1.2 数轴 教学设计 教案

时间:2019-05-12 20:30:49下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《1.2 数轴 教学设计 教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《1.2 数轴 教学设计 教案》。

第一篇:1.2 数轴 教学设计 教案

教学准备

1.教学目标

掌握数轴的三要素,能正确画出数轴;能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.

使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识;对学生渗透数形结合的思想方法.

能够准确画出数轴,在数轴上表示出相应的有理数以及在数轴上读出点所表示的有理数.

使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.

2.教学重点/难点

教学重点:正确掌握数轴画法和用数轴上的点表示有理数. 教学难点:有理数和数轴上的点的对应关系.

3.教学用具

温度计

4.标签

教学过程

教师出示一只温度计,首先让学生说说温度计在日常生活中的应用,然出提问:(1)温度计上的刻度是怎样表示温度的?(2)把温度计横放(零上温度向右),你觉得它像什么?(3)你能把温度计的 刻度画在纸上吗?引出新课:“数轴”。

(借助于温度计,用类比的数学思想方法,使学生易于接受数轴。感受到数学是真实的、亲切的。这些问题的创设有利于唤起学生的好奇心,激发学生的求知欲,调动学生的思维积极性,学生很自然地投入到学习活动中去。)

(二)合作讨论,探究新知

1、动手操作:师生一起画一条数轴。

[讲清数轴的画法:一画(直线);二定(定原定);三选(选正方向);四统一(单位长度要统一)。]

2、观察数轴有什么特征?(让学生讨论)

(如:数轴的三要素——原点、正方向、单位长度,类比温度计三者缺一不可,正数都在原点的右边,负数都在原点的左边等等。)

__________________________________________________________________ ______________________ __________________________________________________________________ ____________________________________________________________________________________________________________________________________ ______________________ ________________________________________________________________________________________ ____________________________________________ ______________________ ______________________ ______________________ ______________________ ______________________ ______________________ ______________________

(通过判断,加深对数轴概念的理解,掌握正确的画法。)

4、问题:类似温度计的刻度,任何有理数都能用数轴上的点表示吗?(引导学生独立思考得出:正数用原点右边的点表示,负数用原点左边的点表示,零用原点表示,任何一个有理数都可以用数轴上的点来表示。)

(通过设置问题串,使学生了解知识的产生过程,培养学生分析、归纳的能力,实现从实践到理论的提高。)

(三)解释应用,体验成功 1、例题教学

例1 指出数轴上A、B、C、D各点表示什么数?

(合作交流,获取正确答案)

(指出数轴上已知点所表示的数,是由“形”到“数”的过程。)例2画出数轴,并用数轴上的点表示下列各数: 4,-5,0,5,-4,-

(动手操作,体验数学活动充满探索。)

(把给定的数用数轴上的点表示,是“数”到“形”的思维过程。)归纳:例

1、例2,从两个侧面体现了数形结合的意思,是教学中要渗透的数学思想方法。

2.观察例2中画好的数轴,4与-4有什么相同与不同之处,与-,-5与5呢?像这样关系的两个数你还能找出多少对?

合作讨论:相同点是:它们在数轴上的位置到原点的距离都是两个长度单位;不同点是:它们位居原点的两边。这样的数对可找出无数对,如:与-,5与-5等。

__________________________________________________________________ ______________________ __________________________________________________________________ ____________________________________________________________________________________________________________________________________ ______________________ 瞬间灵感或困惑:

__________________________________________________________________ ____________________________________________ ______________________ ______________________ ______________________ ______________________ ______________________ ______________________ ______________________

教师引导学生得出:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数是互为相反数,特别地,0的相反数是0。通常在一个数的前面添上“-”号,或改变符号,用这个新数表示原数的相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

3、考考你:

(1)下面两个数是互为相反数的是()A、-与0.2

B、与-0.333

C、-2.25与2

D、π与3.14(2)写出三对非零相反数

(四)拓展创新,巩固概念

(1)问题:数轴上的两个点,右边的点表示的数与左边的点表示的数有怎样的大小关系?你能举例说明吗?

(分组讨论、合作交流、获得数学的猜想。)

(猜想温度计上显示的温度,上边的温度总比下边的温度高,如:-5℃比-7℃温度高,所以右边的点表示的数总比左边的点表示的数大,即:-5>-7。)(2)在数轴上距原点3个单位长度的点表示什么数?它们有什么关系?距原点5个单位呢?a个单位呢?(a>0)

(学生回答,并相互补充,培养学生发散思维的能力;知道若a为有理数,则它的相反数为-a。)

(3)书上12页练习1与练习2

(五)课堂小结

课堂小结

通过本节课的学习,你有什么收获?

(数轴和相反数的概念,把有理数表示在数轴上)

课后习题 p12练习1与练习2

第二篇:数轴教学设计及教案

第二章 有理数及其运算

2.数 轴

宜昌市第十五中学 黄 娥

一、学生起点分析

一方面,小学里已经接触到在“射线”上用点来表示数和读出或写出“射线”上的点所表示的数,对数与点的这种对应关系有了初步的了解,上一节课又学习了有理数的概念,为数轴概念的建立和进一步学习数轴上的点与有理数的对应关系积累的必要的学习经验,具备了“表示”的基本技能和基本方法,这是学生的知识技能基础.从另一方面看,日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了生活经验基础,是学生便于理解数轴概念.二、学习任务分析

本节课要求学生掌握数轴三要素,会画数轴,准确说出数轴上的点表示的有理数、并把每一个有理数用数轴上的点表示出来;并会借助数轴功能来比较有理数的大小。数轴概念是中学数学中数形结合的起点,数形结合是帮助学生理解数学、学好数学的重要思想方法.从现在开始,在教学与学习中更应该提醒学生注重数形结合是数学教学与学习的重要指导思想,本章后面的有 理数的有关性质和运算都是结合数轴进行的,由此可见这一课时学生学好数轴概念的重要性.数轴是用“长度”度量各类量的抽象,日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了基础.本节是初步理解数形结合的思想方法,通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础.为此,本节课的教学目标是:

1、知识与技能:①掌握数轴的三要素,会画数轴; ②会指出数轴上的点表示的有理数;并能把有理数在数轴上用点准确的表示出来; ③数轴上点的大小关系,能利用数轴比较有理数的大小.2、过程与方法:培养学生的观察、比较、分析、抽象、概括的逻辑思维能力和动手能力,初步培养学生数形结合的数学思想方法和意识.3、情感与态度:通过数轴与生活实物对应对比,激发学生兴趣,通过规范画图,培养学生细致准确习惯,扶植勇于探究的精神.三、教学过程设计

本节课设计了六个教学环节:①情境导入、适时点题 ; ②问题探究、形成策略 ; ③动手操作、探索新知; ④小试牛刀、自我检测 ; ⑤快乐课堂、思维晋级;⑥师生归纳,布置作业。

第一环节 情景导入,适时点题 活动内容:

1.你能说说什么叫正数,什么叫负数吗? 2.问题1:(1)温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

(教师通过课件演示温度计读数,并且让学生回答以下问题:)

(2)温度计上的刻度数有什么特点?你为什么能准确的说出每一个度数?

(3)你能借鉴温度计,用一条直线上的点表示有理数吗?(学生自由发言)

活动目的:

创设问题情境,激发学生学习热情,发现生活中的数学.通过问题情景设置, 学生感受到生活中蕴含的数学知识---点与数之间的关系,从而由点题,今天学习的课题《数轴》.活动的实际效果:

激发了学生学习兴趣,学生对此内容很感兴趣

第二环节 问题探究,形成策略

活动内容一:

1.师生动手画数轴.(边画边强调数轴画法和要点)数轴三要素: 原点 正方向 单位长度 师: 好像一个平放着的温度计

活动目的:

让学生在操作的基础上归要点,从而得出一条规范的数轴要具有三要素:原点、正方向、单位长度.活动的实际效果:

学生自由发言,情调要点,规范画法,加深理解.第三环节 动手操作,探索新知

活动内容: 1.问题1:请你思考: +3,-4,0分别在数轴的什么位置?,-1.5呢?

2.问题2:指出数轴上 A, B, C, D各点分别表示什么数?

3.问题3:画出数轴,并用数轴上的点表示下列各数:,-3.5,0,5,-4,

思考:怎样在数轴上表示一个有理数-4 ? 数轴的作用有哪些?

活动目的:

通过问题驱动探究,寻求策略及解决,得出结论,观察归纳得到正有理数是用原点右边的点表示,负有理数是用原点左边的点表示,0用原点表示.所以任何一个有理数都可以用数轴上的一个点来表示.问题2是数轴上已知点所表示的有理数,是由“形”到“数”;问题3是给定的数用数轴上的点来表示,是由“数”到“形”;它们从两个侧面体现出数形结合思想.思考让学生从理性的角度归纳在数轴上表示有理数大方法,和数轴的作用.143232第四环节 小试牛刀,自我检测

活动内容:一组检测题

1.下列各图表示数轴是否正确?为什么? ⑴ ⑵ ⑶ ⑷

2.指出数轴上点A、B、C、D分别表示什么数,并说出他们的相反数.3.画出数轴,并在数轴上画出表示下列各数的点:

-4,3.5,-1.5,1,0 ,2.5.再按数轴上从左到右的顺序,将这些数重新排成一行.活动方式: 学生练习,学生互评,订正强调要点;归纳出:数轴上两个点表示的数,右边的总比左边的大;正数大于0,负数小于0,正数大于负数.活动目的:

检测学生知识的运用与掌握情况 活动的实际效果:

23刚学数轴,强调运用中的规范性准确性;强调错误的认识与体验。

第五环节 快乐课堂,思维晋级

活动内容:

1.问题1: 比较下列每组数的大小,并说明理由.⑴-2 和 +6;⑵0和-1.8;⑶和-4;(4)3.8,-4.1,-3.2.问题2:写出5个有理数,在数轴上将它们表示出来,并比较它们的大小.3.问题三: 在数轴上距原点3个单位长度的点表示什么数?与表示数2的点距离3个单位的数是多少? 活动方式: 独立完成,小组合作,交流分享

活动目的:

利用数轴上点的位置来比较两个数的大小是“数形结合”的典型应用,同时也可以借助正负数的大小规律来比较.有意识的渗透数形结合的数学思想。同时注重知识的延伸与拓广,分类思想的渗透.活动实际效果:

学生通过练习掌握了利用数轴比较数的大小,基本能掌握本节知识。

32第六环节 师生归纳,布置作业 活动内容:

问题:本节课你学到的数学知识和数学思想方法有哪些?让学生畅所欲言谈这节课收获.活动目的:

把所学知识条理化,学生把自己在本节课的收获说出来和大家共享,在知识、能力和情感上都有所发展.活动实际效果:

通过师生共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也有利于培养学生归纳、概括的能力.学生不仅有知识上的收获,而且体会到数学源于生活.作业:习题2.2

四、教学反思

本节课采用从生活中的经验引入数学问题,极大地调动了学生探究兴趣,采用学生主动探究数轴的设计画法从而规范数轴三要素,学生的知识发生发展自然合理,易于理解.在例题的解决上注重给与时间和空间,反复训练,注重掌握.注重学生的注重探究欲自主发展,主动的获取知识和技能,观察归纳规律,这样对学生能力的提高非常有帮助.由于学生刚入初中,对有理数的学习上有一个过程,所以题例设计大致是按从易到难的顺序排列的,面向全体学生,从多个角度.采用多种形式,使不同层次的学生都有所得,并且采用循 序渐进的方法,使学生对数轴任意两点之间的大小关系理解进一步的加强以及对相反数概念的理解.在老师的引导下,学生自主提问,互相点评练习解决,以促使更多的学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围.这样会促使学生的对数学知识和数学思想方法得到一个较好掌握.

第三篇:数轴2教案

学科:数学 教学内容:数轴

【基础知识精讲】

1.明确数轴的三要素,即原点、正方向和长度单位.

2.能将已知数在数轴上表示出来,能说出数轴上已知点表示的数. 3.会比较数轴上数的大小. 4.掌握相反数的概念.

【重点难点解析】

1.明确数轴的概念、画法和作用

规定了原点、正方向和单位长度的直线叫做数轴.数轴的三要素(原点、正方向、单位长度),在画数轴时三者缺一不可.例如以下画法中均满足数轴的三要素,所以都是正确画法.

而下面的几种画法均不正确.

一般情况下,我们把水平向右的方向定为数轴的正方向.而对于每一个有理数,都可以用数轴上一个确定的点来表示(但是数轴上的每一个点不都表示有理数).由于数轴上表示的两个数,右边的点总比左边的点表示的数大,所以可知(1)正数>0>负数(2)负数中离原点的距离越远的负数就越小.数轴还可以用来进行有理数的运算.例如:利用数轴计算:2(5).

2即+2看成从原点出发向右移动2个单位+(-5)表示再左移5个单位,2(5)3. 注意:想像能力在数学方面是非常重要的;如果我们能在脑子里,想像出数轴的形象及相关点的位置,那么在比较大小和做有理数的简单运算时,就没有必要真的画出数轴了.

2.明确相反数的意义及其与倒数的区别.

在一个有理数a的前面加上“-”号,就表示这个数的相反数,即“-a”与“a”互为相反数,它与倒数的区分是:

(1)两个互为相反数的数,它们符号相反;两个互为倒数的数,它们符号相同.(2)两个互为相反数的数,其绝对值相等;两个互为倒数的数,除±1外,其绝对值不等.

(3)零的相反数是零,而零没有倒数.

(4)两个互为相反数的数和为零;两个互为倒数的数积为1.

A.重点、难点提示

(这是重点,也是难点,要掌握好)(这是数形结合的数学思想,要掌握好)

数轴的概念—数轴的三要素—有理数与数轴上的点的对应关系概念—相反数的概念—相反数的意义

有理数大小的意义—利用数轴比较两个有理数的大小(这是数形结合的数学思想的应用)

B.考点指要

利用数轴比较两个有理数的大小是中考的一个重要内容。规定了原点、正方向和单位长度的直线叫数轴。

数轴有三要素:原点、正方向、单位长度,三者缺一不可。任何一个有理数都可以用数轴上的一个点来表示,原点表示0,原点左侧的点表示负数,原点右侧的点表示正数。(数形结合的数学思想)

数轴上两个点表示的数,右边的总比左边的大,负数小于0,正数大于0,正数大于一切负数。

如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数,正数的相反数是负数,负数的相反数是正数,特别地,0的相反数是0。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。(0是惟一的相反数等于自身的数)

【难题巧解点拨】

例1 下列各图中,是数轴的是()

解:对照数轴的三要素,可以得出正确答案D。

例2 在数轴上表示下列各数,并用“<”把它们连接起来: -5,311,1,0,4。32解:要想在数轴上准确地描出各点,首先要看数的符号,表示负数的点描在原点的左侧,表示正数的点描在原点的右侧,再根据各数的数值定出位置,表示0的点就是原点,如图2-1所示。然后根据在“数轴上表示的两个数,右边的数总比左边的大”写出不等式。

(数轴上表示的两个数,右边的数总比左边的大)用“<”连接:5111034。23例3 画数轴,并在数轴上作出表示下列各数的点:

-100,250,300,400。

解:画数轴要根据所给定的数据,适当选择原点的位置和单位长度。此题中原点应取在较左的位置上,并选取单位长度表示为100,如图2-2所示:

例4 判断正误:

11和是相反数; 2313131(3)和是相反数;

(4)的相反数是2。

15152(1)-2是相反数;

(2)解:(1)错。因为相反数成对出现。(2)错。因为(3)对。(4)错。11和在数轴上表示的点与原点的距离不等。2311的相反数是。

22例5 化简下列各数前面的双重符号:

-(+5),-(-5),+(+5),+(-5)

解:-(+5)是+5的相反数,也就是-5,所以-(+5)=-5; -(-5)是-5的相反数,也就是+5,所以-(-5)=+5 +(+5)表示+5本身,所以+(+5)=+5

+(-5)表示-5本身,所以+(-5)=-5。(你发出了什么规律?)

注:从以上四个等式不难发现简化“有理数前面的双重符号”的法则:即同号得“+”,异号得“-”。

【典型热点考题】

例1 在数轴上,与表示+2的点距离是4个单位长度的点有几个?它们分别表示什么数?

点悟:注意左、右两侧各有一个.

解:有2个.它们分别表示-2和+6.

点拔:在数轴上,与一个已知点距离相等的点一定有两个,它们分别位于已知点的左、右两侧.

例2 如图2-2-3,字母a,b,c都表示有理数,比较它们的大小.

点悟:应考虑a,-b,c相对于原点的位置及a,b,c是正数还是负数. 解:,bac.

点拔:-b到原点的距离大于a到原点的距离.a与c到原点的距离虽然差不多,但一个是正数,一个是负数.解此类题目的要点是,一看到原点的距离,二看符号.

例3 有理数a、b、c在数轴上对应的点分别为A、B、C,其位置如下图:试化简|c||cb||ac||ba|.

点悟:有理数a、b、c,在数轴上对应的点分别为A、B、C,在数轴上A点在原点的右边,它表示的数a0,B、C两点在原点左边且C点在B点的右边,b0,c0,它表示的数c大于B点表示的数b,所以|b||c|.利用上述条件去绝对值符号,原绝对值符号内的数是正的,去掉绝对值符号,符号保持不变;原绝对值符号内的数是负的,去掉绝对值符号后原数改为它的相反数.

解:

|c||cb||ac||ba|c[(cb)](ac)[(ba)]c(cb)(ac)(ba)ccbacbac.例4 已知a、b、c的位置如图2-2-5,试化简|ab||bc||ca|.

解:由图可知,c0ab,ab0,bc0,ca0.|ab||bc||ca|(ab)(bc)(ca)

abbcca2b2c.【考题误区警示】

数轴上一个点到+1的距离是3,求这个点表示的数. 常见错解:它表示的数为4. 正解:画出数轴(如图2-2-6):表示到+1的距离是3的数有两个,分别为-2和4.

【同步达纲练习】

一、选择题

1.把四个数-0.05,-3.1,0,0.01从大到小用“>”连接,正确的有()A.-0.05>-3.1>0>0.01

B.-0.05>0>-3.1>0.01 C.0.01>0>-0.05>-3.1

D.0.01>-0.05>0>-3.1 2.下列四个数中,比所有负数都大的数是()

A.0.00001 C.

B.D.0

100001

1000000

二、填空题

3.规定了___________________________________________叫数轴. 4.用“>”或“<”填空:

正数_______负数零 ______负数正数________零 5.图2-2-7中的___________是数轴.

6.在数轴上表示下列各数的点,位于原点右边的有___________________.

15,0,-,10.5,1000 22117.3到6之间的整数是__________________.

32-100,20,38.如图2-2-8,数轴上A、B、C、D、E各点表示的数分别是:

A(),B(),C(),D(),E()

三、解答题

9.画数轴,并在数轴上标出表示下列各数的点:

11,-2,0,3.5,3211,2

(2)2.3___________4.4; 10.利用数轴,把下列各数用“<”连接起来: +4,0,-3,11.比较下面各组数的大小:

(1)3_______________-5(3)3(5)11___________3;

22(4)0_____________-2;

11______________0;(6)5____________1. 10004112.在数轴上与原点距离为个单位的点表示的数是___________,在数轴上与3所对应的点距离为5个单位的点表示的数是________________.

13.所有的有理数都可以在数轴上表示出来吗?数轴上的点都表示有理数吗?

14.在数轴上,到511所对应的点的距离为4的点表示的数是__________________. 2315.数轴上到原点的距离小于3的整数的个数为x,不大于3的整数的个数为y,等于3的整数的个数为z,则x+y+z=______________________.

16.如图2-2-9,数轴上A、B两点对应的有理数都是整数,若A对应有理数a,B对应有理数b,且b-2a=5,请指出数轴的原点.

【综合能力训练】

1.规定了___________、___________、___________的直线叫数轴。2.数轴上表示正数的点在原点的___________,表示负数的点在原点的___________。3.数轴上表示两个数,___________的数总比___________的数大。

4.数轴上离原点4.5个长度单位的数有___________个,这些数分别为___________和___________。

5.3的倒数的相反数是___________。46.如果a的相反数是a,则a是___________。7.(1)写出所有比4小的正整数:___________;(2)写出所有比-4大的负整数:___________。8.比较下列各对数的大小:(1)-1与1;

45与; 561(3)0与。

10(2)9.将下列各数在数轴上表示出来,并用“<”连接起来。

5,-3,2.5,0,-1.5,3。

310.判断下列各小题的说法是否正确:(1)当x=4时,5x164;(2)当x=5时,83x5。

11.文具店、书店和玩具店依次座落在上海市南京路东西走向的大街上,文具店在书店西边20m处,玩具店位于书店东边100m处,小明从书店沿街向东走了40m,接着又向西

增了60m,此时小明的位置在()

A.文具店

B.玩具店

C.文具店西边40m

D.玩具店东边-60m

参考答案

【同步达纲练习】

一、1.C2.A、D

二、3.原点,正方向和单位长度的直线; 4.>,>,>; 5.①,④,⑤; 6.20,31,10.5,1000; 27.±3,±2,±1,0,4,5,6; 8.A(1),B(6),C(-3),D(3),E(8).

三、9.略. 10.311024 2211.(1)>;(2)<;(3)<;(4)>;(5)>;(6)<. 12.1,-2或8. 213.可以,但数轴上的点表示的不全是有理数. 14.759,6615.14. 16.

【综合能力训练】

1.原点、单位长度、正方向;

2.右边,左边;

3.右边,左边;

4.2,4.5和-4.5;

5.4;

6.0;

7.(1)1,2,3;(2)-1,-2,-3; 358.(1)<,(2)>,(3)<;

9.31.502.53;

310.(1)当x=4时,得4>4,所以错;(2)当x=5时,得820,所以正确;

11.A.

第四篇:2数轴教学设计与反思

1.2.2数轴教学设计与反思

廉庄乡中学 于得国

1.2.2数轴教学设计与反思

一、教学内容分析

本节课是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

二、学情分析

1、七年级学生刚刚学习有理数中的正负数,对有理数的概念有了一定的理解。

2、学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中丢三落四的现象,所以教学中我给以简单明白、深入浅出的分析。

3、因七年级学生的理解能力、思维特征、生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中我抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

三、教学目标

1、知识与技能

(1)掌握数轴的概念,并理解其三要素,能正确地画出数轴。

(2)会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。理解任何有理数在数轴上都有唯一的点与之对应。

2、数学思考

(1)通过观察与思考,建立数轴的概念。

(2)通过对数轴的学习,初步体会对应的思想、数形结合的思想。

3、解决问题

会利用数轴解决有关问题。

4、情感态度与价值观

通过对数轴的学习,向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

四、教学重点、难点 教学的重点:(1)正确理解数轴的概念;

(2)正确掌握数轴的画法和用数轴上的点表示有理数。教学的难点:正确理解有理数与数轴上点的对应关系,体会数形结合的数学思想。

五、教法、学法

1、教学方法

采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。

2、学法指导

为了达到学生主动的学习的目的,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。

六、教学过程设计

(一)创设情境引入新课

1、观察温度计,并填空:

师生行为:老师演示课件,学生观察并举手发言。

设计意图:通过让学生观察温度计并填空,为学习数轴概念做好铺垫。

2、出示课本第8页问题:在一条东西向的马路上,有一个汽车站,汽车站东3m 和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一 棵槐树和一根电线杆,试画图表示这一情境。师生行为:老师发问:“请同学们思考:怎样用数简明地表示这些树、电线杆与汽车站的相对位置(方向、距离)?”学生分四人小组讨论,并画出图形。老师巡堂查看学生完成的情况,并请最先做好的两个小组派代表到黑板演示。

设计意图:通过学生的活动,让学生认识到:考虑东西向马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。

3、再次观察课本图1.2-

1、温度计,找出它们之间的共同之处。

师生行为:老师引导学生观察、比较。学生组内讨论,并派代表发表意见,老师及时给予肯定和评议。

设计意图:通过比较,学生容易发现正数、0和负数都可以用一条直线上点表示出来。

(二)数轴的概念

师生行为:老师讲解数轴的概念,说明画数轴需要满足的条件,并提醒 学生数轴的三要素;学生观察、理解。

设计意图:初步认识数轴的概念及其所需要的条件。

(三)数轴概念的应用

1、讨论下列数轴画得对错?并思考你认为画数轴最重要的三个因素是什么? 出示课件

师生行为:学生组内讨论交流,派代表发言,老师进行总结,并概括数轴的三要素。

设计意图:通过学生讨论,交流和反思,使学生认识数轴的三要素。

2、画数轴

师生行为:师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。

设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。

3、在数轴上表示下边各数: —1.5

0.5

+3

1.5

4、指出数轴上A,B,C,D各点分别表示什么数。出示课件

师生行为:观看课件的题目,要求学生在自己所画的数轴上完成,再由老师演示答案。

设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示,数轴上的一个点只表示一个数,体会对应思想.(四)数轴概念的深化

填空:数轴上表示-3的点在原点的边,距原点的距离是,表示4的点在原点的 边,距原点的距离是

。师生行为:通过填空,老师引导学生做出课本第9页的归纳。设计意图:通过从特殊到一般的方法归纳出数轴上的点的特征,逐步培养学生的抽象概括(从具体的数到字母表示的数)能力。

(五)巩固数轴的概念

1、课堂练习:

课本第10页的练习1、2题

师生行为:学生练习,老师巡堂、指导。设计意图:通过练习,巩固数轴的概念

2、小结:什么是数轴?如何画数轴?如何在数轴上表示有理数?(1)数轴的三要素:原点、正方向、单位长度。(2)画数轴的步骤: <1>.画直线;

<2>.在直线上取一点作为原点; <3>.确定正方向,并用箭头表示; <4>.根据需要选取适当单位长度。师生行为:老师发问,学生总结。

设计意图:通过小结,使学生对所学知识进一步系统化。

3、作业:(1)必做题

课本第14页习题1.2第2题(2)选做题

①在数轴上标出到原点的距离小于2的整数。②在数轴上标出-4和+4之间的所有的整数。

七、板书设计

课题:1.2.2 数轴

1、数轴的概念

2、数轴的三要素:原点,正方向,单位长度

3、画数轴的步骤

八、教学反思

这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑,充分体现了学生是学习的主体,使学生学有兴趣、学有所获。

第五篇:《数轴》教学设计

《数轴》 教学设计

大荔县赵渡中学 郭娟

设计依据

本节课主要设计思想都依据义务教育《数学课程标准》(2011年版),基本理念强调数学课程的基础性、普及性,数学的发展性,学生的学习内容应当是现实的,有意义的和富有挑战性的,教学内容有利于学生主动的进行探究与交流,自主探索,合作交流是学生学习数学的重要方式。教师是学生学习的组织者,引导者和合作者。在师生共同交流的过程中理解和掌握基本的数学知识与技能,常用的数学思想和方法。

教学内容分析

人教版义务教育教科书七年级上册《数学》1.2.2数轴,属于义务教育《数学课程标准》(2011年版)第三学段的“数与代数”内容,《数轴》这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础

学情分析:

(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数 的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

(2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学 生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。

(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一 方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

教学目标: 知识与能力

1、使学生理解数轴的三要素,会画数轴。

2、能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示;

3、向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。过程与方法

学习过程中,通过课件创设的情境充分调动学生各知觉器官,做到"细观察、多动手、勤思考".通过观察、猜想、探究、推理、模仿、体验等方法完成本节知识的学习.

情感态度与价值观

1.渗透数形结合的数学思想; 2.知道数学来源于实践; 3.培养对数学的学习兴趣.教学重点

由于学生学习了用数轴上的点表示有理数后,就能较好地理解相反数的概念及应用数同比较有理数的大小,因此,本节课的重点应为会用数轴上的点表示有理数。

教学难点

由于从问题情境抽象到数轴这一建模过程,对于抽象思维处于初级阶段的七年级学生来说,认知上存在一定的困难,因此,本节课的难点是:数轴的引入;突破难点的关键是:运用类比数学思想。教学过程:

一、出示目标

1、使学生理解数轴的三要素,会画数轴。

2、能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示;

3、体会数行结合的数学思想。

二、突破目标

1、复习导入

(1).“正、负”的规定具有相对性,正数和负数表示相反意义的量

如果向东走30米记作+30米,那么向南走30米,能否记作-30米?为什么?(2).引进负数的意义:

Ⅰ 表示相反意义的量; Ⅱ 计算的需要.2、自学提纲(自学教材7—8页回答)

①在上图中是怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系? ②观察温度计,体会数与形有怎样的对应关系? ③什么是数轴?

④“单位长度”能不能说成“长度单位”?为什么? ⑤画数轴的一般步骤是什么?

⑥根据教材中的实例,说一说原点起什么作用?

3、通过10分钟的自学后,分小组对照答案,针对问题小组讨论,教师巡视并对小组活动给予及时的评价和帮助。

4、小组展示,教师利用幻灯片进行知识小结。

三、课堂检测 课堂检测1.3.5.7.2.4.6.8.原点、正方向、单位长度一个也不能少.练一练1.在数轴上表示下列各数.1+2,-2,-3.5 4-3.5●-2●14●2●-4-3-2-101234任何一个有理数都可以用数轴上的一个点来表示.四、课堂小结

通过这节课的学习你有那些收获?你还有什么疑惑吗?

你对自己的表现满意吗?为什么?

教学反思: 这一课时学习的数轴概念是中学数学中数形结合的起点,数形结合是帮助学生理解数学、学好数学的重要思想方法。在教学与学习中注重数形结合是数学教学与学习的重要指导思想,以后学习有理数的有关性质和运算都是结合数轴进行的,由此可见这一课时学生学好数轴概念的重要性。

学生在自学的过程中非常认真,问题一一得到了解决,整个概念的教学流畅自然,而且让学生充分地进行了思考和积极地探索,令学生对于数轴的三要素理解深刻,突破了难点。学生在画数轴时容易出现一些画法上的小错误,所以我在屏幕示范画数轴的过程中边画边附上几点说明:原点、单位长度和正方向三要素缺一不可;直线一般画水平并非只能画水平;原点可取直线上任一点但一取定就不再改变;正方向用箭头表示,一般取从左到右为正;单位长度取适当应结合实际需要但一旦取定就不再改变,要做到刻度均匀。这一示范和说明使他们对自学的内容进行了纠正和有效的强化,但简单的说教所达到的效果并不显著,所以,我设置了一组典型的错误画法让学生辨别及时纠错、深化理解,帮助他们真正领会了数轴的含义。我想,作为教师,我们在备课时不但要备教材,更要备学生,学会换位思考,学生可能会出现怎样的问题和疏忽,我们要有所准备,及时预防和纠正。我又想,如果先放手让学生自己画,然后把学生自己画的数轴(特别是有错误的)展示,相互指正,以示警戒,也不失为一种很好的教学资源。

本节课,当学习用数轴上的点表示正负数时,学生不但要知道数轴上给定的点表示的数,还要能把给定的数用实心点表示在数轴上。

下载1.2 数轴 教学设计 教案word格式文档
下载1.2 数轴 教学设计 教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数轴教学设计

    第二章 有理数及其运算 2.数轴 山西省太原市万柏林区一中赵洁 一 学生起点分析: 学生的知识技能基础:学生小学里已经学习过在“射线”上用点来表示数和读出或写出“射线”上的......

    数轴教学设计专题

    第二章 有理数及其运算 2. 数 轴 刘晨 一、学生起点分析 日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了生活经验基础,是学......

    《数轴》教学设计

    北师大版七年级数学上册第二章第二节《数轴》教学设计 太平中学 张效文 ◆教材分析: 1、本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事......

    数轴教学设计

    数轴教学设计(一) 一、教学目标(一)知识与技能 通过与温度计的类比认识数轴,会用数轴上的点表示有理数,会用数简明地表示同一条直线上不同物体间的相对位置关系.(二)过程与方法 经......

    数轴教学设计

    数轴教学设计 一、 教学内容分析 这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等......

    《数轴》教学设计

    《数轴》教学设计 教学目标: 1、知识与技能:①掌握数轴的三要素,会画数轴; ②会指出数轴上的点表示的有理数;并能把有理数在数轴上用点准确的表示出来; ③数轴上点的大小关系,能利......

    数轴教学设计

    数轴教学设计 湖南怀化芷江上坪学校李健 一、教材分析 《数轴》是湘教版七年级上册第一单元的内容。本节课主要是在学生学习了有理数概念的基础上,初步向学生渗透数形结合的......

    课时2-数轴_教学设计_教案

    教学准备 1. 教学目标 1、能借助数轴比较正、负数的大小。 2、能正确的比较一组正、负数的大小,并能按一定的顺序进行排列。 2. 教学重点/难点 会根据要求画出数轴,并能通......