一元一次方程的应用教学设计与反思白小莉

时间:2019-05-12 19:34:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《一元一次方程的应用教学设计与反思白小莉》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《一元一次方程的应用教学设计与反思白小莉》。

第一篇:一元一次方程的应用教学设计与反思白小莉

一元一次方程的应用教学设计与反思

教学目标 :

(1)知识目标:

(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。(B)

通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。(2)能力目标:

通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。(3)思想目标:

通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生爱国主义热情,决心为国家的繁荣昌盛而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

教学重点和难点

1.教学重点:根据题意寻找和;差;倍;分问题的相等关系 2.教学难点:根据题意列出一元一次方程 教学过程

一、从学生原有的认知结构提出问题 师生问好.在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢? 为了回答上述这几个问题,我们来看下面这个例题. 例1 某数的3倍减2等于某数与4的和,求某数.(首先,用算术方法解,由学生回答,教师板书)解法1:(4+2)÷(3-1)=3. 答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)解法2:设某数为x,则有3x-2=x+4. 解之,得x=3. 答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程. 本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉? 师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程? 上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得 x-15%x=42 500,所以 x=50 000.

答:原来有 50 000千克面粉.

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)解:设第一小组有x个学生,依题意,得 3x+9=5x-(5-4),解这个方程: 2x=10,所以 x=5.

其苹果数为 3× 5+9=24.

答:第一小组有5名同学,共摘苹果24个.

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.(设第一小组共摘了x个苹果,则依题意,得)

三、课堂练习

1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

2.我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元.求1978年末的储蓄存款.

3.某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数.

四、师生共同小结

1.本节课学习了哪些内容?

2.列一元一次方程解应用题的方法和步骤是什么? 3.在运用上述方法和步骤时应注意什么? 依据学生的回答情况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;(2)以上步骤同学应在理解的基础上记忆.

五、作业

1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱? 2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

3.某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多 150台.这家工厂前年10月生产电视机多少台?

4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克? 5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数

教 学 反 思

在本节课教学中我能

一.求活——挖掘习题本身的内在力量保持兴趣

思维方法活 为了让学生在解题时保持兴趣,可给学生提供一些能用多种方法

解决问题的习惯。

二.求近——揭示知识的应用价值提高兴趣

在习题中揭示出知识的应用价值,让学生体验到数学在他们周围世界的力量,真切感受到所学的知识是有用的,学用结合,可以大大提高学生的作业兴趣。

这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现新知,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础

回顾本节课,我觉得在一些教学设计和教学过程的把握中还存在着一些问题:

1、不能正确的把握操作的时间,没有达到应有的学习效果。

2、学中没能注重学生思维多样性的培养。改进方法

作为教师,要想真正搞好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,在课堂教学中始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂的组织者、引导者和合作者。因此,课堂教学过程的设计,也必须体现学生的主体性。

第二篇:《一元一次方程》教学设计与反思

《一元一次方程》教学设计

广宗县葫芦中学

刘春娜

教学目标:

1、了解方程和方程的解以及一元一次方程的概念;

2、使学生从简单的实际问题中建立一元一次方程的模型;

3、经历把具体问题转化成一元一次方程的过程。教学重点和难点:

重点难点:理解和掌握一元一次方程。教学过程:

一、创设情境,引入新课: 猜一猜老师的年龄。

我的年龄乘2减20得32。请同学们讲出自己的想法。

学生有用算术方法解的有用方程解的。这时提出方法的概念:

含有未知数的等式叫方程

二、探究新知:

(一)练一练:

判断下列各式是不是方程,并讲明理由。

(1)-2+5=3(2)3X-1=7(3)x+y=8(4)2a+b 分析“我的年龄乘2减20得40.设我的年龄为X岁。(设未知数)

年龄X2-20=40(找出等量关系)2x-20=40(列出方程)

(二)建立一元一次方程模型:

根据下列问题,设未知数并列出方程: ①、用一根长24cm的铁丝围成一个长方形,使它的长是

宽的1.5倍,长方形的长,宽各是多少?

解:(1)设宽为xcm,那么长为1.5xcm。

(2)等量关系:(长+宽)×2=24(3)1.5x+x=24 ②国庆节商场进行打折活动的时候,晨晨同学看中一件

运动衣,按8折销售为80元,这件衣服的原价是多少元?

解:设这件衣服的原价为x元,则: 0.8x=80 ③因校园搞绿化,有一棵树刚移栽到我们学校时,树高

为2米,假设以后平均每年长0.3米,几年后树高为5米?

解:设x年后树高为5米,则: 2+0.3x=5

(三)一元一次方程的认识:

请同学们比较一下刚才你们列的三个方程,有什么样的特点? 1.5x+x=24 0.8x=80 2+0.3x=5 注意:方程两边都是整式;

只含有一个未知数;

未知数的指数是一次。

问题①:一元一次方程中元指的是什么?次指的是什么?

②判断下列成员是否是一元一次方程家庭成员,能否进入家庭聚会之门?若不行,请说明理由。

第一组: 1)、5x=0 2)、1+3x 3)、y2=4+y 4)、3m+2=1-n 第二组: 若2xb+1=5,(a-1)x2+x=3也想参加聚会,a,b应满足什么条件? ③估算2+0.3x=5中x的值。根据学生的回答,当x=8或者x=10时,怎样来验证?引导学生用左边等于右边进行检验: 把x=10代入方程左、右两边,右边=5 左边右边=5 左边=右边,所以x=10是方程2+0.3x=5的解 a、学生自己练习当x=8时,是不是方程的解

b、学生总结出方程的解的概念:能使方程左右两边的值相等的未知数的值叫作方程的解。c、什么叫解方程:

求方程的解的过程叫做解方程。

三、巩固练习:

(1)-1=4是方程吗?

(2)列式表示a与3的差等于-2。(3)上题列出的式子是方程吗?如果是,未知数是什么?方程的解是什么?并说明自己的理由。

(4)综合题:天平的两个盘A、B分别盛有51g,45g盐,设应该从盘A内拿出多少g盐到盘B内,才能使两者所盛盐的质量相等? 1x《一元一次方程》教学反思

这节课是湘教版七年级上册《一元一次方程》的第一节课,内容比较简单。本课的重点是让学生根据多种实际问题中的数量关系,找出等量关系,感受方程就是将众多实际问题“数学化”的一个重要模型,列出方程,并归纳出一元一次方程的概念。

学生在小学已经学过了等式、等式的基本性质、方程、方程的解等知识,对方程已有初步认识.但这个过程没有给“一元一次方程”这样准确的理性的概念。本节课是基于学生在小学已经学习的基础上来进行的。继续对有关方程的一些初步知识,并能通过对多个熟悉的实际问题的分析,由学生结合已有知识,得出一元一次方程,并能给出一元一次方程的简单概念及一些相关概念。

上完本节课。我的反思有以下几点:

1、本课利用“猜年龄”的游戏导入新课极大地调动了学生的积极性。

2、通过以练带学发现学生对方程以及方程解的定义掌握的比较好。

3、通过探究新知这部分的学习,发现学生参与课堂活动特别积极,能主动的进行交流,而不是流于形式。每位学生都有所收获,体现了学生的主体地位。

4、巩固练习这部分恰到好处,掌握的也很好。由于时间关系,没来得及让学生自己课堂小结

5、在一元一次方程概念上讲解的不是特别清楚,另外练习题讲解的有点快,部分学生掌握效果不好。

总的来说,这节课有设计比较好的部分,在具体的操作过程中也出现了失误。要想让每一位同学都有所收获,还需要很大的努力。对于以上优点,我将继续发扬;对于出现的不足,争取在以后的课堂上改进。

第三篇:一元一次方程的应用教学反思

一元一次方程的应用教学反思

反思一:一元一次方程的应用>教学反思

《一元一次方程的应用》是数学教学中的一个重点,而对于学生来说它却又是学习的一个难点。在教学中应如何突出重点,特别是要突破学生学习的难点,这一直是我们数学教师不断研究和探讨的问题。

本节课主要是讲行程问题,是学生最难解决的一类应用题,教材上只安排了一道例题(环形跑道中的追及问题),我根据教学的需要及学生的情况,对教材进行了适当的加工和处理,增加了几道例题,由直线上的相遇问题、追及问题,到环形跑道上的相遇问题、追及问题,由浅入深,层层递进。而分析寻找行程问题中的等量关系是本节课的难点,为此,我在教学中设计了两种不同的分析方法,一、画图分析,二、列表分析,这样可以帮助学生更好地寻找等量关系,从而更容易列出方程,通过这样的方法,使逐渐掌握解决行程问题的方法。

反思本节课的教学,有很多地方需要改进:

1.在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。但却忽视了学生的活动和交流,新课程标准下的教学,是要让学生有更多的机会进行探究、发现。让学生自己分析,相互探讨,哪怕是错了再进行纠正,学生对知识的掌握也会更牢固。在以后的教学中我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课除了要认真研究教材和设计好教学内容外,还要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探究,真正促进师生的共同发展。

2.在本节课的教学中我以师生共同探究为主线进行了教学,课堂上大部分学生积极参与,表现出学习的欲望和热情,但还有一部分同学学习的积极性不高,可能是课堂对他缺乏吸引力,这是值得我深思的,通过本节课,我对怎样激发学生的学习兴趣,让学生的思维动起来有了更深刻的体会。在今后的教学中,我要努力给学生充分的思考交流的时间,鼓励学生提出有价值的问题,抓住他们思维的闪光点。

反思二:一元一次方程的应用教学反思

方程是应用广泛的数学工具,它在义务教育阶段的数学课程中占有重要地位!也是代数学的核心之一!下面我想就几个方面的教学的得与失进行反思和>总结.成功之处:

1:能创设一个有趣的问题情境,与学生日常生活有关的问题切入,初一的学生好奇心比较强,可以用计算年龄的引入是学生积极参与到今天的学习中去。充分调动学生的积极性。

2:能进行发散思维的培养,从例题的不同设法、列方程的解法中逐步培养学生从不同的角度去分析问题、解决问题的能力。

3:对学生进行了文化的渗透,使学生对数学有了更深一层的了解,从而对今后学好数学奠定了良好的基础。

4:恰当的使用了多媒体设备,设置一些卡通画面和声音的播放,带动学生使用眼、手、耳、及大脑等器官进行全方位的接受信息和发出信息。

5:营造了一种非常宽松、愉悦的课堂气氛,是学生在高兴的情绪下去积极的和老师互动,和同学互动、讨论。

不足之处:

1:利用一元一次方程解应用题是数学教学中的一个重点,而对于学生来说却是学习的一个难点。七年级的学生分析问题、寻找数量关系的能力较差,在一元一次方程的应用这几节课中,我始终把分析题意、寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。但学生在学习的过程中,却不能很好地掌握这一要领,会经常出现一些意想不到的错误。如,数量之间的相等关系找得不清;列方程忽视了解设的步骤等。

2:教学内容量偏大,以致没有时间让学生进行自我归纳和总结。

3:对学生不够熟悉,不能在课上叫出学生的名字。

在以后的教学中,我会继续发扬我的成功之处,逐步完善我的不足之处,我将尽自己最大的能力,上好每一堂课。

反思三:一元一次方程的应用教学反思

在本节课教学中我能

一.求活——挖掘习题本身的内在力量保持兴趣

思维方法活 为了让学生在解题时保持兴趣,可给学生提供一些能用多种方法解决问题的习惯。

二.求近——揭示知识的应用价值提高兴趣

在习题中揭示出知识的应用价值,让学生体验到数学在他们周围世界的力量,真切感受到所学的知识是有用的,学用结合,可以大大提高学生的作业兴趣。

这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现新知,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础

回顾本节课,我觉得在一些教学设计和教学过程的把握中还存在着一些问题:

1、不能正确的把握操作的时间,没有达到应有的学习效果。

2、学中没能注重学生思维多样性的培养。

改进方法:

作为教师,要想真正搞好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,在课堂教学中始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂的组织者、引导者和合作者。因此,课堂教学过程的设计,也必须体现学生的主体性。

反思四:一元一次方程的应用教学反思

本节课的授课的题目是七年数学再探实际问题与一元一次方程的打折销售问题。前面已经学习过销售问题中相关量的数量关系及简单的换算,所以本课内容在知识结构上难度不是很大,但是由于他和实际问题联系密切,学生必须有这方面的生活经验才能达到最好的效果,但是学生年龄小,加上他们缺少生活经验,所以必须在教师的引导下才能更好的去探究。

我们初一数学研究的课题是如何提高数学课堂的教学效率,本课的探究性学习不仅是知识的构建与运用、技能的形成与巩固,也包含了生活经验的激活丰富与提升,学习策略的完善,情感的丰富和价值观的形成。在本次教学中我能以学生为主体,以探究为主线,采取合作交流的探究式进行学习,课堂上学生积极主动,不断出现学习的欲望和热情,使学生的知识得到巩固的同时使生活经验、>学习方法等得到提高也形成正确的价值观。通过本课的教学,我感到成功的地方有以下几个方面:

1创设问题情境,联系生活实际,激发学习动机,将学生置于问题情景中。比如在引课的时候,通过各种打折甩卖的广告语,引出问题(1)商家把商品打折卖给我们会不会真的赔钱?(2)其中蕴涵着那些数学道理?这样将学生放在具体的问题中,可以激发他们对问题的一种好奇心,也能使学生明确本课的学习方向,以最佳状态投入到学习中去。

在解决问题1中,我也是创设了几个问题情境,比如以黑板擦为例,问5元卖的黑板擦,想知道是赔钱还是赚钱,应该关注什么?而题中缺少什么量?怎样求?如何比较?结果如何?启发学生积极思考,让这些连续的阶段性问题持续的激发学生的学习热情和探究知识的兴趣,促使学习达到最佳境界,对于后面的问题和习题我都采用了同样的处理方式。

2充分发挥学生的主体作用,让学生自觉参与到课堂中来。

本节课的所有题目均由学生自主探究,通过合作独立的写出解题过程。让学生口语表达或板书,创造机会,鼓励学生动手动口,以达到教学要求并借助多媒体展示来指导学生,促进思维能力的发展,最后再指导学生用简练的语言概括教学问题。增强学生的自主学习能力,而且让学生从数学的角度去分析和总结生活中的问题学会能在不同的角度去探求生活经验从而让学生掌握知识的同时使思想水7和情感态度价值观都得到提高。

3、探究方式灵活,以培养学生的创新精神,探究性学习关注的不仅是探究

第四篇:一元一次方程的应用教学设计

一元一次方程的应用

——行程问题应用题(2)

教学目标:

⑴通过学生参与的运动会3000米项目比赛的研究,使学生体验并理解环形跑道上的行程问题的基本数量关系,能够根据题意正确列出方程解决问题;

⑵通过发生在学生身边的案例,使学生感受到身边的数学问题,培养学生学习数学的热情;

⑶通过问题的解决培养学生的自信心、增强学生的成就感。教学重点:

环形跑道上的行程问题的等量关系,列出方程。教学难点:

弄清题意,确定等量关系。教学过程:

一、复习提问:

1.行程问题中关于路程、速度和时间的基本关系是什么?

2.列一元一次方程解应用题的步骤是什么?

二、情境导入:

1.福泉市实验学校第十二屇运动会3000米比赛项目的图片。2.在我校第十二届运运会中,我们班周世雄、薛昌盛两同学在3000米项目比赛中英勇顽强,分别取得了第一名和第三名的好成绩。已知我校运动场的一圈长200米,比赛中,若周世雄同学平均每分钟跑250米,我校某同学平均每分钟跑200米。(1)经过多少时间两人首次相遇?(2)经过多少时间两人再次相遇? 解:(1)设经过x分首次相遇,依题意得

250x-200x=200

50x=200

X=4 答:经过4分首次相遇

(2)设经过y分再次相遇,依题意得

250y-200y=400

50y=400

y=8 答:经过4分首次相遇

3.变式一:若是将200米的跑道改为400米,将会是什么结果呢? 解:(1)设经过x分首次相遇,依题意得

250x-200x=400

50x=400

x=8(2)设经过y分再次相遇,依题意得

250y-200y=800

50y=800

y=16 因为3000÷250=12(分)

而16>12 所以y=16不合题意,这说明两人不可能再次相遇

4.变式二:若是周世雄、薛昌盛两同学在400米长的环形跑道上练习跑步,周世雄每秒跑5.5米,薛昌盛每秒跑4.5米。若两人同时同地反向出发,多长时间两人首次相遇? 解:设经过t秒后两人首次相遇,依题意得 4.5t+5.5t=400

10t=400

t=40 答:40秒后两人首次相遇

三、课堂小结:

这节课我们学到了什么?鼓励学生积极发言,然后教师总结。

四、课后作业:

教材P112页5、6题

第五篇:《一元一次方程的应用》教学设计

《一元一次方程的应用》教学设计

教学目标

1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

2.培养学生观察能力,提高他们分析问题和解决问题的能力; 3.使学生初步养成正确思考问题的良好习惯. 教学重点和难点

一元一次方程解简单的应用题的方法和步骤. 课堂教学过程设计

一、从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题. 例1某数的3倍减2等于某数与4的和,求某数.(首先,用算术方法解,由学生回答,教师板书)解法1:(4+2)÷(3-1)=3. 答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)解法2:设某数为x,则有3x-2=x+4. 解之,得x=3. 答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程. 本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2某面粉仓库存放的面粉运出15%后,还剩余42 500千克,这个仓库原来有多少面粉?

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得 x-15%x=42 500,所以x=50 000.

答:原来有50 000千克面粉.

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)解:设第一小组有x个学生,依题意,得 3x+9=5x-(5-4),解这个方程:2x=10,所以x=5.

其苹果数为3×5+9=24.

答:第一小组有5名同学,共摘苹果24个.

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.(设第一小组共摘了x个苹果,则依题意,得)

三、课堂练习

1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

2.我国城乡居民1988年末的储蓄存款达到3 802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.

四、师生共同小结

首先,让学生回答如下问题: 1.本节课学习了哪些内容?

2.列一元一次方程解应用题的方法和步骤是什么? 3.在运用上述方法和步骤时应注意什么? 依据学生的回答情况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

(2)以上步骤同学应在理解的基础上记忆.

五、作业

1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱? 2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

3.某厂去年10月份生产电视机2 050台,这比前年10月产量的2倍还多150台.这家工厂前年10月生产电视机多少台?

4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数。

下载一元一次方程的应用教学设计与反思白小莉word格式文档
下载一元一次方程的应用教学设计与反思白小莉.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《一元一次方程的应用》教学反思[五篇材料]

    一元一次方程的应用是初一数学教学中的重点,而对于刚进入初中没多久的学生来说,它却又是学习的一个难点,下面是关于《一元一次方程的应用》教学反思,希望对大家有帮助!一元一次方......

    一元一次方程教学设计与教学反思[共5篇]

    人教版七年级数学上册第三章《一元一次方程》教学设计 呈贡区第一中学 邹秀存 一、教学分析 (一)教学内容分析 1.方程是代数学的核心,是刻画现实世界的一个有效的数学模型,而一......

    实际问题与一元一次方程教学反思[精选合集]

    实际问题与一元一次方程是由实际问题列一元一次方程和解一元一次方程的基础上,进一步以“探讨”的形式讨论如何解决实际问题,下面给大家分享实际问题与一元一次方程的教学反思......

    实际问题与一元一次方程教学反思

    实际问题与一元一次方程教学反思 实际问题与一元一次方程教学反思1 调配问题中既有劳力调配问题,又有事物调配的问题,且这类问题的应用较广泛。由于这类问题都可用二元一次方......

    实际问题与一元一次方程教学反思

    实际问题与一元一次方程 ——《打折销售问题》教学反思 单位:李家学校 姓名:李新宇 时间:2008.11 实际问题与一元一次方程 ——《销售打折问题》教学反思 反思一:实际问题与一......

    一次函数与一元一次方程教学反思

    一次函数与一元一次方程教学反思本节内容并不多,通过讨论一次函数与方程的关系,从运动变化的角度,用函数的观点加深对已经学习过的内容的认识,熟悉数形结合思想。教材还说“......

    实际问题与一元一次方程教学反思

    实际问题与一元一次方程教学反思 姚坪中学李勇 在我校开展的“课内比教学”活动中,我主讲了一节七年级的数学:实际问题与一元一次方程课,现将教学反思整理如下; 一、成功方面 1......

    实际问题与一元一次方程教学反思

    实际问题与一元一次方程---教学反思 程爱珍 本节课主要通过教师层层设问,由浅入深,循序渐进,引导学生对问题的逐步探究,最终得到电话计费问题的解决. 首先从熟悉的校园生活入手,......