第一篇:1.2.2数轴教学设计
1.2.2 数轴
教学目标
1.知识与技能
①掌握数轴三要素,能正确画出数轴.
②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数. 2.过程与方法
①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.
②结合本节内容,对学生渗透数形结合的重要思想方法. 3.情感、态度与价值观
使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.
教学重点难点
重点:数轴的概念.
难点:从直观认识到理性认识,从而建立数轴概念.
教与学互动设计
(一)创设情境,导入新课
课件展示 在一条东西方向的马路上,有一个学校,学校东50m和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)
(二)合作交流,解读探究
师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.
点拨(1)引导学生学会画数轴.
第一步:画直线定原点
第二步:规定从原点向右的方向为正(左边为负方向)
第三步:选择适当的长度为单位长度(据情况而定)
第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.
对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?
(2)有了以上基础,我们可以来试着定义数轴:
规定了原点、正方向和单位长度的直线叫数轴.
做一做 学生自己练习画出数轴.
试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-
7,0吗? 2 讨论 若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度;表示-a的点在原点的什么位置上?•与原点又相距了多少个长度单位?
小结 整数能在数轴上都找到点吗?分数呢?
可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边.
(三)应用迁移,巩固提高
例1 下列所画数轴对不对?如果不对,指出错在哪里.
123①45-1012②3-2-101③2
0④-2-10⑦12-10⑤1-3-2-1012⑥
【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错 例2 试一试:用你画的数轴上的点表示4,1.5,-3,-【答案】
7,0 3ACD-5-4-3-2-1E01B2345 图中A点表示4,B点表示1.5,C点表示-3,D点表示-
7,E点表示0. 3
例3 如果a是一个正数,则数轴上表示数a的点在原点的什么位置上?•表示-a的点在原点的什么位置上呢?
【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.
【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.
【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.
例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)
A.1个 B.2个 C.3个 D.4个
【提示】 题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.
例5(1)与原点的距离为2.5个单位的点有 两 个,它们分别表示有理数 2.5 •和-2.5 .
(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是 +3 .
例6 在数轴上表示-
21212和1,并根据数轴指出所有大于-2而小于1的整数. 2323 【答案】-2,-1,0,1 【点评】 本题反映了数形结合的思想方法.
例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000 C.2000或2001 D.2001或2002 【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.
【点评】 本题体现了新课程标准的探索和实践能力.
备选例题
(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.
【点拨】 不要忽视在原点的左右两边.
【答案】 ±3
(四)总结反思,拓展升华
数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.
一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M1、M2、M3、M4、M5表示,如图: M1-5M2M3-4-3-2-101M4234M55(1)点M4和M2所表示的有理数是什么?
(2)点M3和M5两点间的距离为多少?
(3)怎样将点M3移动,使它先达到M2,再达到M5,请用文字说明;
(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?
【答案】(1)M4表示2,M2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单位长度.
(五)课堂跟踪反馈
夯实基础
1.规定了 原点、正方向、单位长度的直线 叫数轴,所有的有理数都可从用 数轴 上的点来表示.
2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是-3 .
3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)A.7 B.-3 C.7或-3 D.不能确定 4.在数轴上,原点及原点左边的点所表示的数是(D)
A.正数 B.负数 C.不是负数 D.不是正数
5.数轴上表示5和-5的点离开原点的距离是 5,但它们分别 在原点的两边 .
提升能力
6. 1 是最小的正整数,0 是最小的非负数,0 是最大的非正数.
7.与原点距离为3.5个单位长度的点有 2 个,它们分别是 3.5 和-3.5 . 8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,33 【答案】 略
开放探究
9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点. 10.新中考题
(2004·南京)下列四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.3
第二篇:2.2 数轴教案
课题:2.2数轴
教学目标:
1、正确理解数轴的意义,理解数轴的三要素。
2、掌握有理数在数轴上的表示
法,以及利用数轴比较有理数的大小。
3、理解相反数的意义及求法。
4、对学生渗透数形结合的思
想方法,培养学生的观
察、归纳与概括的能力。
1、学习目标:掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。
2、理解相反数的意义及求法。
3、了解数轴的意义及画法
重点 难点:
1.正确掌握数轴的画法;用数轴上的点表示有理
数;求已知数的相反数。
2.有理数和数轴上的的点的对应关系。
教学方法:合作探究交流
学法指导:观察归纳概括
教学过程:
一、情景引入:(大屏幕展示)
(1)你会读温度计吗?完成课本43页最上面的读温度计的问题。
(2)我们能否用类似温度计的图形表示有理
数呢?
二、讲授新课:认真阅读课本第43页至45页,完成下列问题
(1)画一条水平直线,在直线上取一点O(叫做
▁▁▁),选取某一长度作为▁▁▁▁,规定向右的方向为▁▁▁,就得到了数轴。
于是,+3可以用数轴上位于原点右边3个单位的点表示,-4可以用数轴上位于原点左边4个单位的点表示,在数轴上位于原点右边点表示,在数轴上位于原点左边1.5的点表示1.5,任何有理数都可以用数轴上的一个点来表示。
141
4三、例题讲解、巩固提高(大屏幕展示)
例1.如图,指出数轴上A、B、C、D各点表示什么数?
ADCB–2–解:点A表示-2;点B表示2;点C表示0;
点D表示-1
练习:画出数轴并用数轴上的点表示下列个数: 33,-5,0,5,-4,-.22
四、继续探究(大屏幕展示)与-2有什么相同点与不同点?它们在数轴上的位置有什么关系?5 与-5,与-呢?
如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.练习:
1、5的相反数是▁▁;▁▁的相反
数是-3.5。
议一议(大屏幕展示)
32数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?
数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。
练习:比较大小:-3▁5; 0 ▁-4 ;-3 ▁-2.5。
3、合作交流
(1)什
(2)有理数与数轴上的点之间存在怎样的关
系?
(3)什数?
(4)如何利用数轴比较有理数的大小?
5、随堂练习:
(1)下列说法正确的是()
A、数轴上的点只能表示有理数
B、一个数只能用数轴上的一个点表示
C、在1和3之间只有2
D、在数轴上离原点2个单位长度的点表
示的数是2
(2)语句:①-5是相反数、②-5与+3互为相反数
③-5是5的相反数④-5和5互为相反数⑤0的相反数是0⑥-0=0。上述说法中正确的是()
A、①②⑥B、②③⑤C、①④D、③④⑤⑥
(3)大于-4而小于4的整数有▁▁▁▁▁▁。
(4)用“﹤”或“﹥”号填空
①-5▁▁-7②0 ▁▁-2③0.01▁▁▁-0.1
(5)写出下列各数的相反数
3.4,-3,0,a,2a-3。
课堂小结:我的收获:
作业设计:教材习题及数学导航
教后反思
第三篇:《数轴》教学设计
《数轴》 教学设计
大荔县赵渡中学 郭娟
设计依据
本节课主要设计思想都依据义务教育《数学课程标准》(2011年版),基本理念强调数学课程的基础性、普及性,数学的发展性,学生的学习内容应当是现实的,有意义的和富有挑战性的,教学内容有利于学生主动的进行探究与交流,自主探索,合作交流是学生学习数学的重要方式。教师是学生学习的组织者,引导者和合作者。在师生共同交流的过程中理解和掌握基本的数学知识与技能,常用的数学思想和方法。
教学内容分析
人教版义务教育教科书七年级上册《数学》1.2.2数轴,属于义务教育《数学课程标准》(2011年版)第三学段的“数与代数”内容,《数轴》这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础
学情分析:
(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数 的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。
(2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学 生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。
(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一 方面要创造条件和机会,让学生发表见解,发挥学生的主动性。
教学目标: 知识与能力
1、使学生理解数轴的三要素,会画数轴。
2、能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示;
3、向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。过程与方法
学习过程中,通过课件创设的情境充分调动学生各知觉器官,做到"细观察、多动手、勤思考".通过观察、猜想、探究、推理、模仿、体验等方法完成本节知识的学习.
情感态度与价值观
1.渗透数形结合的数学思想; 2.知道数学来源于实践; 3.培养对数学的学习兴趣.教学重点
由于学生学习了用数轴上的点表示有理数后,就能较好地理解相反数的概念及应用数同比较有理数的大小,因此,本节课的重点应为会用数轴上的点表示有理数。
教学难点
由于从问题情境抽象到数轴这一建模过程,对于抽象思维处于初级阶段的七年级学生来说,认知上存在一定的困难,因此,本节课的难点是:数轴的引入;突破难点的关键是:运用类比数学思想。教学过程:
一、出示目标
1、使学生理解数轴的三要素,会画数轴。
2、能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示;
3、体会数行结合的数学思想。
二、突破目标
1、复习导入
(1).“正、负”的规定具有相对性,正数和负数表示相反意义的量
如果向东走30米记作+30米,那么向南走30米,能否记作-30米?为什么?(2).引进负数的意义:
Ⅰ 表示相反意义的量; Ⅱ 计算的需要.2、自学提纲(自学教材7—8页回答)
①在上图中是怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系? ②观察温度计,体会数与形有怎样的对应关系? ③什么是数轴?
④“单位长度”能不能说成“长度单位”?为什么? ⑤画数轴的一般步骤是什么?
⑥根据教材中的实例,说一说原点起什么作用?
3、通过10分钟的自学后,分小组对照答案,针对问题小组讨论,教师巡视并对小组活动给予及时的评价和帮助。
4、小组展示,教师利用幻灯片进行知识小结。
三、课堂检测 课堂检测1.3.5.7.2.4.6.8.原点、正方向、单位长度一个也不能少.练一练1.在数轴上表示下列各数.1+2,-2,-3.5 4-3.5●-2●14●2●-4-3-2-101234任何一个有理数都可以用数轴上的一个点来表示.四、课堂小结
通过这节课的学习你有那些收获?你还有什么疑惑吗?
你对自己的表现满意吗?为什么?
教学反思: 这一课时学习的数轴概念是中学数学中数形结合的起点,数形结合是帮助学生理解数学、学好数学的重要思想方法。在教学与学习中注重数形结合是数学教学与学习的重要指导思想,以后学习有理数的有关性质和运算都是结合数轴进行的,由此可见这一课时学生学好数轴概念的重要性。
学生在自学的过程中非常认真,问题一一得到了解决,整个概念的教学流畅自然,而且让学生充分地进行了思考和积极地探索,令学生对于数轴的三要素理解深刻,突破了难点。学生在画数轴时容易出现一些画法上的小错误,所以我在屏幕示范画数轴的过程中边画边附上几点说明:原点、单位长度和正方向三要素缺一不可;直线一般画水平并非只能画水平;原点可取直线上任一点但一取定就不再改变;正方向用箭头表示,一般取从左到右为正;单位长度取适当应结合实际需要但一旦取定就不再改变,要做到刻度均匀。这一示范和说明使他们对自学的内容进行了纠正和有效的强化,但简单的说教所达到的效果并不显著,所以,我设置了一组典型的错误画法让学生辨别及时纠错、深化理解,帮助他们真正领会了数轴的含义。我想,作为教师,我们在备课时不但要备教材,更要备学生,学会换位思考,学生可能会出现怎样的问题和疏忽,我们要有所准备,及时预防和纠正。我又想,如果先放手让学生自己画,然后把学生自己画的数轴(特别是有错误的)展示,相互指正,以示警戒,也不失为一种很好的教学资源。
本节课,当学习用数轴上的点表示正负数时,学生不但要知道数轴上给定的点表示的数,还要能把给定的数用实心点表示在数轴上。
第四篇:数轴教学设计
第二章 有理数及其运算
2.数轴
山西省太原市万柏林区一中
赵洁
一 学生起点分析: 学生的知识技能基础:学生小学里已经学习过在“射线”上用点来表示数和读出或写出“射线”上的点所表示的数,对数与点的这种对应关系有了初步的认识和理解,上一节又学习了有理数的概念,为数轴概念的建立和进一步学习数轴上的点与有理数的对应关系积累的必要的学习经验,具备了“表示”的基本技能和基本方法.学生活动经验基础:数轴是用“长度”度量各类量的抽象,日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了基础.二 学习任务分析:
这一课时学习的数轴概念是中学数学中数形结合的起点,数形结合是帮助学生理解数学、学好数学的重要思想方法.从现在开始,在教学与学习中注重数形结合是数学教学与学习的重要指导思想,本章后面的有理数的有关性质和运算都是结合数轴进行的,由此可见这一课时学生学好数轴概念的重要性.数轴是用“长度”度量各类量的抽象,日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了基础.本节是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小,借助数轴理解互为相反数两数的几何意义.正确理解有理数与数轴上点的对应关系.另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础.为此,本节课的教学目标是:
1、知识与技能:①通过与温度计的类比认识数轴,会用数轴上的点表示有理数;②借助数轴了解相反数的概念,知道互为相反数的一对数在数轴上的位置关系;③利用数轴比较有理数的大小.2、过程与方法:培养学生的观察、比较、分析、抽象、概括的逻辑思维能力和动手能力,渗透数形结合的数学思想和方法.3、情感与态度:通过数轴与温度变化这种自然现象的和谐结合,激发学生探索的好奇心,提高学生的学习兴趣,以培养学生勇于创新的精神和良好的学习习惯.三 教学过程设计:
本节课设计了七个教学环节:第一环节:创设情境,引入课题;第二环节:合作交流,探索新知;第三环节:动手练习,归纳总结;第四环节:仔细观察,发现规律; 第五环节:加强练习,巩固提高;第六环节:归纳小结,强化思想;第七环节:布置作业.第一环节 创设情境,引入课题 活动内容:
教师通过课件演示温度计读数,并且让学生回答以下问题:
问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
(四人小组为单位讨论并回答教师的问题)
活动目的:
创设问题情境,激发学生学习热情,发现生活中的数学.通过问题1和问题2的解决, 学生感受到点与数之间的关系,从而由点表示数的感性认识上升到理性认识.活动的实际效果:
激发了学生学习兴趣,学生对此内容很感兴趣
第二环节 合作交流,探索新知
活动内容:
学生回答由上述两问题得到什么启发?你能用一条直线上的点表示有理数吗? 活动目的:
让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?从而得出数轴的三要素:原点、正方向、单位长度.活动的实际效果:
学生在开放的环境下,大胆的发表自己的见解.有的学生提出用射线上的点表示有理数,但有人反驳,射线是向一方延伸,而有理数是无限的,应该采用直线.同时学生还探索出,为了区分正有理数和负有理数,必须在直线上先确定零点,即原点.同时还需要正方向以及像温度计刻度一样的单位长度.在学生的探索下,一个数轴展现在师生面前.即先画一条水平直线,在水平直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定向右的方向为正方向这就是数轴.第三环节 动手练习,归纳总结 活动内容:
学生回答问题,动手训练 问题1: +3,-4,1,-1.5,0分别在数轴的什么位置? 4问题2:指出数轴上 A, B, C, D各点分别表示什么数? 2
问题3: 画出数轴,并用数轴上的点表示下列各数: 33,-5,0,5,-4, 22问题4:2与-2有什么相同点与不相同点?它们在数轴上的位置有什么关系?
33与,225与-5呢?
活动目的:
通过练习,得出结论.正有理数是用原点右边的点表示,负有理数是用原点左边的点表示,0用原点表示.所以任何一个有理数都可以用数轴上的一个点来表示.问题2是数轴上已知点所表示的有理数,是由“形”到“数”的思维过程.问题3是给定的数用数轴上的点来表示,是由“数”到“形”的思维过程.它们从两个侧面体现出数形结合思想.问题4是使学生通过观察特例,总结出相反数的概念,以及互为相反数的两数在数轴上的位置关系,从数和形两个侧面理解相反数.活动的实际效果:
通过几个问题的训练学生基本掌握了数轴的画法,掌握了有理数可用数轴上的点来表示.他们还观察出像2和-2,-5和5等这样的一组数它们只有符号不同这样的特点,总结出相反数的概念.同时,还提出像0这样的特殊数字,它的相反数还是0.学生们还从数轴上观察出2与-2等这样的一组数,位于原点的两侧,并且距原点的距离相等.因此得到结论:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数.也称这两个数互为相反数,特别地,0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.第四环节 仔细观察,发现规律 活动内容:
学生观察数轴并回答问题:
问题1:数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系? 问题2:正数、负数在数轴的什么位置?判断它们的大小?
利用结论练习:比较下列每组数的大小,并说明理由.⑴-2 和 +6;⑵0和-1.8;⑶3和-4.2 活动目的:
思考数轴的应用价值,观察数轴上两个点所表示的数的大小情况.得出结论:数轴上两个点所表示数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数.通过练习,借助数轴比较数的大小.活动实际效果:
学生通过练习掌握了利用数轴比较数的大小,在训练中灵活运用今天所学知识.第五环节 加强练习,巩固提高 活动内容:
1、写出三对非零的相反数,在数轴上将它们表示出来,并比较其中三个负数的大小.3
2、在数轴上距原点2个单位长度的点表示什么数? 活动目的:
一方面巩固新学内容,另一方面为讨论相反数的性质和绝对值的概念作准备.活动实际效果:
学生基本能准确的把有理数用数轴上的点表示出来.在比较数的大小时,出现错误,例如:把-5﹤-3﹤-2写成-3﹥-5﹤-2,教学中应及时纠正.第六环节 归纳小结,强化思想 活动内容:
师生共同总结这节课的知识内容,让学生畅所欲言谈这节课收获.活动目的:
把所学知识条理化,学生把自己在本节课的收获说出来和大家共享,在知识、能力和情感上都有所发展.活动实际效果:
通过师生共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也有利于培养学生归纳、概括的能力.学生不仅有知识上的收获,而且体会到数学源于生活.第七环节 布置作业
1、在数轴上把下列各数的相反数表示出来,并比较它们的大小.7,45,-3.5,0,342、比较下列每组数的大小
(1)-10,-7(2)-3.5,1(3)11,(4)3.8,-4.1,-3.9 243、(1)点A在数轴上距原点3个单位长度,且位于原点左侧,若将A向右移动4个单位
长度,在向左移动1个单位长度,此时A点所表示的是什么数?(2)B点所表示的数是A点开始时所表示数的相反数做同样的移动以后, B点表示 什么数?
四 教学反思:
1、在问题的探索上
采用小组探究老师提供的情景下,在具有较多的时间和空间的条件下,亲身参加探索发现,主动的获取知识和技能.但在整个的实施过程中出现了一些问题,比如:在概念的得出上学生的总结出现了一些问题,我在处理时由于怕时间不够充裕所以学生出现的问题我给做出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助.2、习题的配备
整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方法,使学生对数轴任意两点之间的大小关系理解进一步的加强以及对相反数概念的理解.在讲解完例题后,让学生互相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围.在最后的习题配备上,让学生对两个数大小关系作出判断,并且对各种情况做出讨论,达到本节课的一个高潮.促使学生的思路得到进一步的加强.3、课时安排
课堂教学容量过大,分两个课时要好一些.5
第五篇:数轴教学设计专题
第二章 有理数及其运算
2.数 轴
刘晨
一、学生起点分析
日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了生活经验基础,是学生便于理解数轴概念.二、学习任务分析
1、知识与技能:①掌握数轴的三要素,会画数轴; ②会指出数轴上的点表示的有理数;并能把有理数在数轴上用点准确的表示出来; ③数轴上点的大小关系,能利用数轴比较有理数的大小.2、过程与方法:培养学生的观察、比较、分析、抽象、概括的逻辑思维能力和动手能力,初步培养学生数形结合的数学思想方法和意识.3、情感与态度:通过数轴与生活实物对应对比,激发学生兴趣,通过规范画图,培养学生细致准确习惯,扶植勇于探究的精神.三、教学过程设计
本节课设计了六个教学环节:①情境导入、适时点题;
②问题探究、形成策略 ; ③动手操作、探索新知;
④小试牛刀、自我检测 ; ⑤快乐课堂、思维晋级;⑥师生归纳,布置作业。
第一环节 情景导入,适时点题 活动内容:
1.你能说说什么叫正数,什么叫负数吗? 2.问题1:(1)温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?
(教师通过课件演示温度计读数,并且让学生回答以下问题:)
(2)温度计上的刻度数有什么特点?你为什么能准确的说出每一个度数?
(3)你能借鉴温度计,用一条直线上的点表示有理数吗?(学生自由发言)第二环节 问题探究,形成策略 活动内容一:
1.师生动手画数轴.(边画边强调数轴画法和要点)数轴三要素: 原点 正方向 单位长度 师: 好像一个平放着的温度计
第三环节 动手操作,探索新知
活动内容:
1.问题1:请你思考: +3,-4,0分别在数轴的什么位置?
1,-1.5呢? 42.问题2:指出数轴上 A, B, C, D各点分别表示什么数?
3.问题3:画出数轴,并用数轴上的点表示下列各数: 33,-3.5,0,5,-4, 22 思考:怎样在数轴上表示一个有理数-4 ? 数轴的作用有哪些?
第四环节 小试牛刀,自我检测
活动内容:一组检测题
1.下列各图表示数轴是否正确?为什么? ⑴ ⑵ ⑶ ⑷
2.指出数轴上点A、B、C、D分别表示什么数,并说出他们的相反数.3.画出数轴,并在数轴上画出表示下列各数的点:
2-4,3.5,-1.5,1,0 ,2.5.3再按数轴上从左到右的顺序,将这些数重新排成一行.活动方式: 学生练习,学生互评,订正强调要点;归纳出:数轴上两个点表示的数,右边的总比左边的大;正数大于0,负数小于0,正数大于负数.活动目的:
检测学生知识的运用与掌握情况 活动的实际效果:
刚学数轴,强调运用中的规范性准确性;强调错误的认识与体验。第五环节 快乐课堂,思维晋级
活动内容:
1.问题1: 比较下列每组数的大小,并说明理由.⑴-2 和 +6;⑵0和-1.8;⑶3和-4;(4)3.8,-4.1,-3.2 3 2.问题2:写出5个有理数,在数轴上将它们表示出来,并比较它们的大小.3.问题三: 在数轴上距原点3个单位长度的点表示什么数?与表示数2的点距离3个单位的数是多少?