第一篇:数学人教版九年级上册二次函数复习课教学设计
二次函数复习课教学设计
一.教材分析
1.本章在教材中的作用
二次函数的应用是发展学生应用数学的意识和能力的良好素材.本节内容包含的主要知识有二次函数的最值,用函数思想解决实际问题,其中蕴涵着丰富的数学思想,如建模,函数,转化,数形结合等.学好本节知识,可以帮助我们解决诸如现实生活中的面积最大,距离最短,效益最好等问题.同时还可以培养学生的阅读理解能力,信息迁移能力及数学方法的应用能力等.
二次函数的应用是中学数学知识结构中的一个枢纽.本节内容是在学习了二次函数的概念,图象,和性质后进行的,它是一次函数和反比例函数的性质应用,一元二次方程和二次函数等知识的提高和延续,可为高中继续深入学习函数、不等式等知识奠定基础。2.重点、难点分析
重点:利用二次函数知识解决实际问题及二次函数与一元二次方程的关系。难点:准确利用函数的性质进行决策。
通过“Z+Z”智能平台,把复杂的问题转化成直观、形象、学生容易接受的浅显易懂的数学模型,并解决问题。这样能够加深对性质的理解,增强解决问题的意识和能力。3.学情分析
学生已经学习了一次函数、反比例函数和二次函数,对于函数的意义及应用已经有了较多的知识和经验的积累,形成了利用函数解决问题的一些基本策略。由于二次函数比其他已经学习过的函数在性质上要复杂和抽象一些,解决实际问题的复杂性和难度也较之以前有所提高,所以通过本节复习可进一步加深学生对函数性质的理解,提高学生的应用意识和推理能力。
二、复习目标
1.能够分析和表示实际问题中变量之间的二次函数关系,把实际问题转化为数学问题,正确建立函数关系,并能运用二次函数性质解决实际问题。
2.通过实例分析增强学生应用数学的意识,培养学生分析问题、解决问题的能力。
三、复习思路
设置几个活动单元,通过学生的自主学习、讨论,并利用“Z+Z"的函数图像演示功能操作验证。本节课以学生自主探究、合作交流、操作验证为主,教师在巡视及参与讨论的过程中加以指导。
四、复习过程 应用举例
例
1、已知二次函数y=2x2-3x-1。当x_______时,y随x的增大而增大,x______时,y随x的增大而减小;当x=______时,y有最______(填:大或小)值_________。说明:这是一个二次函数基本性质应用的题目,是解决最优化问题,也就是最大、最小值问题的基础和工具,通过此题可以让学生感受求最值的思想及方法。本题设置了“验证”和“方法点拨”两个环节。
验证:学生通过“Z+Z”,任意拖动滑块改变系数a、b、c的值,二次函数的图像随之改变,对称轴和顶点坐标也随之改变,通过观察图像,以及当a=2,b=-3,c=-1时图像的特征验证答案,或从中得到解决问题的思路。
方法点拨:求二次函数的最大值或最小值,就是求二次函数图像顶点的纵坐标(4ac-b2)/4a,这时候x值等于-b/2a。对于一些求最大值、最小值的实际应用问题,往往也是需要列出一个二次函数关系式,然后求出图像顶点的纵坐标。
例
2、有一长为20 cm的绳子,用它围成一个矩形。设矩形的长为x cm,面积为y cm2,则y与x之间的函数关系式是_____。
能否围成一个面积最大的矩形?如果能,当x=_______时,y最大值=________。由此你发现周长一定的矩形在什么情况下面积最大?
说明:通过刚才的复习,学生已经理解并掌握了二次函数的最大值问题的解法,此题的目的在于使学生进一步熟练公式应用,感受最优化问题。本题仍然设置了[验证]这个环节。
验证:学生通过操作动画,观察随着AB边长的改变E点位置变化所留下的轨迹??抛物线,很容易明白y与x之间的二次函数关系,从而验证答案或完成解答。
例
3、某公司推出了一种高效环保型洗涤用品。年初上市后,公司经历了从亏损到盈利的过程,若该公司年初以来累计利润S(万元)与销售时间t(月)之间的关系[即前t个月的利润总和S(元)与t(月)之间的关系[即前t个月的利润总和S(元)与t(月)之间的关系]为S=1/2t2?2t。(1)第几个月末,公司达到既未亏损也不盈利的状态?(2)第几个月末,公司亏损最多?为什么?(3)第几个月末,公司的累积利润达到30万元?
说明:运用二次函数的知识求出实际问题的最大(小)值,进一步发展解决问题的能力。例
4、如图,有一抛物线形拱桥,拱顶M距桥面1米,桥拱跨度AB=12米,拱高MN=4米。(1)求表示该拱桥抛物线的解析式;
(2)按规定,汽车通过桥下时载货最高处与桥拱之间距离CD不得小于0.5米(载货最高处与地面AB的距离)的平顶货运汽车要通过拱桥,问该汽车能否通过?为什么?
说明:本题要求学生利用已知条件,结合图像,运用二次函数的性质和待定系数法求出函数解析式,并根据该二次函数图像的特征解决第(2)问。小结:
用二次函数解决实际问题的基本思路:
(1)理解问题,明确要解决的问题是什么;(2)分析问题中的变量和常量,以及它们之间的关系;
(3)用一个二次函数表达式将它们之间的关系表示出来;
(4)应用函数的性质解决实际问题;
(5)检验结果的合理性。
第二篇:九年级上册二次函数教学设计
二次函数y=ax 的图像与性质教学设计
一、教材分析:
本节是学生学习了二次函数的概念之后,对其图象及性质逐步进行探究的一个内容,在此之前学生已经对正比例函数、一次函数和反比例函数的概念及图象与性质进行了学习,因此在本节课的学习方法上学生已经有了一定的经验。但二次函数,它是进一步学习函数知识,体现函数知识螺旋发展的一个重要环节。同时在此节后,我们还将循序渐进,在此基础上由简到繁逐步展开二次函数的研究。二次函数的图像是抛物线,是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。可以说这节课既是承上启下,同时本节课的学习也能让学生体会到数学的实用及美感。其地位及作用不可小看。
2二、设计思想
1.函数及其图象在初中数学中占有很重要的位置。如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,初二时的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,具有一定的片面性。本节课,力图让初三学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去。
2.结合新课程实施的教学理念,在本课的教学中我努力实践以下两点:(1)在课堂活动中通过同伴合作、自主探究尝试培养学生积极主动、勇于探索的学习方式。
(2)在教学过程中努力做到师生的互动,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。
(3)通过课堂教学活动向学生渗透数学思想方法。
三、教学目标
1、知识技能:经历探索二次函数y=x2的图象的作法和性质的过程,获得利
2用图象研究函数性质的经验。直接给学生出示y= x,并作图及观察性质,这样,让学生能通过运用过去的知识经验去发现新知识,解决新知识,从而实现由掌握到迁移运用的过程。
2、数学思考:能够利用描点法作出y= x的图象,并能根据图象认识和理解二次函数y= x2的性质。学生通过画图,观察,分析,得出有关结论,培养学生观察,比较,概括的逻辑思维能力。
23、解决问题:能够作出二次函数y=-x的图象,并能够比较与y=x2的图象的异同,初步建立二次函数表达式与图象之间的联系。提高学生的观察、交流、概括、总结及表达的能力,而且更进一步让学生体会到数、形的转化。
4、数学体验:学生通过自己画图,观察,比较得出有关结论,使学生有一种获得成功的喜悦,提高学生的学习积极性;通过画图使学生更能体会到数形可以互相转化的关系,激发了学生探究新知的欲望。
四、教学重点
会画y=ax2的图象,通过观察图象理解其性质。
五、教学难点
描点法画y=ax2的图象,体会数与形的相互联系。
第三篇:二次函数复习课 教学设计
二次函数复习课 教学设计
和平中学
任广香
一、教材分析
1.地位和作用 :
(1)二次函数是初中数学中最基本的概念之一,贯穿于整个初中数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届中考试题中,二次函数 都是不可缺少的内容。(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。(3)二次函数与一元二次方程知识的联系,使学生能更好地将所学知识融会贯通。
2.课标要求:
①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。③会根据公式确定图象的顶点、开口方向和对称轴,平移,并能解决简单的实际问题。
④会利用二次函数的图象求与x、y轴的交点坐标。3.学情分析(1)九年级学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。
(2)学生的分析、理解能力、学习新课时有明显提高。
(3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。
(4)学生能力差异较大,两极分化明显。4.教学目标
认知目标:
(1)掌握二次函数 y=ax2+bx+c图像与系数符号之间的关系。
(2)通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力.能力目标:提高学生对知识的整体合作能力和分析能力。
情感目标:制作动画增加直观效果,激发学生兴趣,感受数学之美.在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
5.教学重点与难点:
重点:(!)掌握二次函数y=ax2+bx+c图像与系数符号之间的关系。
(2)各类形式的二次函数解析式的求解方法和思路.难点:(1)已知二次函数的解析式说出函数性质
(2)运用数形结合思想,选用恰当的数学关系式解决问题.二、教学方法:
1.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合学生的求知心理和已有的认知水平开展教学。形成学生自动、生生互动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。
2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。
3.运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。
三、学法指导: 1.学法引导
“授人以鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学目标。
2.学法分析:新课标明确提出要培养自我探究能力,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
3、设计理念:对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要.”
4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。
四、教学过程:
1、教学环节设计:
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.
本节课的教学设计环节:(1)、创设情境,引入新知 :复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排由浅入深的题、让每一个学生都能为下一步的探究做好准备。(2)、自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。(3)、运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。
(一)学习内容:
1、定义
2、解析式
3、顶点与对称轴
4、图像位置 教师以复习内容为中心,层层深入,触类旁通地引导学生参与学习过程。(二)基础演练
通过精心的选题让学生演练,教师引导下完成,达到巩固知识的作用。(三)思维拓展与应用
既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。
(四)方法与小结
由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题.
2、作业设计:(题签)
3、板书设计:(见课件)
五、评价分析:
本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知——合作交流;探究新知——运用知识,体验成功;知识深化——应用提高;归纳小结——形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。让学生乐学、会学、学会,这样才是我们的教学目标,同时让教师充满爱学生,乐教的风格。慢慢的形成了一种良性的循环,信其师学其道。
第四篇:《二次函数复习》教学设计
《第二十六章 二次函数复习》教学设计
进入复习阶段学生总是处于做题讲题的情景下,时间一长渐渐地产生厌烦的情绪,复习的效果也就大打折扣,为能达到复习课的目的和要求,同时学生学得不至于太枯燥乏味,我觉得加强小组合作可以使复习的效果更好。
复习时把平时在每个单元中学到的零碎知识系统化,让学生从整体上把握所学内容,先把全册教材中的基础知识按照不同的内容进行分类,把需要熟记的计算公式和所学内容中出现的练习题型分别列出来,这样复习时就有章可循,有的放矢。让学习小组内互相交流设计的问题,达成共识,派代表到屏幕、黑板或实物展台进行展示,讲解。组员进行补充,强调注意事项。老师适时进行点拨、评价。在这个过程中,利用学生动手设计题、做题、学生提示注意事项、总结中层层展开、递进。达到能提高学生运用二次函数的图象、性质来解决问题的能力。学生设计的问题在小组内达成共识,代表学生的整体水平,在此过程中,学生设计的问题,有些是我预想不到的,收到的效果较好。下面我以《二次函数复习》为例
教学目标:
根据《标准》的要求,结合本节课的内容特点和学生的实际情况,本节课的教学目标如下:
知识目标:1.理解二次函数的意义及概念。
2.掌握各类二次函数之间的关系、图象及性质,并能用来解决一些简单的实际问题。
能力目标:进一步体会函数是刻画变化规律的重要数学模型,并进一步体会数形结合的思想。
情感目标:培养学生小组合作意识;敢于发表自己的观点;尊重和理解他人的见解;能从交流中获益。
教学过程设计:
一.复习导入,出示课题:
师:前面我们学习了二次函数的基础知识,这节课我们就来一起复习一下(出示课题)。二.知识梳理,建知识树(所学二次函数的内容)生:一小组展示整理的知识树,其他小组补充完善。师:展示整理的知识树,做重点强调。
教学形式:学生课上根据自己整理的知识树先进行小组交流,补充,代表小组进行展示,其他小组进行补充,完善.老师进行总结:同学们整理的都非常全面、细致,通过整理学生对于这部分的内容又有了更进一步的认识。然后老师出示所构建的知识树,强调注意事项。
设计意图:按照我们的学习习惯,每学完一部分内容都要对其进行知识梳理,使知识系统化,学生对所学过的二次函数的有关知识进行整理,使其纳入所属的知识体系,使知识系统化,并做好知识的前后衔接。三.典例解析,变式应用: 活动一:
师:通过前面对各类函数的学习及知识树的整理,可以看出我们研究每类函数都是研究它的4个方面,定义、图象、性质及应用。这节课我们就从这几个方面进行本部分的复习。
根据定义口答:
已知函数 y(m2)xm2是关于x的二次函数。
(1)满足条件m的值为
,此函数解析式
;
(2)将它的图象向左平移2个单位,再向上平移4个单位,则平移后对应的二次 函数的解析式为
。即y=。
说一说: 结合函数y4x216x12,你能说出它图象的哪些性质? 画一画:
画出这个函数y4x216x12的图像。
设计意图:让学生在说一说、画一画中对二次函数的相应基础知识进行复习,层层递进,为后面的拓展练习的设计、解决奠定基础。
拓展练习:
1、根据图像,写出当x取何值时,y<0?
y>0?
y=0?
2、设图象与x轴的两个交点为A、B,顶点为C,与y轴的交点为D,试求△ABC、△ABD的面积。四边形ABCD的面积呢? 活动二:
师:结合这个二次函数的图象,你还能设计问题并尝试解答吗?
教学形式:学习小组内互相交流设计的问题,达成共识,派代表到屏幕、黑板或实物展台进行展示,讲解。组员进行补充,强调注意事项。老师适时进行点拨、评价。在这个过程中,利用学生动手设计题、做题、学生提示注意事项、总结中层层展开、递进。达到能提高学生运用二次函数的图象、性质来解决问题的能力。
设计意图:通过《配套练习册》上一个小题的改编,既考察了二次函数的图象、性质,又进一步通过进行变式练习层层递进达到发散学生思维,调动学生的积极性的目的。同时在这个过程中让学生在一式多变,一题多解,多题归一中收获数形结合解决问题的重要的数学思想。同时充分利用电子白板的书写、擦除功能,让学生进行一系列的变式训练中充分展示自我,开阔了学生的思维,提高了学生合作、交流及语言表达能力。
师:知道a、b、c、的值可以画出二次函数的图象,反过来给你一个二次函数图象,你能确定出下面式子得的值吗?
若把上述函数有关数值去掉,只保留函数图象,你能快速说出二次函数解析式
2yax2bxc中,a、b、c、b-4ac、a+b+c、a-b+c、4a-2b+c的符号吗?
设计意图:一方面考察学生会根据图象确定a、b、c的值。另一方面由特殊到一般的让学生理解数与形的结合,进一步深化研究函数的常用思想方法数形结合的思想。
2活动三:
师:二次函数和我们的实际生活是密切相关的,你能借助学过的知识尝试解决这个问题吗?
某农场用一段长为30米的篱笆,围成一个一面靠墙的矩形菜园(墙的最大可用长度为10米),中间隔有一道篱笆(平行于AB),设菜园的一边AB为x米,面积为y米2。
(1)求y与x的函数关系式。(2)如果要围成面积为63米2的花圃,AB的长是多少?(3)试求当AB边多长时,菜园面积最大?
设计意图:让学生体会二次函数的实际意义。一方面,使学生感受现实世界二次函数的大量存在;另一方面,体会用二次函数的知识可以分析和解决实际问题,体会函数建模的数学思想。
四.总结反馈, 达成目标:
(一)课堂小结:
1.通过本节课对二次函数的复习,你认为还有哪些地方需要提高?
2.在后面函数学习中,我们还需注意哪些问题?
设计意图:在独立思考和合作交流中,进一步引导学生梳理本节课在知识和数学思想方法的收获,进一步提升对数学思想方法的理性认识。在总结的同时让学生体验收获知识的快乐,培养敢于展现自我、敢说、敢问、自信的学习品质。
(二)课堂检测:
1.已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第 象限.(图略)
2.二次函数y=x2-4x+3与x轴的两个交点为A,B(点A在点B的左侧),与y轴相交于点C,顶点为D,则四边形ACBD的面积为。
3.二次函数y=-x2+1的图象与X轴交于A、B两点,与y轴相交于点C.下列说法中,错误的是()
A.△ ABC是等腰三角形 B.点C的坐标是(0,1)C.AB的长为2 D.y随x的增大而减小
设计意图:进一步夯实二次函数的基础知识,学会数形结合的数学思想解决函数问题的基本方法。
(三)布置作业: 必做: 整理笔记本,完善知识树。
选做:根据自己的实际,结合《配套练习册》易错、出错的题目整理到错题本上。
设计意图:必做部分的作业让全体学生重新对所学知识形成知识网络,加深印象打牢基础。选做部分的作业则让学生根据自己的实际进行深入学习,尊重学生的个性发展。
课后反思:
对于这种复习课我们改变了以往课堂中常用的学生个体解答方式,采用小组合作整理知识树、合作交流设计的问题,并进行小组展示,充分发挥小组同学的集体智慧。这样的教学能最大限度的调动学生学习的主动性,培养他们的集体荣誉感。
通过本节课的教学使我深深的体会到,新的课堂理念“以生为本”给我们的数学课堂注入了活力,让学生在编题、变式中交流合作,展示自我,收获自我,增大了课堂容量,提高了课堂效率。在课堂中,教师只是学习的引导者,学生学习的帮助者。让我们的数学课堂,真正成为学生自主、合作、探究学习的乐园,成为学生展示自我的舞台。
第五篇:《二次函数复习课》教学反思
《二次函数复习课》教学反思
福鼎七中 周克锋2010.5.20
二次函数对学生来讲,既是难点又是重点,通过我对这一章的教学,让我学到很多道理和教学方法。下面是我对二次函数的复习课的一些反思感受:首先,我认为在课堂上,我对知识的掌握还是有一定的欠缺,把二次函数用自己的眼光和感受想象的太简单,但是对于学生而言,这又是一个重点,尤其是一个难点。所以我课堂上有的习题深度没有掌握好,没有做到面向全体。
其次,本节课体现的是分层教学,而我只是在后面的比赛中简单的体现分层,对于提问中得分层,习题中的分层还是做的不够好,这说明我对于分层教学的这种方法还是有待于进一步的提高,应该真正的站在学生的角度来分层。
第三,课堂上的语言不够精辟,尤其是评价性的话语很少,很单调。没有做到让学生为我的一句话而振奋,没有因为为了争得我的一句话而好好做题等等,这是我一直以来欠缺的一个重要点。
那么针对以上几点,我从自己的角度思考,收获了以下这些:
1.上课之前一定要反复的推敲,琢磨课本,找出本节课知识的“灵魂”,然后站在学生的角度,仔细研究,如何讲授学生们才能愿意听,才能听得明白。尤其不能把学生想像的水平很高,不是不自信,而是不能把学生逼到“危险之地”,以免打击自尊心,熄灭刚刚点燃的兴趣之光。真正做到“低起点”。
2.既然选择和实施了分层教学,就应该多下功夫去琢磨,去进行它。既然是分层就应该把它做到“顺其自然”,而不仅仅是一种形式。在分层的同时应该找到一个点,就是说,这个点上的问题是承上启下的,是应该全班都能够掌握的。对于尖子生,不能在课堂上想让他们吃饱,对于他们应该在课下,或者是采用小纸条的方法单独来测试,不能为了他们的能力把题目难度定的过高。再者,分层应该体现在一节课的所有环节,例如,在提问时,对于一个问题应该分层次来提,来回答。
3.应该及时地,迅速的提高自己的言语水平。
一堂课的精彩与否,教师的课堂语言也是很重要的一个方面,例如一节课的讲授过程,或者是对于学生的评价等等。
督促自己多读书,多练习,以丰富自己的语言。
4.最后,我觉得自己真的需要多学习,多见识,这样才能提高,才能迅速的提高。对于自己的优势,我也看到了,那就是我的教学之路很长,很多方法,很多思路都有时间,有条件去尝试,所以在以后的工作中要多动脑,多为学生着想。俗话说“天下无难事,只怕有心人”,所以只要我认真的付出,认真的思考,我想我的明天会是美好的。