密席斯;

B、屈雷斯加;

C密席斯与屈雷斯加;

5.由于屈服原则的限制,物体在塑性变形时,总是要导致最大的 A 散逸,这叫最大散逸功原理。

A、能量;

B、力;

C、应变;

6. 硫元素的存在使得碳钢易于产生 A。

A、热脆性;

B、冷脆性;

C、兰脆性;

7. 应力状态中的B 应力,能充分发挥材料的塑性。

A、拉应力;

B、压应力;

C、拉应力与压应力;

8.平面应变时,其平均正应力smB中间主应力s2。

A、大于;

B、等于;

C、小于;

9. 钢材中磷使钢的强度、硬度提高,塑性、韧性 B。

A、提高;

B、降低;

C、没有变化;

10.多晶体经过塑性变形后各晶粒沿变形方向显著伸长的现象称为 A。

A、纤维组织;

B、变形织构;

C、流线;

三、判断题 1.按密塞斯屈服准则所得到的最大摩擦系数μ=0.5。

(×)2.塑性变形时,工具表面的粗糙度对摩擦系数的影响小于工件表面的粗糙度对摩擦系数的影响。

(×)3.静水压力的增加,对提高材料的塑性没有影响。(×)4.在塑料变形时要产生硬化的材料叫理想刚塑性材料。

(×)5.塑性变形体内各点的最大剪应力的轨迹线叫滑移线。(√)6.塑性是材料所具有的一种本质属性。

(√)7.塑性就是柔软性。

(×)8.合金元素使钢的塑性增加,变形拉力下降。

(×)9.合金钢中的白点现象是由于夹杂引起的。

(×)10.结构超塑性的力学特性为,对于超塑性金属m =0.02-0.2。

(×)11.影响超塑性的主要因素是变形速度、变形温度和组织结构。

(√)12.屈雷斯加准则与密席斯准则在平面应变上,两个准则是一致的。

(×)13.变形速度对摩擦系数没有影响。

(×)14.静水压力的增加,有助于提高材料的塑性。(√)15.碳钢中冷脆性的产生主要是由于硫元素的存在所致。(×)16.如果已知位移分量,则按几何方程求得的应变分量自然满足协调方程;

若是按其它方法求得的应变分量,也自然满足协调方程,则不必校验其是否满足连续性条件。

(×)17.在塑料变形时金属材料塑性好,变形抗力就低,例如:不锈钢(×)四、简答题 1.纯剪切应力状态有何特点? 答:纯剪切应力状态下物体只发生形状变化而不发生体积变化。

纯剪应力状态下单元体应力偏量的主方向与单元体应力张量的主方向一致,平均应力。

其第一应力不变量也为零。

3.塑性变形时应力应变关系的特点? 答:在塑性变形时,应力与应变之间的关系有如下特点:

(1)应力与应变之间的关系是非线性的,因此,全量应变主轴与应力主轴不一定重合。

(2)塑性变形时,可以认为体积不变,即应变球张量为零,泊松比。

(3)对于应变硬化材料,卸载后再重新加载时的屈服应力就是报载时的屈服应力,比初始屈服应力要高。

(4)塑性变形是不可逆的,与应变历史有关,即应力-应变关系不再保持单值关系。

1.试简述提高金属塑性的主要途径。

答:可通过以下几个途径来提高金属塑性:

(1)提高材料的成分和组织的均匀性;

(2)合理选择变形温度和变形速度;

(3)选择三向受压较强的变形方式;

(4)减少变形的不均匀性。

2.请简述应变速率对金属塑性的影响机理。

答:应变速度通过以下几种方式对塑性发生影响:

(1)增加应变速率会使金属的真实应力升高,这是由于塑性变形的过程比较复杂,需要有一定的时间来进行。

(2)增加应变速率,由于没有足够的时间进行回复或再结晶,因而软化过程不充分而使金属的塑性降低。

(3)增加应变速率,会使温度效应增大和金属的温度升高,这有利于金属塑性的提高。

综上所述,应变速率的增加,既有使金属塑性降低的一面,又有使金属塑性增加的一面,这两方面因素综合作用的结果,最终决定了金属塑性的变化。

3.请简述弹性变形时应力-应变关系的特点。

答:弹性变形时应力-应变关系有如下特点:

(1)应力与应变完全成线性关系,即应力主轴与全量应变主轴重合。

(2)弹性变形是可逆的,与应变历史(加载过程)无关,即某瞬时的物体形状、尺寸只与该瞬时的外载有关,而与瞬时之前各瞬间的载荷情况无关。

(3)弹性变形时,应力球张量使物体产生体积的变化,泊松比。

三、计算题 1.对于直角坐标系 Oxyz 内,已知受力物体内一点的应力张量为,应力单位为 Mpa,(1)画出该点的应力单元体;

(2)求出该点的应力张量不变量、主应力及主方向、最大切应力、八面体应力、应力偏张量及应力球张量。

解:

(1)该点的应力单元体如下图所示(2)应力张量不变量如下 故得应力状态方程为 解之得该应力状态的三个主应力为(Mpa)设主方向为,则主应力与主方向满足如下方程 即,解之则得,解之则得,解之则得 最大剪应力为:

八面体正应力为:

Mpa 八面体切应力为:

应力偏张量为:,应力球张量为:

2.已知金属变形体内一点的应力张量为 Mpa,求:

(1)计算方向余弦为 l=1/2,m=1/2,n= 的斜截面上的正应力大小。

(2)应力偏张量和应力球张量;

(3)主应力和最大剪应力;

解:

(1)可首先求出方向余弦为(l,m,n)的斜截面上的应力()进一步可求得斜截面上的正应力 :

(2)该应力张量的静水应力 为 其应力偏张量 应力球张量(3)在主应力面上可达到如下应力平衡 其中 欲使上述方程有解,则 即 解之则得应力张量的三个主应力:

对应地,可得最大剪应力。

3.若变形体屈服时的应力状态为:-30 0 0 15 0 23 ´ ÷ ÷ ÷ ø ö ç ç ç è æ × × × = ij s MPa 试分别按Mises和Tresca塑性条件计算该材料的屈服应力及值,并分析差异大小。

解:,Tresca准则:

MPa 而==1 Mises准则:

MPa 而==1.07 或者:,4.某理想塑性材料,其屈服应力为100(单位:10MPa),某点的应力状态为:

MPa 将其各应力分量画在如图所示的应力单元图中,并判断该点处于什么状态(弹性/塑性)? 答:=-300MPa =230MPa =150MPa =-30 MPa ====0 根据应力张量第一、第二、第三不变量公式:

=++-=++ = 将、、、、、、、、代入上式得:

=8,=804,=-10080(单位:10MPa)将、、代入--б-=0,令>>解得:

=24 =14 =-30(单位:10MPa)根据Mises屈服准则:

等效应力 = =49.76(单位:10MPa)(单位:10MPa)因此,该点处于弹性状态。

一、填空题 1.设平面三角形单元内部任意点的位移采用如下的线性多项式来表示:

,则单元内任一点外的应变可表示为 =。

2.塑性是指:

在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。

3.金属单晶体变形的两种主要方式有:

滑移 和 孪生。

4.等效应力表达式:。

5.一点的代数值最大的 __ 主应力 __ 的指向称为 第一主方向,由 第一主方向顺时针转 所得滑移线即为 线。

6.平面变形问题中与变形平面垂直方向的应力 σ z =。

7.塑性成形中的三种摩擦状态分别是:

干摩擦、边界摩擦、流体摩擦。

8.对数应变的特点是具有真实性、可靠性和可加性。

9.就大多数金属而言,其总的趋势是,随着温度的升高,塑性 提高。

10.钢冷挤压前,需要对坯料表面进行磷化皂化 润滑处理。

11.为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫添加剂。

12.材料在一定的条件下,其拉伸变形的延伸率超过 100% 的现象叫超塑性。

13.韧性金属材料屈服时,密席斯(Mises)准则较符合实际的。

14.硫元素的存在使得碳钢易于产生热脆。

15.塑性变形时不产生硬化的材料叫做理想塑性材料。

16.应力状态中的压 应力,能充分发挥材料的塑性。

17.平面应变时,其平均正应力sm  等于 中间主应力s2。

18.钢材中磷使钢的强度、硬度提高,塑性、韧性 降低。

19.材料经过连续两次拉伸变形,第一次的真实应变为e1=0.1,第二次的真实应变为e2=0.25,则总的真实应变e=0.35。

20.塑性指标的常用测量方法 拉伸试验法与压缩试验法。

21.弹性变形机理 原子间距的变化;

塑性变形机理 位错运动为主。

二、下列各小题均有多个答案,选择最适合的一个填于横线上 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响A工件表面的粗糙度对摩擦系数的影响。

A、大于;

B、等于;

C、小于;

2.塑性变形时不产生硬化的材料叫做 A。

A、理想塑性材料;

B、理想弹性材料;

C、硬化材料;

3. 用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为 B。

A、解析法;

B、主应力法;

C、滑移线法;

4. 韧性金属材料屈服时,A准则较符合实际的。

A、密席斯;

B、屈雷斯加;

C密席斯与屈雷斯加;

5.由于屈服原则的限制,物体在塑性变形时,总是要导致最大的 A 散逸,这叫最大散逸功原理。

A、能量;

B、力;

C、应变;

6. 硫元素的存在使得碳钢易于产生 A。

A、热脆性;

B、冷脆性;

C、兰脆性;

7. 应力状态中的B 应力,能充分发挥材料的塑性。

A、拉应力;

B、压应力;

C、拉应力与压应力;

8.平面应变时,其平均正应力smB中间主应力s2。

A、大于;

B、等于;

C、小于;

9. 钢材中磷使钢的强度、硬度提高,塑性、韧性 B。

A、提高;

B、降低;

C、没有变化;

10.多晶体经过塑性变形后各晶粒沿变形方向显著伸长的现象称为 A。

A、纤维组织;

B、变形织构;

C、流线;

三、判断题 1.按密席斯屈服准则所得到的最大摩擦系数μ=0.5。

(×)2.塑性变形时,工具表面的粗糙度对摩擦系数的影响小于工件表面的粗糙度对摩擦系数的影响。

(×)3.静水压力的增加,对提高材料的塑性没有影响。(×)4.在塑料变形时要产生硬化的材料叫理想刚塑性材料。

(×)5.塑性变形体内各点的最大剪应力的轨迹线叫滑移线。(√)6.塑性是材料所具有的一种本质属性。

(√)7.塑性就是柔软性。

(×)8.合金元素使钢的塑性增加,变形拉力下降。

(×)9.合金钢中的白点现象是由于夹杂引起的。

(×)10.结构超塑性的力学特性为,对于超塑性金属m =0.02-0.2。

(×)11.影响超塑性的主要因素是变形速度、变形温度和组织结构。

(√)12.屈雷斯加准则与密席斯准则在平面应变上,两个准则是一致的。

(×)13.变形速度对摩擦系数没有影响。

(×)14.静水压力的增加,有助于提高材料的塑性。(√)15.碳钢中冷脆性的产生主要是由于硫元素的存在所致。(×)16.如果已知位移分量,则按几何方程求得的应变分量自然满足协调方程;

若是按其它方法求得的应变分量,也自然满足协调方程,则不必校验其是否满足连续性条件。

(×)17.在塑料变形时金属材料塑性好,变形抗力就低,例如:不锈钢(×)四、名词解释 1.上限法的基本原理是什么? 答:按运动学许可速度场来确定变形载荷的近似解,这一变形载荷它总是大于真实载荷,即高估的近似值,故称上限解。

2.在结构超塑性的力学特性中,m值的物理意义是什么? 答:为应变速率敏感性系数,是表示超塑性特征的一个极重要的指标,当m值越大,塑性越好。

3.何谓冷变形、热变形和温变形? 答:冷变形:在再结晶温度以下(通常是指室温)的变形。

热变形:在再结晶温度以上的变形。

温变形:在再结晶温度以下,高于室温的变形。

4.何谓最小阻力定律? 答:变形过程中,物体质点将向着阻力最小的方向移动,即做最少的功,走最短的路。

5.何谓超塑性? 答:延伸率超过100%的现象叫做超塑性。

五、简答题 1.请简述有限元法的思想。

答:有限元法的基本思想是:

(1)把变形体看成是有限数目单元体的集合,单元之间只在指定节点处铰接,再无任何关连,通过这些节点传递单元之间的相互作用。如此离散的变形体,即为实际变形体的计算模型;

(2)分片近似,即对每一个单元选择一个由相关节点量确定的函数来近似描述其场变量(如速度或位移)并依据一定的原理建立各物理量之间的关系式;

(3)将各个单元所建立的关系式加以集成,得到一个与有限个节点相关的总体方程。

解此总体方程,即可求得有限个节点的未知量(一般为速度或位移),进而求 得整个问题的近似解,如应力应变、应变速率等。

所以有限元法的实质,就是将具有无限个自由度的连续体,简化成只有有限个自由度的单元集合体,并用一个较简单问题的解去逼近复杂问题的解。

2.Levy-Mises 理论的基本假设是什么? 答:

Levy-Mises 理论是建立在以下四个假设基础上的:

(1)材料是刚塑性材料,即弹性应变增量为零,塑性应变增量就是总的应变增量;

(2)材料符合 Mises 屈服准则,即 ;

(3)每一加载瞬时,应力主轴与应变增量主轴重合;

(4)塑性变形时体积不变,即,所以应变增量张量就是应变增量偏张量,即 3.在塑性加工中润滑的目的是什么?影响摩擦系数的主要因素有哪些? 答:(1)润滑的目的是:减少工模具磨损;

延长工具使用寿命;

提高制品质量;

降低金属变形时的能耗。

(2)影响摩擦系数的主要因素:

答:1)金属种类和化学成分;

2)工具材料及其表面状态;

3)接触面上的单位压力;

4)变形温度;

5)变形速度;

6)润滑剂 4.简述在塑性加工中影响金属材料变形抗力的主要因素有哪些? 答:(1)材料(化学成分、组织结构);

(2)变形程度;

(3)变形温度;

(4)变形速度;

(5)应力状态;

(6)接触界面(接触摩擦)5.为什么说在速度间断面上只有切向速度间断,而法向速度必须连续? 答:现设变形体被速度间断面SD分成①和②两个区域;

在微段dSD上的速度间断情况如下图所示。

根据塑性变形体积不变条件,以及变形体在变形时保持连续形,不发生重叠和开裂可知,垂直于dSD上的速度分量必须相等,即,而切向速度分量可以不等,造成①、②区的相对滑动。其速度间断值为 6.何谓屈服准则?常用屈服准则有哪两种?试比较它们的同异点? 答:(1)屈服准则:只有当各应力分量之间符合一定的关系时,质点才进入塑性状态,这种关系就叫屈服准则。

(2)常用屈服准则:密席斯屈服准则与屈雷斯加屈服准则。

(3)同异点:在有两个主应力相等的应力状态下,两者是一致的。对于塑性金属材料,密席斯准则更接近于实验数据。在平面应变状态时,两个准则的差别最大为15.5% 7.简述塑性成形中对润滑剂的要求。

答:(1)润滑剂应有良好的耐压性能,在高压作用下,润滑膜仍能吸附在接触表面上,保持良好的润滑状态;

(2)润滑剂应有良好耐高温性能,在热加工时,润滑剂应不分解,不变质;

(3)润滑剂有冷却模具的作用;

(4)润滑剂不应对金属和模具有腐蚀作用;

(5)润滑剂应对人体无毒,不污染环境;

(6)润滑剂要求使用、清理方便、来源丰富、价格便宜等。

8.简述金属塑性加工的主要优点? 答:(1)结构致密,组织改善,性能提高。

(2)材料利用率高,流线分布合理。

(3)精度高,可以实现少无切削的要求。

(4)生产效率高。

六、计算题 1.圆板坯拉深为圆筒件如图1所示。

假设板厚为t , 圆板坯为理想刚塑性材料,材料的真实应力为S,不计接触面上的摩擦 ,且忽略凹模口处的弯曲效应 , 试用主应力法证明图示瞬间的拉深力为:

(a)拉深示意图(b)单元体 图1 板料的拉深 答:在工件的凸缘部分取一扇形基元体,如图所示。沿负的径向的静力平衡方程为:

展开并略去高阶微量,可得:

由于是拉应力,是压应力,故,得近似塑性条件为:

联解得:

式中的 2.如图2所示,设有一半无限体,侧面作用有均布压应力,试用主应力法求单位流动压力p。

图2 解:

取半无限体的半剖面,对图中基元板块(设其长为 l)列平衡方程:

(1)其中,设,为摩擦因子,为材料屈服时的最大切应力值,、均取绝对值。

由(1)式得:

(2)采用绝对值表达的简化屈服方程如下:

(3)从而(4)将(2)(3)(4)式联立求解,得:

(5)在边界上,由(3)式,知,代入(5)式得:

最后得:

(6)从而,单位流动压力:

(7)3.图3所示的圆柱体镦粗,其半径为re,高度为h,圆柱体受轴向压应力sZ,而镦粗变形接触表面上的摩擦力t=0.2S(S为流动应力),sze为锻件外端(r=re)处的垂直应力。

(1)证明接触表面上的正应力为:

(2)并画出接触表面上的正应力分布;

(3)求接触表面上的单位流动压力p,(4)假如re=100MM,H=150MM,S=500MPa,求开始变形时的总变形抗力P为多少吨? 解:

(1)证明 该问题为平行砧板间的轴对称镦粗。设对基元板块列平衡方程得:

因为,并略去二次无穷小项,则上式化简成:

假定为均匀镦粗变形,故:

图3 最后得:

该式与精确平衡方程经简化后所得的近似平衡方程完全相同。

按密席斯屈服准则所写的近似塑性条件为:

联解后得:

当时,最后得:

(3)接触表面上的单位流动压力为:

=544MP(4)总变形抗力: =1708T 4.图4所示的一平冲头在外力作用下压入两边为斜面的刚塑性体中,接触表面上的摩擦力忽略不计,其接触面上的单位压力为q,自由表面AH、BE与X轴的夹角为,求:

(1)证明接触面上的单位应力q=K(2++2);

(2)假定冲头的宽度为2b,求单位厚度的变形抗力P;

图4 解:

(1)证明 1)在AH边界上有:

故,屈服准则:

得:

2)在AO边界上:

根据变形情况:

按屈服准则:

沿族的一条滑移(OA1A2A3A4)为常数(2)单位厚度的变形抗力:

5.图5所示的一尖角为2j的冲头在外力作用下插入具有相同角度的缺口的刚塑性体中,接触表面上的摩擦力忽略不计,其接触面上的单位压力为p,自由表面ABC与X轴的夹角为d,求:

(1)证明接触面上的单位应力p=2K(1+j+d);

(2)假定冲头的宽度为2b,求变形抗力P。

图5 答:

(1)证明 1)在AC边界上:

2)在AO边界上:

3)根据变形情况:

4)按屈服准则:

5)沿族的一条滑移(OFEB)为常数(2)设AO的长度为L,则变形抗力为:

6.模壁光滑平面正挤压的刚性块变形模型如图6所示,试计算其单位挤压力的上限解 P,设材料的最大切应力为常数K。

图6 解:首先,可根据动可容条件建立变形区的速端图,如图7所示:

图7 设冲头的下移速度为。由图7可求得各速度间断值如下:

;;由于冲头表面及模壁表面光滑,故变形体的上限功率仅为各速度间隔面上消耗的剪切功率,如下式所示:

又冲头的功率可表示为:

故得:

7.一理想刚塑性体在平砧头间镦粗到某一瞬间,条料的截面尺寸为 2a × 2a,长度为 L,较 2a 足够大,可以认为是平面变形。变形区由 A、B、C、D 四个刚性小块组成(如图8所示),此瞬间平砧头速度为 ú i =1(下砧板认为静止不动)。试画出速端图并用上限法求此条料的单位变形力 p。

图8 解:根据滑移线理论,可认为变形区由对角线分成的四个刚性三角形组成。刚性块 B、D 为死区,随压头以速度 u 相向运动;

刚性块 A、C 相对于 B、D有相对运动(速度间断),其数值、方向可由速端图(如图9所示)完全确定。

图9 u * oA = u * oB = u * oC = u * oD =u/sin θ = 根据能量守恒:

2P · 1 = K(u * oA + u * oB + u * oC + u * oD)又 = = = = a 所以单位流动压力:P = = 2K

第五篇:金属教案

第1节课(绪论)

一、教学目的和要求

1.掌握金属工艺学的概念; 2.了解主要的工艺方法;

3.知道本课程的重要性和学习方法。

二、教学内容纲要 1.课程的性质与任务; 2.主要内容及研究方法; 3.发展现状和趋势; 4.本课程的特点;5.学习方法; 6.重要性。

三、重点、难点 1.主要的工艺方法; 2.研究方法。

四、教学方法,实施步骤

根据本章课的内容特点,运用启发式原则、案例分析式教学方法讲授本绪论课程内容。

五、时间分配

1.课程的性质与任务;2.主要内容及研究方法;10 3.发展现状和趋势;4.本课程的特点;5.学习方法;6.重要性。

六、布置思考题

1.试述金属成形的主要方法。

第2节课

(第一章 工程材料基础知识 §1 材料的力学性能)

一、教学目的和要求

1.掌握强度和塑性指标的符号、单位及意义;

2.掌握布氏硬度和洛氏硬度的测定原理、方法、符号及应用。3.了解拉伸试验方法和拉伸曲线图; 4..了解多冲击韧性和疲劳强度的概念。

二、教学内容纲要 1.强度指标; 2.塑性指标; 3.硬度; 4.冲击韧性; 5.疲劳强度。

三、重点、难点

重点:金属主要力学性能指标强度、塑性、硬度、韧性和疲劳强度的概念 难点:疲劳强度

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、问题探究式教学方法讲授本课程内容。

五、时间分配 1.强度指标;15 2.塑性指标;10 3.硬度;10 4.冲击韧性;5 5.疲劳强度。5

六、布置思考题

1.一铜棒的最大拉应力为70MPa,若要承受2000kg的载荷,它的直径是多少?

第3节课

(第一章 工程材料的基础知识 §2 金属的晶体结构)

一、教学目的和要求

1.掌握纯金属结晶过程,过冷度与晶粒大小对机械性能的影响,细化晶粒的措施,纯铁的同素异构转变。

2掌握铁碳合金的基本组织(铁素体、奥氏体、渗碳体、珠光体、莱氏体)。3.掌握简化的铁碳合金状态图;分析不同成分的铁碳合金的结晶过程;

4.了解铁碳合金状态图各相区的组织及性能,以及铁碳合金状态图的实际应用。

二、教学内容纲要 1.纯金属的结晶过程; 2.同素异晶转变; 3.铁碳合金状态图;

三、重点、难点

重点:铁碳合金状态图。

难点:铁碳合金的凝固过程分析。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲授式、讨论式教学方法讲授本课程内容。

五、时间分配

1.纯金属的结晶过程;10 2.纯铁的晶体结构5 3.同素异晶转变;5 4.铁碳合金状态图;25

六、布置思考题

1.分析在缓慢冷却条件下,45钢和T10钢的结晶过程和室温组织。

2.过冷度与冷却速度有何关系,它对金属结晶过程有何影响?对铸件晶粒大小有何影响?

第4节课

(第一章金属材料的基础知识 §3 工业用钢)

一、教学目的和要求

1..掌握碳钢中常存元素对碳钢性能的影响; 2..基本掌握碳钢的分类、牌号、性能和用途。3.了解选材的一般原则。

二、教学内容纲要 1.钢的分类; 2.碳素钢; 3.合金钢;

三、重点、难点

重点:钢的分类及牌号 难点:合金钢的牌号

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、提问式教学方法讲授本节课程内容。

五、时间分配

1.钢的分类;

2.碳素钢;

3.合金钢

4.零件选材原则。10

六、布置思考题

仓库中混存了相同规格的20钢、45钢和T10钢,请提出一种最为简便的区分方法。

第5节课

(第一章金属材料的基础知识 §4 钢的热处理

一、整体热处理)

一、教学目的和要求

1.要求掌握退火、正火、淬火、回火等普通热处理的工艺特点; 2.掌握防止淬火开裂和减少变形的措施;

二、教学内容纲要 1.热处理概念; 2.退火和正火; 3.淬火和回火。

三、重点、难点

1.退火、正火、淬火和回火方法; 2.几种热处理方法的应用。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、提问式教学方法讲授本课程内容。

五、时间分配 1.热处理概念;5 2.退火和正火;20 3.淬火和回火。20

六、布置思考题

1在普通热处理中,加热后进行保温的作用是什么?

第6节课

(第一章金属材料的基础知识 §5 钢的热处理

二、表面热处理)

一、教学目的和要求

1.了解钢的表面淬火的工艺特点及应用范围; 2.了解表面化学热处理的工艺特点及应用范围。

二、教学内容纲要 1.表面淬火; 2.化学热处理。

三、重点、难点

1.感应加热表面淬火; 2.钢的渗碳。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、提问式教学方法讲授本课程内容。

五、时间分配

1.表面淬火;2.化学热处理。25

六、布置思考题

感应加热表面淬火是否需要保温?化学热处理的保温有何特点?为什么?

(第二章 铸造生产 §1铸造工艺基础)

一、教学目的和要求

1.掌握影响充型能力的各种因素;

2.了解凝固与收缩、内应力、变形和裂纹产生的原因及防止措施; 3.了解铸件质量控制的方法。

二、教学内容纲要 1.液态合金的充型; 2.铸件的凝固与收缩;

3.铸造内应力、变形与裂纹; 4.铸件质量控制。

三、重点、难点 1.充型能力。2.内应力的形成。

四、教学方法,实施步骤 根据本章课的内容特点,运用启发式原则、讲解式、案例分析式等教学方法讲授本课程内容。

五、时间分配

1.液态合金的充型;15 2.铸件的凝固与收缩;10 3.铸造内应力、变形与裂纹。15 4.铸件质量控制。5

六、布置思考题

1.提高浇注温度可以提高液态合金的充型能力,但实际中为什么又要防止浇注温度过高?。2.试述防止铸件变形应采取哪些措施?

第8节课

(第二章 铸造生产 §2常用合金的铸件生产

一、铸铁件生产)

一、教学目的和要求 1.要求掌握铸铁的分类;

2.了解铸铁的石墨化过程及其影响因素;

3.基本掌握灰铸铁、可锻铸铁、球墨铸铁的成分、组织、性能、牌号及用途。

二、教学内容纲要 1.铸铁的分类; 2.铸铁的石墨化; 3.灰铸铁; 4.可锻铸铁; 5.球墨铸铁;

三、重点、难点 1.灰口铸铁;

2.石墨化及影响因素;

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配 1.铸铁的分类;5 2.铸铁的石墨化;10 3.灰铸铁;10 4.可锻铸铁;10 5.球墨铸铁。10

六、布置思考题

影响石墨化的因素?并说明石墨形态对铸铁的性能影响?

第9节课

(第二章 铸造生产 §2 常用合金的铸件生产

二、铸钢及铜铝合金的生产)

一、教学目的和要求

1.了解铸钢的分类及牌号; 2.了解铸钢的生产特点;

3.了解铸造铜、铝合金的分类及牌号; 4.了解铜、铝合金的生产特点。

二、教学内容纲要

1.铸钢的分类及牌号; 2.铸钢的生产特点;

3.铸造铜、铝合金的分类及牌号; 4.铜、铝合金的生产特点。

三、重点、难点 1.分类及牌号; 2.铸造工艺。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配

1.铸钢的分类及牌号;5 2.铸钢的生产特点; 15 3.铸造铜、铝合金的分类及牌号;10 4.铜、铝合金的生产特点。15

六、布置思考题

制造铸铁件、铸钢件和铸铝件所用的熔炉有何不同?所用的砂型又有何不同?为什么 ?

第10节课

(第二章 铸造生产 §3砂型铸造常用方法)

一、教学目的和要求

1.了解手工造型和机械造型的常用方法; 2..了解浇、冒口按放方法。

二、教学内容纲要 1.手工造型方法; 2.简介机械造型方法; 3.浇、冒口的设制。

三、重点、难点

1.常用手工造型方法; 2.浇注系统设计。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配

1.简介手工造型方法;25 2.简介机械造型方法;10 3.浇、冒口的设制;10

六、布置思考题

1.请说明模型、铸件、零件三者之间的关系。

第11节课

(第二章 铸造生产 §4 砂型铸造工艺

一、浇注位置和分型面的选择)

一、教学目的和要求

1.掌握浇注位置、分型面的选择原则并灵活运用。

二、教学内容纲要 1.浇注位置的选择; 2.分型面的选择;

三、重点、难点 工艺条件的确定;

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配

1.浇注位置的选择;20 2.分型面的选择;

六、布置思考题

1.试述浇注位置和分型面的选择原则。

第12节课

(第二章 铸造生产 §4 砂型铸造工艺

二、铸造工艺图的绘制)

一、教学目的和要求

1.了解铸造工艺图的绘制及标注方法;

2.较熟练地运用浇注位置、分型面的选择原则和工艺参数的确定原则来分析实际问题。

二、教学内容纲要

1.铸造工艺图的绘制方法; 2.铸造工艺图的标注方法。

三、重点、难点 工艺条件的确定;

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配

1.铸造工艺图的绘制方法;25 2.铸造工艺图的标方法。20

六、布置思考题

图示铸件有哪几种分型方案?在大批量生产中该选择哪种?(P69 C图)

第13节课

(第二章 铸造生产 §5 特种铸造

一、熔模、金属型、压力和低压铸造方法及应用)

一、教学目的和要求

1.了解熔模铸造、金属型铸造工艺方法及应用; 2.了解压力铸造、低压铸造工艺方法及应用。

二、教学内容纲要 1.熔模铸造; 2.金属型铸造; 3.压力铸造; 4.低压铸造。

三、重点、难点 1.熔模铸造原理。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配 1.熔模铸造;15 2.金属型铸造;10 3.压力铸造;10 4.低压铸造。10

六、布置思考题

什么是熔模铸造?试用方框图表示其大致工艺过程。

第14节课

(第二章 铸造生产 §5 特种铸造

二、离心铸造和其它特种铸造方法及常用铸造方法的比较)

一、教学目的和要求

1.了解离心铸造工艺方法及应用; 2.了解其它特种铸造工艺方法及应用; 3.掌握常用铸造方法的优缺点及适用范围。

二、教学内容纲要 1.离心铸造

2.其它特种铸造方法; 3.常用铸造方法的比较。

三、重点、难点

1.常用铸造方法的比较

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配 1.离心铸造;15 2.其它特种铸造方法;15 3.常用铸造方法的比较。15

六、布置思考题

下列铸件在大批量生产时,以什么铸造方法为宜?

铝活塞

缝纫机头

汽轮机叶片

气缸套

车床床身

摩托车气缸体

汽车喇叭

大口径铸铁污水管

大模数齿轮滚刀

第15节课

(第二章 铸造生产 §6 铸件结构设计)

一、教学目的和要求

1.掌握铸造工艺对铸件结构的要求;

2.了解铸件结构的合理与否对其质量与成本的影响。3.掌握铸件壁厚对铸件质量的影响;

4.了解铸件结构的合理与否对其性能的影响。

二、教学内容纲要

1.如何使铸件结构便于起模; 2.分型面尽量为平面; 3.少用型芯。

4.合理设计铸件壁厚; 5.铸件壁的联接; 6.防裂筋的正确应用。

三、重点、难点

1.结构与铸造工艺的关系; 2.结构与铸件性能的关系。

四、教学方法,实施步骤

根据本节课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配

1.如何使铸件结构便于起模;7 2.分型面尽量为平面;8 3.少用型芯。5 4.合理设计铸件壁厚;10 5.铸件壁的联接;7 6.防裂筋的正确应用。8

六、布置思考题

1.为什么进行铸件设计时,就要初步考虑出大致分型面?

第16节课

(第三章 金属压力加工 §1 金属的塑性变形)

一、教学目的和要求 1.了解变形机理;

2.掌握金属常温下塑性变形时组织性能变化,3.掌握加工硬化现象的利与弊及如何消除; 4.了解影响可锻性的因素。

二、教学内容纲要

1.金属塑性变形的实质;

2.塑性变形对金属组织和性能的影响; 3.金属的可锻性。

三、重点、难点

1.加工硬化、再结晶; 2.纤维组织。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配

1.金属塑性变形的实质;15 2.塑性变形对金属组织和性能的影响;15 3.金属的可锻性。15

六、布置思考题

1.为什么铁丝能在反复弯曲后而折断?

第17节课

(第三章 金属压力加工 §2 锻造)

一、教学目的和要求

1.基本掌握自由锻造主要几种工序的定义和应用; 2.能合理地确立锻造零件的结构工艺性;

3.了解自由锻造工艺规程的编制,锤上模锻、胎模锻造工艺方法。

二、教学内容纲要 1.自由锻; 2.模锻; 3.胎模锻;

4.锻造工艺规程的制订; 5.锻件结构工艺性。

三、重点、难点 1.锻造方法;

2.锻件结构工艺性。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配 1.自由锻;10 2.模锻;10 3.胎模锻;5 4.锻造工艺规程的制订;10 5.锻件结构工艺性。10

六、布置思考题

1.“趁热打铁”的含义何在?碳钢的始锻温度和终锻温度是如何确定的?

第18节课

(第三章 金属压力加工 §3 板料冲压)

一、教学目的和要求

1.基本掌握板料冲压的基本工序;

2.掌握凸凹模间隙及凸凹模刃口尺寸的确定; 3.了解拉伸系数的应用; 4.掌握冲压件的结构工艺性。

二、教学内容纲要 1.分离工序; 2.变形工序; 3.冲模简介;

4.冲压件的结构工艺性。

三、重点、难点 1.分离与变形机理; 2冲压件结构工艺性。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配 1.分离工序;15 2.变形工序;15 3.冲模简介;5 4.冲压件的结构工艺性。10

六、布置思考题 1.什么是冲压?

2.冲压用的原材料是什么? 3.冲压属于热变形吗?。

第19节课

(第四章 焊接 §1 电弧焊)

一、教学目的和要求

1.了解手工电孤焊电孤的产生、构造、极性及应用; 2.基本掌握焊条的要求、组织、分类、牌号及选用; 3.掌握手工电孤焊工艺参数的选择原则。

二、教学内容纲要 1.焊接电弧;

2.焊接接头的组织与性能; 3.焊接应力与变形; 4.焊条电弧焊; 5.埋弧焊; 6.气体保护焊。

三、重点、难点 1.电弧焊;

2.焊接应力及变形的分析。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配 1.焊接电弧;5 2.焊接接头的组织与性能;10 3.焊接应力与变形;10 4.焊条电弧焊;10 5.埋弧焊;5 6.气体保护焊。5

六、布置思考题

1.焊接电弧是怎样的一种现象?电弧中各区的温度多高?用直流和交流电焊接效果一样吗?

第20节课

(第四章 焊接 §2 常用金属材料的焊接)

一、教学目的和要求

1.了解金属的可焊性概念及金属材料的可焊性;

2.了解焊接缺陷种类、特征、产生原因及焊接质量检验方法; 3.了解铸铁、铜、铝及其合金的焊接。

二、教学内容纲要 1.金属材料的可焊性; 2.碳钢的焊接;

3.合金结构钢的焊接; 4.铸铁的补焊;

5.非铁金属及其合金的焊接。

三、重点、难点

1.金属材料的可焊性; 2.铸铁的焊接。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配

1.金属材料的可焊性;10 2.碳钢的焊接;10 3.合金结构钢的焊接;10 4.铸铁的补焊;8 5.非铁金属及其合金的焊接。7

六、布置思考题

1.某种钢材的主要化学成分为C=0.12%,Mn=1.5%,V=0.15%,Mo=0.5%,试分析其焊接性及焊接时应采取的工艺措施。

第21节课

(第四章 焊接 §3 焊接结构设计)

一、教学目的和要求

1.了解接头型式和接头位置; 2.基本掌握焊接结构的工艺性。

二、教学内容纲要

1.焊接结构件材料的选择; 2.焊缝的布置;

3.接头形式的选择与设计; 4.坡口形式; 5.接头过渡形式。

三、重点、难点

1.焊接件材料的选择;

2.接头形式的选择与设计。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配

1.焊接结构件材料的选择10; 2.焊缝的布置;10 3.接头形式的选择与设计;10 4.坡口形式;10 5.接头过渡形式。5

六、布置思考题

1.如图所示三种焊件,其焊缝布置是否合理?或不合理,请加以改正。(图P169)

第22节课

(第五章 切削加工 §1 金属切削的基础知识)

一、教学目的和要求

1.了解切削加工的基本原理和刀具的结构与材料; 2.了解刀具角度与切削加工的关系。

二、教学内容纲要 1.切削运动; 2.切削用量; 3.切削层参数; 4.刀具材料; 5.刀具角度; 6.刀具结构。

三、重点、难点 1.切削用量; 2.刀具角度。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配 1.切削运动;5 2.切削用量;10 3.切削层参数;5 4.刀具材料;5 5.刀具角度;15 6.刀具结构。5

六、布置思考题

1为什么不宜用碳素工具钢制造拉刀和齿轮刀具等复杂刀具?为什么目前常采用高速钢制造这类刀具,而较少采用硬质合金?

第23节课

(第五章 切削运动 §2 金属切削过程)

一、教学目的和要求

1.了解金属切屑的形成过程;

2.了解积屑瘤对切削加工的影响及如何控制; 3.了解切削力和切削功率的计算方法;

4.了解切削热和刀具耐用度对切削过程的影响。

二、教学内容纲要

1.切屑形成过程及切屑种类; 2.积屑瘤;

3.切削力和切削功率; 4.切削热和切削温度;

5.刀具磨损和刀具耐用度。

三、重点、难点

1.切削力和切削功率; 2.切屑形成过程。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配

1.切屑形成过程及切屑种类;10 2.积屑瘤;5 3.切削力和切削功率;10 4.切削热和切削温度;10 5.刀具磨损和刀具耐用度。10

六、布置思考题

1.何为积屑瘤?它是如何形成的?对切削加工有哪些影响?

第24节课

(第五章 切削运动 §3 机床的基础知识)

一、教学目的和要求

1.了解机床的类型和基本构造; 2.重点了解机床的机械传动; 3.简单了解机床的液压传动。

二、教学内容纲要 1.机床的类型; 2.机床的基本构造; 3.机床的机械传动; 4.机床的液压传动。

三、重点、难点

1.机床的基本构造; 2.车床的机械传动。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配(min)1.机床的类型;2.机床的基本构造; 10 3.机床的机械传动; 20 4机床的液压传动。

六、布置思考题

1.机床机械传动主要由哪几部分组成?有何优缺点?

第25节课

(第五章 切削运动 §4 常用加工方法综述

一、车、钻、镗)

一、教学目的和要求

1.了解车、钻、镗、刨的工艺特点及其应用。

二、教学内容纲要

1车削的工艺特点及应用; 2.钻削的工艺特点及应用; 3.镗削的工艺特点及应用; 4.刨削的工艺特点及应用。

三、重点、难点 1.应用; 2.工艺特点。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配

1.车削的工艺特点及应用;15 2.钻削的工艺特点及应用;10 3.镗削的工艺特点及应用;10 4.刨削的工艺特点及应用。10

六、布置思考题

1.加工要求精度高、表面粗糙度小的紫铜或铝合金轴件外圆时,就选用哪种加工方法?为什么?

第26节课

(第五章 切削运动 §4 常用加工方法综述

二、刨、拉、铣、磨)

一、教学目的和要求

1.了解拉、铣、磨的工艺特点及其应用。

二、教学内容纲要

1.拉削的工艺特点及应用; 2.铣削的工艺特点及应用; 3.磨削的工艺特点及应用。

三、重点、难点 1.应用; 2.工艺特点。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配

1.拉削的工艺特点及应用;5 2.铣削的工艺特点及应用;20 3.磨削的工艺特点及应用。20

六、布置思考题

1.磨孔和磨平面时,由于背向力的作用,可能产生什么样的形状误差?为什么?

第27节课

(第五章 切削运动 §5 典型表面加工分析)

一、教学目的和要求

1.了解各种加工面的加工方法;

2.能对典型表面根据不同的精度要求较合理地按排加工方案。

二、教学内容纲要 1.外圆面的加工; 2.孔的加工; 3.平面的加工; 4.成形面的加工 5.螺纹的加工; 6.齿轮齿形的加工。

三、重点、难点

1.各种典型面的加工方案; 2.齿轮齿形的加工方法。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配

1.外圆面的加工;5 2.孔的加工;5 3.平面的加工;5 4.成形面的加工;10 5.螺纹的加工;5 6.齿轮齿形的加工。15

六、布置思考题

1.在零件的加工过程中,为什么常把粗加工和精加工分开进行? 2.车削螺纹时,主轴与丝杠之间能否采用带传动?为什么?

第28节课

(第五章 切削运动 §6 工艺过程的基本知识

一、工件的安装和夹具)

一、教学目的和要求

1.了解生产过程和工艺过程的概念; 2.初步了解工件的安装和夹具的概念; 3.初步掌握定位基准的选择原则。

二、教学内容纲要

1.生产过程和工艺过程; 2.生产类型; 3.工件的安装; 4.夹具简介;

5.定位基准的选择。

三、重点、难点

1.工件的安装与夹紧; 2.六点定位原理。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配

1.生产过程和工艺过程;8 2.生产类型;7 3.工件的安装;10 4.夹具简介;10 5.定位基准的选择。10

六、布置思考题

1.何为工件的六点定位原理?加工时,工件是否都要完全定位?

第29节课

(第五章 切削运动 §6 工艺过程的基本知识

二、典型零件的工艺过程)

一、教学目的和要求

1.了解工艺规程的编制方法;

2.能编制简单的典型零件的工艺过程。

二、教学内容纲要 1.工艺文件的编制;

2.轴类零件的工艺过程编制示例; 3.套类零件的工艺过程编制示例; 4.箱体类零件的工艺过程编制示例。

三、重点、难点

1.工艺文件的编制方法; 2.箱体类零件的编制。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配

1.工艺文件的编制;5 2.轴类零件的工艺过程编制示例;15 3.套类零件的工艺过程编制示例;10 4.箱体类零件的工艺过程编制示例。15

六、布置思考题

1.拟定零件工艺过程时,就考虑哪些主要原因?

第30节课

(第五章 切削运动 §7 零件的结构工艺性)

一、教学目的和要求

1.了解零件的结构的好坏对于加工质量、生产率和经济效益的影响; 2.能对简单零件进行结构工艺性的分析。

二、教学内容纲要 1.概述; 2.一般原则; 3.实例分析; 4.讨论。

三、重点、难点 1.一般原则; 2.实例分析。

四、教学方法,实施步骤

根据本章课的内容特点,运用讲解式、讨论式、案例分析式教学方法讲授本课程内容。

五、时间分配 1.概述;5 2.一般原则;5 3.实例分析;20 4.讨论。15

六、布置思考题

1.为什么在零件设计时要考虑其结构工艺性?

下载金属切学原理与刀具教案(精选五篇)word格式文档
下载金属切学原理与刀具教案(精选五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    金属与矿物的教案

    一.金属(Metal)的物理性质1.金属光泽:(1)金属都具有一定的金属光泽,一般都呈银白色,而少量金属呈现特殊的颜色,如:金(Au)是黄色、铜(Cu)是红色或紫红色、铅(Pb)是灰蓝色、锌(Zn)是青白色等;(2)有些......

    刀具材料教案(最终版)

    刀具材料教案. 楼主不要这么小气吧,我贴一半出来哦 四 川 工 程 职 业 技 术 学 院课 时 授 课 教 案 / 学年第期 课程名称: 数控加工工艺授课班级: (三专)数控01-1、2 授课......

    切蛋糕教案

    活动主题:我们都是好朋友 (第7周) 活动名称:切蛋糕 重点领域:数学 活动目标: 1.学习将圆和正方形进行二等分。 2.能积极动手尝试,探索分蛋糕的多种方法。 活动准备: 1. 小熊、狐狸的......

    切西瓜教案

    《切西瓜》2个课时 活动目标: 1、感受音乐节拍,模仿西瓜被切开后瓜瓤出来的动作。2、辅助下学习简单的游戏规则,辅助下背对背跑回原来的座位。 活动准备: 材料准备:音乐、按摩......

    “十三五”重点项目-金属刀具项目可行性研究报告(合集五篇)

    “十三五”重点项目-金属刀具项目可行性研究报告 编制单位:北京智博睿投资咨询有限公司 0 本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报......

    金属热处理原理及工艺 期末总结

    正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。 退火:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后......

    海洋工程材料复习大纲金属电化学腐蚀原理

    第二章金属电化学腐蚀原理§2.1腐蚀的基本概念2.1.1什么是腐蚀(corrosion)?埃文斯:金属腐蚀是金属从元素态转变为化合态的化学变化及电化学变化。方坦纳:金属腐蚀是金属冶金的逆......

    金属的电化学腐蚀与防护教案

    金属的电化学腐蚀与防护 电解原理知识梳理 1. 电解原理 电解 使通过电解质溶液(或熔融的电解质)而在阴、阳两极引起 的过程电极名称 阳极 和电源相连的电极,发生反应阴极......